Role of Membrane–Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoparticles
2.1.1. Synthesis of Graphene Oxide
2.1.2. Synthesis of Silver (Ag) and Ag-GO Nanoparticles
2.1.3. Synthesis of Zinc Oxide (ZnO) and ZnO-GO Nanoparticles
2.2. Characterization of the Nanoparticles
2.2.1. SEM Micrographs and EDS Spectroscopy
2.2.2. Particle Size and Zeta Potential
2.3. Fabrication of Pristine and Nanocomposite Membranes
2.3.1. Preparation of Casting Solutions
2.3.2. Fabrication of Pristine and Nanocomposite Membranes
2.4. Characterization of the Membranes
2.5. Filtration Experiment Protocol
2.5.1. Filtration Setup
2.5.2. Assessment of Membrane Rejection Properties
2.5.3. Investigation of Membrane Antifouling Properties
2.6. Calculation of Free Energies of Interactions
3. Results and Discussion
3.1. Characteristics of Nanoparticles
3.2. Characteristics of the Nano-Engineered Membranes
3.3. Membrane Flux, Hydrophobicity, Zeta Potential, Salt Removal and Surface Tension Parameters
3.4. Carbamazepine Rejection and Organic Fouling Propensity
3.5. Role of Membrane–Solute Interaction Energies on Solute Rejection and Membrane Fouling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernot, M.J.; Becker, J.C.; Doll, J.; Lauer, T.E. A National Reconnaissance of Trace Organic Compounds (TOCs) in United States Lotic Ecosystems. Sci. Total Environ. 2016, 572, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Carolina, A.; De, A.; Sanz, P.; Navarro, I.; Michel, L.N.; Lepoint, G.; Das, K.; Schnitzler, J.G.; Chenery, S.R.; Mccarthy, I.D.; et al. Occurrence of Legacy and Emerging Organic Pollutants in Whitemouth Croakers from Southeastern Brazil. Sci. Total Environ. 2019, 682, 719–728. [Google Scholar] [CrossRef]
- Kuczy, A.; Rosenqvist, L.; Vliet, M.E.V.; Togola, A.; Lopez, B. Emerging Organic Compounds in European Groundwater *. Environ. Pollut. 2021, 269, 115945. [Google Scholar] [CrossRef]
- Minh, N.H.; Minh, T.B.; Kajiwara, N.; Kunisue, T.; Subramanian, A.; Iwata, H.; Tana, T.S.; Baburajendran, R.; Karuppiah, S.; Viet, P.H.; et al. Contamination by Persistent Organic Pollutants in Dumping Sites of Asian Developing Countries: Implication of Emerging Pollution Sources. Arch. Environ. Contam. Toxicol. 2006, 481, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Otieno, K.; Okoth, M.; Langenhove, H.V.; Demeestere, K. Occurrence and Treatment of Contaminants of Emerging Concern in the African Aquatic Environment: Literature Review and a Look Ahead. J. Environ. Manag. 2020, 254, 109752. [Google Scholar] [CrossRef]
- Plósz, B.G.; Leknes, H.; Liltved, H.; Thomas, K.V. Diurnal Variations in the Occurrence and the Fate of Hormones and Antibiotics in Activated Sludge Wastewater Treatment in Oslo, Norway. Sci. Total Environ. 2010, 408, 1915–1924. [Google Scholar] [CrossRef]
