Environmental Applications of Electromembrane Extraction: A Review
Abstract
:1. Introduction
2. Basic Experimental Equipment and Parameters
3. EME for Environmental Analysis
3.1. Determination of Inorganic Ions by EME
3.2. Determination of Organic Pollutants by EME
4. EME for Environmental Remediation
4.1. Removal of Inorganic Ions by EME
4.2. Removal of Organic Pollutants by EME
4.3. Resource Recovery by EME
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schantz, M.M. Pressurized liquid extraction in environmental analysis. Anal. Bioanal. Chem. 2006, 386, 1043–1047. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, H.K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal. Chem. 2002, 74, 2486–2492. [Google Scholar] [CrossRef]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids. J. Chromatogr. A 2006, 1109, 183–190. [Google Scholar] [CrossRef]
- Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-phase microextraction-The different principles and configurations. TrAC, Trends Anal. Chem. 2019, 112, 264–272. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Elyasi, Y.; Rastegari, M. Flat membrane-based electromembrane extraction coupled with UV-visible spectrophotometry for the determination of diethylhexyl phthalate in water samples. Microchem. J. 2019, 151, 104191. [Google Scholar] [CrossRef]
- Yamini, Y.; Seidi, S.; Rezazadeh, M. Electrical field-induced extraction and separation techniques: Promising trends in analytical chemistry-A review. Anal. Chim. Acta 2014, 814, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Seidi, S.; Yamini, Y.; Heydari, A.; Moradi, M.; Esrafili, A.; Rezazadeh, M. Determination of thebaine in water samples, biological fluids, poppy capsule, and narcotic drugs, using electromembrane extraction followed by high-performance liquid chromatography analysis. Anal. Chim. Acta 2011, 701, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gjelstad, A.; Pedersen-Bjergaard, S. Organic solvents in electromembrane extraction: Recent insights. Rev. Anal. Chem. 2016, 35, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Hasheminasab, K.S.; Fakhari, A.R. Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs from urine samples. Anal. Chim. Acta 2013, 767, 75–80. [Google Scholar] [CrossRef]
- Huang, C.; Gjelstad, A.; Seip, K.F.; Jensen, H.; Pedersen-Bjergaard, S. Exhaustive and stable electromembrane extraction of acidic drugs from human plasma. J. Chromatogr. A 2015, 1425, 81–87. [Google Scholar] [CrossRef]
- HosseinyDavarani, S.S.; Moazami, H.R.; Memarian, E.; Nojavan, S. Electromembrane extraction through a virtually rotating supported liquid membrane. Electrophoresis 2016, 37, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Drouin, N.; Rudaz, S.; Schappler, J. New supported liquid membrane for electromembrane extraction of polar basic endogenous metabolites. J. Pharm. Biomed. 2018, 159, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gjelstad, A.; Pedersen-Bjergaard, S. Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes. J. Membr. Sci. 2017, 526, 18–24. [Google Scholar] [CrossRef]
- Roman-Hidalgo, C.; Barreiros, L.; Villar-Navarro, M.; Lopez-Perez, G.; Martin-Valero, M.J.; Segundo, M.A. Electromembrane extraction based on biodegradable materials: Biopolymers as sustainable alternatives to plastics. TrAC Trends Anal. Chem. 2023, 162, 117048. [Google Scholar] [CrossRef]
- Roman Hidalgo, C.; Ramos-Payan, M.; Antonio Ocana-Gonzalez, J.; Jesus Martin-Valero, M.; Angel Bello-Lopez, M. Agar films containing silver nanoparticles as new supports for electromembrane extraction. Anal. Bioanal. Chem. 2015, 407, 1519–1525. [Google Scholar] [CrossRef]
- Olasupo, A.; Ahmed, N.; Kamil, W.M.W.A.; Suah, F.B.M. Enhanced removal of sulfamethoxazole antibiotics from aquatic samples by electromembrane extraction process. React. Funct. Polym. 2022, 173, 105211. [Google Scholar] [CrossRef]
- Tabani, H.; Dorabadi Zare, F.; Alahmad, W.; Varanusupakul, P. Determination of Cr(III) and Cr(VI) in water by dual-gel electromembrane extraction and a microfluidic paper-based device. Environ. Chem. Lett. 2020, 18, 187–196. [Google Scholar] [CrossRef]
