Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Dictation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deville, S.; Stevenson, A.J. Mapping ceramics research and its evolution. J. Am. Ceram. Soc. 2015, 98, 2324–2332. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; He, L.; Niu, Z.; Xiao, P.; Zhou, W.; Li, Y. Corrosion behavior of ytterbium hafnate exposed to water-vapor with Al (OH) 3 impurities. J. Eur. Ceram. Soc. 2023, 43, 612–620. [Google Scholar] [CrossRef]
- He, L.; Pan, L.; Zhou, W.; Niu, Z.; Chen, X.; Chen, M.; Zhang, Q.; Pan, W.; Xiao, P.; Li, Y. Thermal corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina-silicate (CFAS) at 1400 °C. J. Eur. Ceram. Soc. 2023, 43, 4114–4123. [Google Scholar] [CrossRef]
- Hannink, R.H.; Kelly, P.M.; Muddle, B.C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Chen, Y.W.; Moussi, J.; Drury, J.L.; Wataha, J.C. Zirconia in biomedical applications. Expert Rev. Med. Devices 2016, 13, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Fergus, J.W. Electrolytes for solid oxide fuel cells. J. Power Sources 2006, 162, 30–40. [Google Scholar] [CrossRef]
- Maiti, T.K.; Majhi, J.; Maiti, S.K.; Singh, J.; Dixit, P.; Rohilla, T.; Ghosh, S.; Bhushan, S.; Chattopadhyay, S. Zirconia-and ceria-based electrolytes for fuel cell applications: Critical advancements toward sustainable and clean energy production. Environ. Sci. Pollut. Res. 2022, 29, 64489–64512. [Google Scholar] [CrossRef]
- Basu, R.N. Materials for Solid Oxide Fuel Cells; Anamaya Publishers: New Delhi, India, 2007. [Google Scholar]
- Mathur, L.; Namgung, Y.; Kim, H.; Song, S.J. Recent progress in electrolyte-supported solid oxide fuel cells: A review. J. Korean Ceram. Soc. 2023, 60, 614–636. [Google Scholar] [CrossRef]
- Ding, H.; Virkar, A.V.; Liu, F. Defect configuration and phase stability of cubic versus tetragonal yttria-stabilized zirconia. Solid State Ion. 2012, 215, 16–23. [Google Scholar] [CrossRef]
- Arachi, Y.; Sakai, H.; Yamamoto, O.; Takeda, Y.; Imanishai, N. Electrical conductivity of the ZrO2–Ln2O3 (Ln = lanthanides) system. Solid State Ion. 1999, 121, 133–139. [Google Scholar] [CrossRef]
- Parkes, M.A.; Refson, K.; d’Avezac, M.; Offer, G.J.; Brandon, N.P.; Harrison, N.M. Chemical descriptors of yttria-stabilized zirconia at low defect concentration: An ab initio study. J. Phys. Chem. A 2015, 119, 6412–6420. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P.; Hayes, W.; Hull, S.; Hutchings, M.T.; Clausen, K.N. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 1999, 59, 14202. [Google Scholar] [CrossRef] [Green Version]
- Yugami, H.; Koike, A.; Ishigame, M.; Suemoto, T. Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. Phys. Rev. B 1991, 44, 9214. [Google Scholar] [CrossRef]
- Huang, H.; Hsieh, C.H.; Kim, N.; Stebbins, J.; Prinz, F. Structure, local environment, and ionic conduction in scandia stabilized zirconia. Solid State Ion. 2008, 179, 1442–1445. [Google Scholar] [CrossRef]
- Araki, W.; Koshikawa, T.; Yamaji, A.; Adachi, T. Degradation mechanism of scandia-stabilised zirconia electrolytes: Discussion based on annealing effects on mechanical strength, ionic conductivity, and Raman spectrum. Solid State Ion. 2009, 180, 1484–1489. [Google Scholar] [CrossRef]