- Neghi, N.; Kumar, M. Performance Analysis of Photolytic, Photocatalytic, and Adsorption Systems in the Degradation of Metronidazole on the Perspective of Removal Rate and Energy Consumption. Water Air Soil Pollut. 2017, 228, 339. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, X.; Li, S.F.Y. Bio-Electrochemical Degradation of Paracetamol in a Microbial Fuel Cell-Fenton System. Chem. Eng. J. 2015, 276, 185–192. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Motsa, M.M.; Nkambule, T.I.; Mamba, B.B. Rejection of Trace Organic Compounds by Membrane Processes: Mechanisms, Challenges, and Opportunities. Rev. Chem. Eng. 2022, 39, 875–910. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nackaerts, R.; Thwala, J.M.; Mamba, B.B.; Verliefde, A.R.D. Hydrophilic Fouling-Resistant GO-ZnO/PES Membranes for Wastewater Reclamation. J. Membr. Sci. 2017, 524, 43–55. [Google Scholar] [CrossRef]
- Ma, L.; Gutierrez, L.; Vanoppen, M.; Lorenz, D.N.; Aubry, C.; Verliefde, A. Transport of Uncharged Organics in Ion-Exchange Membranes: Experimental Validation of the Solution-Diffusion Model. J. Membr. Sci. 2018, 564, 773–781. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, F.; Wang, Z.; Yang, H.; Wang, X.; Xie, Y.F. Role of Membrane and Compound Properties in Affecting the Rejection of Pharmaceuticals by Different RO/NF Membranes. Front. Environ. Sci. Eng. 2017, 11, 20. [Google Scholar] [CrossRef]
- Fujioka, T.; Kodamatani, H.; Yujue, W.; Dan, K.; Riani, E.; Yuan, H.; Fang, M.; Allen, S.; Yu, K.D.; Wanjaya, E.R.; et al. Assessing the Passage of Small Pesticides through Reverse Osmosis Membranes. J. Membr. Sci. 2020, 595, 117577. [Google Scholar] [CrossRef]
- Bruggen, B.V.D.; Schaep, J.; Wilms, D.; Vandecasteele, C. Influence of Molecular Size, Polarity and Charge on the Retention of Organic Molecules by Nanofiltration. J. Membr. Sci. 1999, 156, 29–41. [Google Scholar] [CrossRef]
- Maryam, B.; Buscio, V.; Ustun, S. A Study on Behavior, Interaction and Rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from Wastewater by Nanofiltration Membranes. Environ. Technol. Innov. 2020, 18, 100641. [Google Scholar] [CrossRef]
- Verliefde, A.R.D. Rejection of Organic Micropollutants with High Pressure Membranes (NF/RO); Water Management Academic Press: Delft, The Netherlands, 2008. [Google Scholar]
- Pendergast, M.M.; Hoek, E.M.V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef]
- Mohammadnezhad, F.; Feyzi, M.; Zinadini, S. A Novel Ce-MOF PES Mixed Matrix Membrane; Synthesis, Characterization and Antifouling Evaluation. J. Ind. Eng. Chem. 2019, 71, 99–111. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, Y.; Wang, C.; Hu, Z.; Zhang, C. High-Hydrophilic and Salt Rejecting PA-g/Co-PVP RO Membrane via Bionic Sand-Fixing Grass for Pharmaceutical Wastewater Treatment. Chem. Eng. J. 2019, 357, 269–279. [Google Scholar] [CrossRef]
- Hussein Al-Timimi, D.A.; Alsalhy, Q.F.; AbdulRazak, A.A. Polyethersulfone/Amine Grafted Silica Nanoparticles Mixed Matrix Membrane: A Comparative Study for Mebeverine Hydrochloride Wastewater Treatment. Alex. Eng. J. 2023, 66, 167–190. [Google Scholar] [CrossRef]
- Abdullah, R.R.; Shabeeb, K.M.; Alzubaydi, A.B.; Figoli, A.; Criscuoli, A.; Drioli, E.; Alsalhy, Q. Characterization of the Efficiency of Photo-Catalytic Ultrafiltation PES Membrane Modified with Tungsten Oxide in the Removal of Tinzaparin Sodium. Eng. Technol. J. 2022, 40, 1–10. [Google Scholar] [CrossRef]