- Roman-Hidalgo, C.; Martin-Valero, M.J.; Lopez-Perez, G.; Villar-Navarro, M. Green method for the selective electromembrane extraction of parabens and fluoroquinolones in the presence of NSAIDs by using biopolymeric chitosan films. Membranes 2023, 13, 326. [Google Scholar] [CrossRef]
- Huang, C.; Jensen, H.; Seip, K.F.; Gjelstad, A.; Pedersen-Bjergaard, S. Mass transfer in electromembrane extraction-the link between theory and experiments. J. Sep. Sci. 2016, 39, 188–197. [Google Scholar] [CrossRef]
- Eskandari, M.; Yamini, Y.; Fotouhi, L.; Seidi, S. Microextraction of mebendazole across supported liquid membrane forced by pH gradient and electrical field. J. Pharm. Biomed. 2011, 54, 1173–1179. [Google Scholar] [CrossRef]
- Gjelstad, A.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation. J. Chromatogr. A 2007, 1174, 104–111. [Google Scholar] [CrossRef]
- Šlampová, A.; Kubáň, P.; Boček, P. Additional considerations on electrolysis in electromembrane extraction. J. Chromatogr. A 2016, 1429, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Krishna Marothu, V.; Gorrepati, M.; Vusa, R. Electromembrane extraction-A novel extraction technique for pharmaceutical, chemical, clinical and environmental analysis. J. Chromatogr. Sci. 2013, 51, 619–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, T.; Rahimi, A.; Nojavan, S. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current. Anal. Chim. Acta 2016, 903, 81–90. [Google Scholar] [CrossRef]
- Kubáň, P.; Šlampová, A.; Boček, P. Electric field-enhanced transport across phase boundaries and membranes and its potential use in sample pretreatment for bioanalysis. Electrophoresis 2010, 31, 768–785. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.C.; Gómez, M.E.B.; Zavala, A.H. Hexavalent chromium: Regulation and health effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef]
- Yang, K.; Chen, C.; Brockman, J.; Shikany, J.M.; He, K. Low-and moderate-levels of arsenic exposure in young adulthood and incidence of chronic kidney disease: Findings from the CARDIA Trace Element Study. J. Trace Elem. Med. Biol. 2021, 63, 126657. [Google Scholar] [CrossRef]
- Tan, M.L.; Zhang, M.; Li, F.; Maya, F.; Breadmore, M.C. A three-dimensional printed electromembrane extraction device for capillary electrophoresis. J. Chromatogr. A 2019, 1595, 215–220. [Google Scholar] [CrossRef]
- Khan, W.A.; Arain, M.B.; Bibi, H.; Tuzen, M.; Shah, N.; Zada, A. Selective electromembrane extraction and sensitive colorimetric detection of copper(II). Z. Phys. Chem. 2021, 235, 1113–1128. [Google Scholar] [CrossRef]
- Nojavan, S.; Rahmani, T.; Mansouri, S. Selective determination of chromium(VI) in industrial wastewater samples by micro-electromembrane extraction combined with electrothermal atomic absorption spectrometry. Water Air Soil Poll. 2018, 229, 1–12. [Google Scholar] [CrossRef]
- Kaya, A. An Approach in EME: Development of thermal and electrical conductivities of membrane and disable the chemical carrier in transport process. ECS J. Solid State Sci. Technol. 2020, 9, 061017. [Google Scholar] [CrossRef]
- Tabani, H.; Khodaei, K.; Varanusupakul, P.; Alexovič, M. Gel electromembrane extraction: Study of various gel types and compositions toward diminishing the electroendosmosis flow. Microchem. J. 2020, 153, 104520. [Google Scholar] [CrossRef]
- Fashi, A.; Yaftian, M.R.; Zamani, A. Electromembrane extraction-preconcentration followed by microvolume UV-Vis spectrophotometric determination of mercury in water and fish samples. Food Chem. 2017, 221, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Mendiguchía, C.; Moreno, C.; Kubáň, P. Electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection: Multi-extraction capabilities to analyses trace metals from saline samples. Electrophoresis 2018, 39, 2152–2159. [Google Scholar] [CrossRef]
- Davarani, S.S.H.; Sheikhi, N.; Nojavan, S.; Ansari, R.; Mansori, S. Electromembrane extraction of heavy metal cations from aqueous media based on flat membrane: Method transfer from hollow fiber to flat membrane. Anal. Methods 2015, 7, 2680–2686. [Google Scholar] [CrossRef]