- Borik, M.A.; Volkova, T.V.; Kuritsyna, I.E.; Lomonova, E.E.; Myzina, V.A.; Ryabochkina, P.A.; Tabachkova, N.Y. Features of the local structure and transport properties of ZrO2-Y2O3-Eu2O3 solid solutions. J. Alloys Compd. 2019, 770, 320–326. [Google Scholar] [CrossRef]
- Agarkov, D.A.; Borik, M.A.; Volkova, T.V.; Eliseeva, G.A.; Kulebyakin, A.V.; Larina, N.A.; Lomonova, E.E.; Myzina, V.A.; Ryabochkina, P.A.; Tabachkova, N.Y. Phase composition and local structure of scandia and yttria stabilized zirconia solid solution. J. Lumin. 2020, 222, 117170. [Google Scholar] [CrossRef]
- Borik, M.; Korableva, G.; Kulebyakin, A.; Kuritsyna, I.; Larina, N.; Lomonova, E.; Milovich, F.; Myzina, V.; Ryabochkina, P.; Sidorova, N.; et al. Phase Stability and Transport Properties of (ZrO2)0.91−x(Sc2O3)0.09(Yb2O3)x Crystals (x = 0–0.01). Crystals 2021, 11, 83. [Google Scholar] [CrossRef]
- Borik, M.A.; Chislov, A.S.; Korableva, G.M.; Kulebyakin, A.V.; Kuritsyna, I.E.; Larina, N.A.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Tabachkova, N.Y.; et al. Structure and transport characteristics of single crystals of zirconia stabilized by scandia and co-doped with terbium oxide. Solid State Ion. 2022, 375, 115836. [Google Scholar] [CrossRef]
- SOFCMAN Website: 8YSZ and SSZ Electrolyte Sheets. Available online: https://www.sofcman.com/productinfo/1655004.html (accessed on 30 July 2023).
- FuelCellMaterials Website. Available online: https://fuelcellmaterials.com/products/cells/electrolyte-supported-cells/nextcell-hp-electrolyte-supported-planar-cell/ (accessed on 30 July 2023).
- Agarkov, D.; Borik, M.; Komarov, B.; Korableva, G.; Kulebyakin, A.; Kuritsyna, I.; Lomonova, E.; Milovich, F.; Myzina, V.; Tabachkova, N. Long-term conductivity stability of electrolytic membranes of scandia stabilized zirconia co-doped with ytterbia. Membranes 2023, 13, 586. [Google Scholar] [CrossRef]
- Agarkov, D.; Borik, M.; Korableva, G.; Kulebyakin, A.; Kuritsyna, I.; Larina, N.; Lomonova, E.; Milovich, F.; Myzina, V.; Ryabochkina, P.; et al. Stability of structural and transport characteristics of (ZrO2)0.99-x(Sc2O3)x(R2O3)0.01 (R–Yb, Y, Tb, Gd) electrolytic membranes to high temperature exposure. Membranes 2023, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Agarkov, D.A.; Borik, M.A.; Katrich, D.S.; Larina, N.A.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Popov, P.A.; Ryabochkina, P.A.; et al. Thermal conductivity of Y2O3-stabilized ZrO2 cubic single crystals: Effects of defect structure. J. Solid State Electrochem. 2022. [Google Scholar] [CrossRef]
- Borik, M.A.; Gerasimov, M.V.; Kulebyakin, A.V.; Larina, N.A.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Ryabochkina, P.A.; Sidorova, N.V.; Tabachkova, N.Y. Structure and phase transformations in scandia, yttria, ytterbia and ceria-doped zirconia-based solid solutions during directional melt crystallization. J. Alloys Compd. 2020, 844, 156040. [Google Scholar] [CrossRef]
- Hemberger, Y.; Wichtner, N.; Berthold, C.; Nickel, K.G. Quantification of Yttria in Stabilized Zirconia by Raman Spectroscopy. Int. J. Appl. Ceram. Technol. 2016, 13, 116–124. [Google Scholar] [CrossRef]
- Fujimori, H.; Yashima, M.; Kakihana, M.; Yoshimura, M. Structural changes of scandia-doped zirconia solid solutions: Rietveld analysis and Raman scattering. J. Am. Ceram. Soc. 1998, 81, 2885–2893. [Google Scholar] [CrossRef]