- Kiplagat, I.K.; Doan, T.K.O.; Kubáň, P.; Boček, P. Trace determination of perchlorate using electromembrane extraction and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2011, 32, 3008–3015. [Google Scholar] [CrossRef]
- Davarani, S.S.H.; Moazami, H.R.; Keshtkar, A.R.; Banitaba, M.H.; Nojavan, S. A selective electromembrane extraction of uranium(VI) prior to its fluorometric determination in water. Anal. Chim. Acta 2013, 783, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Kubáň, P.; Boček, P. Preconcentration in micro-electromembrane extraction across free liquid membranes. Anal. Chim. Acta 2014, 848, 43–50. [Google Scholar] [CrossRef]
- Zarghampour, F.; Yamini, Y.; Baharfar, M.; Javadian, G.; Faraji, M. On-chip electromembrane extraction followed by sensitive digital image-based colorimetry for determination of trace amounts of Cr(vi). Anal. Methods 2020, 12, 483–490. [Google Scholar] [CrossRef]
- Tahmasebi, Z.; Davarani, S.S.H.; Ebrahimzadeh, H.; Asgharinezhad, A.A. Ultra-trace determination of Cr(VI) ions in real water samples after electromembrane extraction through novel nanostructured polyaniline reinforced hollow fibers followed by electrothermal atomic absorption spectrometry. Microchem. J. 2018, 143, 212–219. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Aghaei, A. Electromembrane extraction and anodic stripping voltammetric determination of mercury(II) using a glassy carbon electrode modified with gold nanoparticles. Microchim. Acta 2016, 183, 2411–2419. [Google Scholar] [CrossRef]
- Sahragard, A.; Alahmad, W.; Varanusupakul, P. Electrocolorimetric gel-based sensing approach for simultaneous extraction, preconcentration, and detection of iodide and chromium(VI) ions. Talanta 2021, 235, 122715. [Google Scholar] [CrossRef] [PubMed]
- Tabani, H.; Asadi, S.; Nojavan, S.; Parsa, M. Introduction of agarose gel as a green membrane in electromembrane extraction: An efficient procedure for the extraction of basic drugs with a wide range of polarities. J. Chromatogr. A 2017, 1497, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Nojavan, S.; Davarani, S.S.H.; Morteza-Najarian, A. Speciation of chromium in environmental samples by dual electromembrane extraction system followed by high performance liquid chromatography. Anal. Chim. Acta 2013, 789, 58–64. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Aghaei, A. Electromembrane extraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of As(III) in water samples. Electrochim. Acta 2016, 206, 192–198. [Google Scholar] [CrossRef]
- Çalık, G.; Kaya, A.; Onac, C.; Aytaç, A.; Alpoguz, H.K. Kinetıc analysıs of Cr(VI) transport wıth electromembrane processes. J. Chem. Technol. Biot. 2022, 97, 662–667. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Aghaei, A. A simple and selective approach for determination of trace Hg(II) using electromembrane extraction followed by graphite furnace atomic absorption spectrometry. Spectrochim. Acta B At. Spectrosc. 2017, 128, 17–21. [Google Scholar] [CrossRef]
- Alahmad, W.; Varanusupakul, P.; Kaneta, T.; Varanusupakul, P. Chromium speciation using paper-based analytical devices by direct determination and with electromembrane microextraction. Anal. Chim. Acta 2019, 1085, 98–106. [Google Scholar] [CrossRef]
- Kubáň, P.; Strieglerová, L.; Gebauer, P.; Boček, P. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 2011, 32, 1025–1032. [Google Scholar] [CrossRef]
- Nojavan, S.; Bidarmanesh, T.; Memarzadeh, F.; Chalavi, S. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography. Electrophoresis 2014, 35, 2446–2453. [Google Scholar] [CrossRef]
- Kamyabi, M.A.; Aghaei, A. Electromembrane extraction and spectrophotometric determination of As(V) in water samples. Food Chem. 2016, 212, 65–71. [Google Scholar] [CrossRef]
- Tahmasebi, Z.; Davarani, S.S.H. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μg L−1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction. Talanta 2016, 161, 640–646. [Google Scholar] [CrossRef]
- Atikarnsakul, U.; Varanusupakul, P.; Alahmad, W. Isolation of chromium(VI) from aqueous solution by electromembrane extraction. Anal. Lett. 2018, 51, 983–997. [Google Scholar] [CrossRef]
- Šlampová, A.; Šindelář, V.; Kubáň, P. Application of a macrocyclic compound, bambus [6] uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions. Anal. Chim. Acta 2017, 950, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Hamsawahini, K.; Sathishkumar, P.; Ahamad, R.; Yusoff, A.R.M. PVDF-ErGO-GRC electrode: A single setup electrochemical system for separation, pre-concentration and detection of lead ions in complex aqueous samples. Talanta 2016, 148, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, M.; Pedersen-Bjergaard, S.; Barkhordar, A.; Bohlooli, M. Application of hollow cylindrical wheat stem for electromembrane extraction of thorium in water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Mendiguchía, C.; Moreno, C. An electromembrane microextraction-based green method for the determination of trace copper in natural waters. Anal. Methods 2023, 15, 618–625. [Google Scholar] [CrossRef]
- Alidoust, M.; Yamini, Y.; Baharfar, M. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Anal. Chim. Acta 2022, 1216, 339987. [Google Scholar] [CrossRef]
- Yousefi, S.; Makarem, S.; Alahmad, W.; Zare, F.D.; Tabani, H. Evaluation of complexing agents in the gel electro-membrane extraction: An efficient approach for the quantification of zinc(II) ions in water samples. Talanta 2022, 238, 123031. [Google Scholar] [CrossRef]
- Chaikhan, P.; Udnan, Y.; Ampiah-Bonney, R.J.; Chaiyasith, W.C. Deep eutectic solvent-based electromembrane hollow fiber liquid phase microextraction for determining Pb in water and food samples. J. Food Compos. Anal. 2023, 118, 105214. [Google Scholar] [CrossRef]
- Pinto, J.J.; Mendiguchia, C.; Lopez-Lopez, J.A.; Martin-Barata, M.; Silva, M.; Moreno, C. Improvement of advanced sample preparation systems for the determination of trace Ni in seawater by electro-membranes. Membranes 2023, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Zaroudi, F.; Nasihatkon, B.; Hosseinzadeh, R.; Fakhari, A.R.; Seidi, S. Miniaturized on-chip electromembrane extraction with QR code-based red-green-blue analysis using a customized Android application for copper determination in environmental and food samples. Food Chem. 2023, 414, 135667. [Google Scholar] [CrossRef]
- Seidi, S.; Rezazadeh, M.; Yamini, Y.; Zamani, N.; Esmaili, S. Low voltage electrically stimulated lab-on-a-chip device followed by red-green-blue analysis: A simple and efficient design for complicated matrices. Analyst 2014, 139, 5531–5537. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, S.; Wang, M.; Lv, Y.; Shi, J.; Zeng, Y.; Ye, J.; Chu, Q. Double surfactants-assisted electromembrane extraction of cyromazine and melamine in surface water, soil and cucumber samples followed by capillary electrophoresis with contactless conductivity detection. J. Sci. Food Agric. 2020, 100, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.M.; Makarem, S.; Alexovič, M.; Tabani, H. Simultaneous separation and quantification of acidic and basic dye specimens via a dual gel electro-membrane extraction from real environmental samples. J. Iran. Chem. Soc. 2021, 18, 2091–2099. [Google Scholar] [CrossRef]
- Balchen, M.; Hatterud, A.G.; Reubsaet, L.; Pedersen-Bjergaard, S. Fundamental studies on the electrokinetic transfer of net cationic peptides across supported liquid membranes. J. Sep. Sci. 2011, 34, 186–195. [Google Scholar] [CrossRef]
- Asadi, S.; Tabani, H.; Nojavan, S. Application of polyacrylamide gel as a new membrane in electromembrane extraction for the quantification of basic drugs in breast milk and wastewater samples. J. Pharm. Biomed. 2018, 151, 178–185. [Google Scholar] [CrossRef]
- Mamat, N.A.; See, H.H. Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode. J. Chromatogr. A 2017, 1504, 9–16. [Google Scholar] [CrossRef]
- Hanapi, N.S.M.; Sanagi, M.M.; Ibrahim, W.A.W.; Ibrahim, W.N.W. Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-μ-EME) for the analysis of antidepressants in water samples. J. Chromatogr. B 2017, 1046, 73–80. [Google Scholar] [CrossRef]