- Nomura, K.; Mizutani, Y.; Kawai, M.; Nakamura, Y.; Yamamoto, O. Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion. 2000, 132, 235–239. [Google Scholar] [CrossRef]
- Osiko, V.W.; Borik, M.A.; Lomonova, E.E. Synthesis of Refractory Materials by Skull Melting Technique. In Springer Handbook of Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010; pp. 433–477. [Google Scholar]
- Borik, M.; Kulebyakin, A.; Kyashkin, V.; Larina, N.; Lomonova, E.; Milovich, F.; Myzina, V.; Nezhdanov, A.; Ryabochkina, P.; Tabachkova, N.; et al. Structure and Spectral Luminescence Properties of (ZrO2)0.909(Y2O3)0.09(Eu2O3)0.001 Ceramics Synthesized by Uniaxial Compaction and Slip Casting. Materials 2022, 15, 7722. [Google Scholar] [CrossRef]
- Kusuma, H.H.; Astuti, B.; Ibrahim, Z. Absorption and emission properties of ruby (Cr: Al2O3) single crystal. J. Phys. Conf. Ser. 2019, 1170, 012054. [Google Scholar] [CrossRef]
- Gupta, S.; Mahapatra, M.K.; Singh, P. Lanthanum chromite based perovskites for oxygen transport membrane. Mater. Sci. Eng. R Rep. 2015, 90, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Jayaratna, M.; Yoshimura, M.; Sōmiya, S. Hot pressing of Y2O3-stabilized ZrO2 with Cr2O3 additions. J. Mater. Sci. 1986, 21, 591–596. [Google Scholar] [CrossRef]
- Ristić, M.; Popović, S.; Musić, S. Structural properties of the system Al2O3-Cr2O3. Mater. Lett. 1993, 16, 309–312. [Google Scholar] [CrossRef]
- Brik, M.G.; Papan, J.; Jovanović, D.J.; Dramićanin, M.D. Luminescence of Cr3+ ions in ZnAl2O4 and MgAl2O4 spinels: Correlation between experimental spectroscopic studies and crystal field calculations. J. Lumin. 2016, 177, 145–151. [Google Scholar] [CrossRef]
- Arifin, N.A.; Afifi, A.A.; Samreen, A.; Hafriz, R.S.R.M.; Muchtar, A. Characteristic and challenges of scandia stabilized zirconia as solid oxide fuel cell material–In depth review. Solid State Ion. 2023, 399, 116302. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarkov, D.; Borik, M.; Buzaeva, E.; Korableva, G.; Kulebyakin, A.; Kuritsyna, I.; Larina, N.; Kyashkin, V.; Lomonova, E.; Milovich, F.; et al. Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition. Membranes 2023, 13, 717. https://doi.org/10.3390/membranes13080717
Agarkov D, Borik M, Buzaeva E, Korableva G, Kulebyakin A, Kuritsyna I, Larina N, Kyashkin V, Lomonova E, Milovich F, et al. Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition. Membranes. 2023; 13(8):717. https://doi.org/10.3390/membranes13080717
Chicago/Turabian StyleAgarkov, Dmitrii, Mikhail Borik, Ekaterina Buzaeva, Galina Korableva, Alexey Kulebyakin, Irina Kuritsyna, Nataliya Larina, Vladimir Kyashkin, Elena Lomonova, Filipp Milovich, and et al. 2023. "Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition" Membranes 13, no. 8: 717. https://doi.org/10.3390/membranes13080717
APA StyleAgarkov, D., Borik, M., Buzaeva, E., Korableva, G., Kulebyakin, A., Kuritsyna, I., Larina, N., Kyashkin, V., Lomonova, E., Milovich, F., Myzina, V., Ryabochkina, P., Tabachkova, N., & Zakharov, D. (2023). Structure and Physical Properties of Ceramic Materials Based on ZrO2-Sc2O3 for SOFC Electrolytic Membranes Obtained from Powders of Melted Solid Solutions with a Similar Composition. Membranes, 13(8), 717. https://doi.org/10.3390/membranes13080717