- Bagheri, H.; Fakhari, A.R.; Sahragard, A. A novel strategy based on surfactant assisted electromembrane extraction for the determination of dicamba and 2, 4-DB as model herbicides in real water samples. RSC Adv. 2016, 6, 4843–4849. [Google Scholar] [CrossRef]
- Tabani, H.; Fakhari, A.R.; Zand, E. Low-voltage electromembrane extraction combined with cyclodextrin modified capillary electrophoresis for the determination of phenoxy acid herbicides in environmental samples. Anal. Methods 2013, 5, 1548–1555. [Google Scholar] [CrossRef]
- Alhooshani, K.; Basheer, C.; Kaur, J.; Gjelstad, A.; Rasmussen, K.E.; Pedersen-Bjergaard, S.; Lee, H.K. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater. Talanta 2011, 86, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Hasheminasab, K.S.; Fakhari, A.R.; Shahsavani, A.; Ahmar, H. A new method for the enhancement of electromembrane extraction efficiency using carbon nanotube reinforced hollow fiber for the determination of acidic drugs in spiked plasma, urine, breast milk and wastewater samples. J. Chromatogr. A 2013, 1285, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Villar-Navarro, M.; Moreno-Carballo, M.d.C.; Fernández-Torres, R.; Callejón-Mochón, M.; Bello-López, M.Á. Electromembrane extraction for the determination of parabens in water samples. Anal. Bioanal. Chem. 2016, 408, 1615–1621. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Loureiro, H.C.; de Jesus, F.F.S.; de Jesus, D.P. Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. J. Sep. Sci. 2017, 40, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Davarani, S.S.H.; Morteza-Najarian, A.; Nojavan, S.; Pourahadi, A.; Abbassi, M.B. Two-phase electromembrane extraction followed by gas chromatography-mass spectrometry analysis. J. Sep. Sci. 2013, 36, 736–743. [Google Scholar] [CrossRef]
- Tak, V.; Kabra, A.; Pardasani, D.; Goud, D.R.; Jain, R.; Dubey, D. A glass capillary based microfluidic electromembrane extraction of basic degradation products of nitrogen mustard and VX from water. J. Chromatogr. A 2015, 1426, 16–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Liu, Y.; Guo, L.; Ye, J.; Chu, Q. Sensitive determination of five priority haloacetic acids by electromembrane extraction with capillary electrophoresis. Chin. J. Chem. 2015, 33, 235–240. [Google Scholar] [CrossRef]
- Shamsayei, M.; Yamini, Y.; Asiabi, H.; Rezazadeh, M.; Seidi, S. Electromembrane surrounded solid-phase microextraction using a stainless-steel wire coated with a nanocomposite composed of polypyrrole and manganese dioxide. Microchim. Acta 2017, 184, 2697–2705. [Google Scholar] [CrossRef]
- Tahmasebi, Z.; Davarani, S.S.H.; Asgharinezhad, A.A. An efficient approach to selective electromembrane extraction of naproxen by means of molecularly imprinted polymer-coated multi-walled carbon nanotubes-reinforced hollow fibers. J. Chromatogr. A 2016, 1470, 19–26. [Google Scholar] [CrossRef]
- Asadi, S.; Tabani, H.; Khodaei, K.; Asadian, F.; Nojavan, S. Rotating electrode in electro membrane extraction: A new and efficient methodology to increase analyte mass transfer. RSC Adv. 2016, 6, 101869–101879. [Google Scholar] [CrossRef]
- Zahedi, P.; Davarani, S.S.H.; Moazami, H.R.; Nojavan, S. Surfactant assisted pulsed two-phase electromembrane extraction followed by GC analysis for quantification of basic drugs in biological samples. J. Pharm. Biomed. 2016, 117, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Nojavan, S. Two-step voltage dual electromembrane extraction: A new approach to simultaneous extraction of acidic and basic drugs. Anal. Chim. Acta 2016, 923, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nojavan, S.; Bidarmanesh, T.; Mohammadi, A.; Yaripour, S. Electromembrane extraction of gonadotropin-releasing hormone agonists from plasma and wastewater samples. Electrophoresis 2016, 37, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Moazami, H.R.; Davarani, S.S.H.; Abrari, M.; Elahi, A. Electromembrane extraction using a round-headed platinum wire as the inner electrode: A simple and practical way to enhance the performance of extraction. Chromatographia 2018, 81, 1023–1033. [Google Scholar] [CrossRef]
- Lee, J.; Khalilian, F.; Bagheri, H.; Lee, H.K. Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater. J. Chromatogr. A 2009, 1216, 7687–7693. [Google Scholar] [CrossRef]
- Guo, L.; Lee, H.K. Electro membrane extraction followed by low-density solvent based ultrasound-assisted emulsification microextraction combined with derivatization for determining chlorophenols and analysis by gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1243, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Zarghampour, F.; Yamini, Y.; Dil, E.A.; Shokrollahi, A.; Javadian, G. A new microfluidic-chip device followed by sensitive image analysis of smart phone for simultaneous determination of dyes with different acidic-basic properties. Talanta 2023, 254, 124168. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, G.L.; Dos Santos, G.F.; Martins, R.O.; da Silva Lima, G.; Medeiros, I., Jr.; de Carvalho, R.M.; Simas, R.C.; Sgobbi, L.F.; Chaves, A.R.; Vaz, B.G. Electromembrane extraction of naphthenic acids in produced water followed by ultra-high-resolution mass spectrometry analysis. J. Am. Soc. Mass Spectrom. 2022, 33, 1510–1517. [Google Scholar] [CrossRef]
- Šlampová, A.; Kubáň, P. Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples. Talanta 2023, 252, 123831. [Google Scholar] [CrossRef]
- Sahragard, A.; Fakhari, A.R.; Hasheminasab, K.S.; Aladaghlo, Z. Application of carbon nanotubes assisted electromembrane extraction technique followed with capillary electrophoresis for sensitive determination of cocaine in wastewater and biological samples. J. Iran. Chem. Soc. 2022, 20, 37–46. [Google Scholar] [CrossRef]
- Restan, M.S.; Skjaervo, O.; Martinsen, O.G.; Pedersen-Bjergaard, S. Towards exhaustive electromembrane extraction under stagnant conditions. Anal. Chim. Acta 2020, 1104, 1–9. [Google Scholar] [CrossRef]
- Golubenko, D.; Yaroslavtsev, A. Development of surface-sulfonated graft anion-exchange membranes with monovalent ion selectivity and antifouling properties for electromembrane processes. J. Membr. Sci. 2020, 612, 118408. [Google Scholar] [CrossRef]
- La Cerva, M.; Gurreri, L.; Cipollina, A.; Tamburini, A.; Ciofalo, M.; Micale, G. Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for reverse osmosis. Desalination 2019, 467, 175–195. [Google Scholar] [CrossRef]
- Gurreri, L.; La Cerva, M.; Moreno, J.; Goossens, B.; Trunz, A.; Tamburini, A. Coupling of electromembrane processes with reverse osmosis for seawater desalination: Pilot plant demonstration and testing. Desalination 2022, 526, 115541. [Google Scholar] [CrossRef]
- Kuban, P. Salt removal from microliter sample volumes by multiple phase microelectromembrane extractions across free liquid membranes. Anal. Chem. 2017, 89, 8476–8483. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Pham, V.S. Ions transport in electromembrane desalination: A numerical modeling for the return flow ion-concentration-polarization desalination system. Chem. Eng. Res. Des. 2022, 184, 366–377. [Google Scholar] [CrossRef]
- Restan, M.S.; Skottvoll, F.S.; Jensen, H.; Pedersen-Bjergaard, S. Electromembrane extraction of sodium dodecyl sulfate from highly concentrated solutions. Analyst 2020, 145, 4957–4963. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Cao, L.; Yang, J. Dimensional analysis of an electromembrane reactor for recycling and resource recovery of flue gas desulfurization residuals. Environ. Eng. Sci. 2018, 35, 76–87. [Google Scholar] [CrossRef]
- Lin, B.; Wan, L.; Sun, X.; Huang, C.; Pedersen-Bjergaard, S.; Shen, X. Electromembrane extraction of high level substances: A novel approach for selective recovery of templates in molecular imprinting. J. Membr. Sci. 2018, 568, 30–39. [Google Scholar] [CrossRef]
- Meng, X.; Long, Y.; Tian, Y.; Li, W.; Liu, T.; Huo, S. Electro-membrane extraction of lithium with D2EHPA/TBP compound extractant. Hydrometallurgy 2021, 202, 105615. [Google Scholar] [CrossRef]
- Martoyan, G.A.; Kalugin, M.M.; Gabrielyan, A.V.; Martoyan, A.G. Prospects of lithium enrichment on7Li isotope by method of controlled ions electro-migration. IOP Conf. Ser. Mater. Sci. Eng. 2016, 112, 012035. [Google Scholar] [CrossRef]
- Trejo González, J.A.; Araoz, M.E.; Herrera, J.P.; Avila, A.M. Scalable and renewable electromembrane contactors for freshwater recovery through membrane distillation. Ind. Eng. Chem. Res. 2022, 61, 5493–5501. [Google Scholar] [CrossRef]
Matrix | Analyte | SLM Composition | Detection System | Voltage (V) | Enrichment Factor and/or Recovery | LOD | Ref. | |
---|---|---|---|---|---|---|---|---|
EF | Recovery | |||||||
Wastewater samples, a nano silver suspension sample | Heavy metal cations | 1-octanol containing 0.5% DEHP and 0.5% TEHP | AAS | 60 | - | >71.2% | - | [35] |
Drinking water and environmental samples | Perchlorate | 1-heptanol | CE-C4D | 25 | - | 95.9–106.7% | 0.25–0.35 µg/L | [36] |
Water | Uranium (VI) | NPOE containing 1% DEHPA | Fluorescence measurements | 80 | >64.7 | >54% | 0.1 ng/mL | [37] |
Drinking water samples | Perchlorate | 1-pentanol and 1-hexanol | CE-C4D | 150 | 30 | - | - | [38] |
Water samples | Cr(VI) | NPOE containing 15% DEHP | Digital image-based colorimetry | 70 | - | - | 10 µg/L | [39] |
Water samples | Cr(VI) | 1-octanol | ETAAS | 15 | 106 | - | 0.06 ng/mL | [40] |
Water samples | Hg(II) | 1-octanol | SWASV | 60 | - | 89–97% | 0.01 μg/L | [41] |
Food supplement and drinking water samples | Iodide and Cr(VI) | Gel | Portable spectrometer | 50 | - | - | Iodide: 18 µg/L; Cr(VI): 5 µg/L | [42] |
Wastewater sample | Basic drugs | 3% of agarose gel | HPLC/UV | 25 | - | - | 1.5–1.8 ng/mL | [43] |
Water samples | Cr(VI) and Cr(III) | 1-octanol | HPLC | 30 | - | 31.1–47.2% | 5.4 µg/L | [44] |
Water samples | Cr(III) and Cr(VI) | Agarose gel | µPADs | 65 | Cr(VI): 58.8%; Cr(III): 83.3% | Cr(VI): 2.0 ng/Ml; Cr(III): 3.0 ng/mL | [17] | |
Water samples | As(III) | 1-octanol with 2.5% DEHP | ASV | 70 | - | - | 0.18 mg/L | [45] |
Water samples | Cr(VI) | 2-NPOE | UV-Vis | 10–50 | - | 54.73% | - | [46] |
Tap water and river water sample | Hg(II) | 1-octanol with 2.0% DEHP | GFAAS | 60 | 102–108 | 41–43% | 0.5 µg/L | [47] |
Drinking water and mineral water samples | Cr(III) and Cr(VI) | Cr(VI): Octanol-1; Cr(III): DEHP containing octanol-1 (0.7%) | µPADs | 70 | - | - | Cr(VI): 0.7 µg/L; Cr(III): 1.0 µg/L | [48] |
Tap water and powdered milk samples | Heavy metal cations | 1-octanol containing 0.5% bis(2-ethylhexyl) phosphonic acid | CE-C4D | 75 | - | - | 2.5 × 10−8–2 × 10−7 mol/L | [49] |
Pure water samples and water miscible organic solvents | Inorganic anions | 1-heptanol | Ic | 15 | 67–17 | - | 0.6–7.5 ng/mL | [50] |
Water samples | As(V) | 1-octanol containing 2.5% DEHP | UV-Vis | 70 | - | 95–102% | 1.5 ng/mL | [51] |
Tap water, river water, and mineral water samples | Cr(VI) and Cr(III) | 2-ethyl hexanol | ET-AAS | 300 | 110 | 66 | 0.02 ng/mL | [52] |
Mineral water, drinking water, tap water, and surface water | Cr(VI) | NPOE | UV-Vis | 100 | 80 | 95–125% | - | [53] |
Sea water | Bromide | Nitrobenzene containing 3% (w/w) BU6 | CE-C4D | 25 | - | - | - | [54] |
Tap, river and seawater | Pb(II) | 20% DEHPA in 1-octanol | SWV | 5 | - | 80.0% | 9 × 10−11 mol/L | [55] |
Water samples | thorium | 1-octanol containing 5% DEHP | UV-Vis | 90 | 50 | - | 0.29 ng/mL | [56] |
Natural waters | Copper ions | dPKBH dissolved in 1-nonanol | AAS | 95 | - | - | 0.004 mg/L | [57] |
Spring water | Copper ions | NOPE containing 15.0% DEHP and 5.0% TEHP | µPADs | 30 | - | - | 20.0 µg/L | [58] |
Water samples | Zn(II) | Gel | FAAS | 50 | - | - | 5.0 µg/L | [59] |
Water and food samples | Lead | 1-octanol | GFAAS | 30 | 111 | 86.7–116.0% | 0.011 ng/mL | [60] |
Seawater | Nickel | DEHPA | GFAAS | 25 | 180 | - | 23.3 ng/L | [61] |
Tap water, food, and soil samples | Copper ions | 1-octanol | RGB | 10 | - | - | 0.1 µg/mL | [62] |
Wastewater sample | Lead | 1-octanol | RGB | 9 | - | 97–102.6% | - | [63] |
Matrix | Analyte | SLM Composition | Detection System | Voltage (V) | Enrichment Factor and/or Recovery | LOD | Ref. | |
---|---|---|---|---|---|---|---|---|
EF | Recovery | |||||||
River water samples | Cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides | Anionic carrier: di-(2-ethylhexyl)phosphoric acid; cationic carrier: aliquat®336 | CE-C4D | 3000 | 152–185 | 99.1–100% | 0.3–0.4 µg/L | [68] |
River and tap water samples | Antidepressants | [C6MIM] [PF6] | HPLC-UV | 10 | 110–150 | 88.2–111.4% | 0.1–0.4 µg/L | [69] |
Water samples | Dicamba and 2,4-DB | 1-octanol | CE | 30 | - | - | 6.03 ng/mL | [70] |
River water samples | Phenoxy acid herbicides | 1-octanol | CE | 7 | - | - | 10–15 ng/mL | [71] |
Wastewater samples | Haloacetic acids and aromatic acetic acids | Toluene | HPLC-UV | 200 | - | 87–106% | 0.072–40.3 ng/L | [72] |
Wastewater, urine, breast milk and spiked plasma samples | Acidic drugs | 1-octanol | CE-UV | 5 | - | 90–94% | 1–3 ng/mL | [73] |
Surface environmental waters | Parabens | 1-octanol | HPLC-DAD | 30 | 30–49 | - | 0.98–1.43 µg/L | [74] |
Tap and river water samples | Carbendazim and thiabendazole | 1-ethyl-2-nitrobenzene | CE | 300 | carbendazim: 26; thiabendazole: 50 | - | Carbendazim: 2.3 μg/L Thiabendazole: 1.1 μg/L | [75] |
Water samples | Imipramine, desipramine, citalopram and sertraline | 1-heptanol | GC-MS | 60 | - | - | <0.25 ng/mL | [76] |
Water samples | Basic degradation products of nitrogen mustard and VX | 20% (w/w) DEHP in NPOE | UHPLC | 100 | - | 15.7–99.7% | 2–50 ng/mL | [77] |
Drinking water | Five priority haloacetic acids | 1-octanol | CZE-C4D | 50 | 430–671 | - | 0.17–0.61 ng/mL | [78] |
Water, urine, and plasma samples | Cyproheptadine and ketotifen | Polypyrrole and manganese dioxide | GC-FID | 120 | - | 26.8–46.9% | Cyproheptadine: <0.7 ng/mL; Ketotifen: <1.1 ng/mL | [79] |
Wastewater, plasma, and urine samples | Naproxen | 1-octanol | HPLC-UV | 20 | - | 66% | 0.3 µg/L | [80] |
Wastewater and urine samples | Verapamil, haloperidol, and rivastigmine | 2-ethyl hexanol | LC-UV | 170 | - | - | 2.0–3.0 ng/mL | [81] |
Wastewater, plasma, breast milk, and urine samples | Alfentanil, sufentanil and methadone | 1-octanol | GC | 80 | - | 70.5–95.2% | 0.6–1.5 ng/mL | [82] |
Pure water, human plasma, wastewater, and breast milk samples | Acidic and basic drugs | Acidic drugs: 1-octanol; basic drugs: 2-ethyle hexanol | LC-UV | 175 | - | 38.1–68% | 0.3–1.5 ng/mL; | [83] |
Wastewater and plasma samples | Alarelin, leuprolide, buserelin, and triptorelin | 95% of 1-octanol and 5% DEHP | HPLC-UV | 20 | 82–118 | 49–71% | 0.2 ng/mL | [84] |
Water samples, biological fluids, poppy capsules, and narcotic drugs | Thebaine | NPOE | HPLC-UV | 300 | 90–110 | 45–55% | 15 µg/L | [7] |
Wastewater, human plasma, and human urine samples | Amlodipine, verapamil and clomipramine | 2-ethyl hexanol | HPLC-UV | 300 | - | 36.3–88.7% | - | [85] |
Seawater samples | Chlorophenols | 1-octanol | HPLC-UV | 10 | 23 | 74% | 0.1 ng/mL | [86] |
Environmental water samples | Chlorophenols | 1-octanol | GC-MS | 50 | 2198 | <0.005 µg/L | [87] | |
Water samples | Erythrosine and crystal violet | NPOE +5%DEHP and 1-octanol | RGB | 50 | - | ≥94% | - | [88] |
Produced water | Naphthenic acids | Decanol | UHRMS | 200 | - | - | 0.10–0.13 µg/mL | [89] |
Wastewater samples | β-lactam antibiotics | 1-octanol | MEKC-UV | 300 | 7.6–11.5 | - | 18 ng/mL | [90] |
Wastewater samples | Cocaine | NPOE | CZE | 100 | - | 89% | 2.12 ng/mL; | [91] |
Aqueous and blood samples | Five basic drugs | NPOE | LC-MS | 75 | - | 75–87% | 0.4 ng/mL | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Chen, M.; Zhao, G.; Wang, X.; Fan, M.; Liu, R.; Xie, F. Environmental Applications of Electromembrane Extraction: A Review. Membranes 2023, 13, 705. https://doi.org/10.3390/membranes13080705
Shi L, Chen M, Zhao G, Wang X, Fan M, Liu R, Xie F. Environmental Applications of Electromembrane Extraction: A Review. Membranes. 2023; 13(8):705. https://doi.org/10.3390/membranes13080705
Chicago/Turabian StyleShi, Linping, Mantang Chen, Ge Zhao, Xiaoyu Wang, Meijuan Fan, Ruihong Liu, and Fuwei Xie. 2023. "Environmental Applications of Electromembrane Extraction: A Review" Membranes 13, no. 8: 705. https://doi.org/10.3390/membranes13080705
APA StyleShi, L., Chen, M., Zhao, G., Wang, X., Fan, M., Liu, R., & Xie, F. (2023). Environmental Applications of Electromembrane Extraction: A Review. Membranes, 13(8), 705. https://doi.org/10.3390/membranes13080705