- Chimanlal, I.; Nthunya, L.N.; Mahlangu, O.T.; Kirkebæk, B.; Ali, A.; Quist-Jensen, C.A.; Richards, H. Nanoparticle-Enhanced PVDF Flat-Sheet Membranes for Seawater Desalination in Direct Contact Membrane Distillation. Membranes 2023, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, O.T.; Mamba, G.; Mamba, B.B. A Facile Synthesis Approach for GO-ZnO/PES Ultrafiltration Mixed Matrix Photocatalytic Membranes for Dye Removal in Water: Leveraging the Synergy between Photocatalysis and Membrane Filtration. J. Environ. Chem. Eng. 2023, 11, 110065. [Google Scholar] [CrossRef]
- Ndlovu, L.N.; Malatjie, K.I.; Chabalala, M.B.; Mishra, A.K.; Mishra, S.B.; Nxumalo, E.N. Beta Cyclodextrin Modified Polyvinylidene Fluoride Adsorptive Mixed Matrix Membranes for Removal of Congo Red. J. Appl. Polym. Sci. 2022, 139, 1–14. [Google Scholar] [CrossRef]
- Rehan, Z.A.; Gzara, L.; Khan, S.B.; Alamry, K.A.; El-Shahawi, M.S.; Albeirutty, M.H.; Figoli, A.; Drioli, E.; Asiri, A.M. Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application. Recent Pat. Nanotechnol. 2016, 10, 231–251. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Y.; Huang, C.; Sun, P.; Crittenden, J. Rejection and Adsorption of Trace Pharmaceuticals by Coating a Forward Osmosis Membrane with TiO2. Chem. Eng. J. 2015, 279, 904–911. [Google Scholar] [CrossRef]
- Mahlangu, T.O.; Schoutteten, K.V.K.M.; D’Haese, A.; Van den Bussche, J.; Vanhaecke, L.; Thwala, J.M.M.; Mamba, B.B.B.; Verliefde, A.R.D. Role of Permeate Flux and Specific Membrane-Foulant-Solute Affinity Interactions (∆Gslm) in Transport of Trace Organic Solutes through Fouled Nanofiltration (NF) Membranes. J. Membr. Sci. 2016, 518, 203–215. [Google Scholar] [CrossRef]
- Jin, X.; Huang, X.; Hoek, E.M.V. Role of Specific Ion Interactions in Seawater RO Membrane Fouling by Alginic Acid. Environ. Sci. Technol. 2009, 43, 3580–3587. [Google Scholar] [CrossRef]
- Azaïs, A.; Mendret, J.; Petit, E.; Brosillon, S. Evidence of Solute-Solute Interactions and Cake Enhanced Concentration Polarization during Removal of Pharmaceuticals from Urban Wastewater by Nanofiltration. Water Res. 2016, 104, 156–167. [Google Scholar] [CrossRef]
- Doederer, K.; Farré, M.J.; Pidou, M.; Weinberg, H.S.; Gernjak, W. Rejection of Disinfection By-Products by RO and NF Membranes: Influence of Solute Properties and Operational Parameters. J. Membr. Sci. 2014, 467, 195–205. [Google Scholar] [CrossRef]
- Geise, G.M.; Bum, H.; Sagle, A.C.; Freeman, B.D.; Mcgrath, J.E. Water Permeability and Water/Salt Selectivity Tradeoff in Polymers for Desalination. J. Membr. Sci. 2011, 369, 130–138. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Yang, C.; Li, S. Systematic Evaluation of TiO2-GO-Modified Ceramic Membranes for Water Treatment: Retention Properties and Fouling Mechanisms. Chem. Eng. J. 2019, 378, 122138. [Google Scholar] [CrossRef]
- Devi, L.G.; Srinivas, M. Impact of Preparative PH Conditions on the Structure and Morphology of Graphene Oxide-CoFe2O4 Composite: Exploration of Adsorption Isotherm Models and Photocatalysis. Surf. Interfaces 2019, 14, 175–183. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, C.E.; Deng, C.; Fei, P.; Zhong, M.; Su, B.T. Preparation of ZnO/GO Composite Material with Highly Photocatalytic Performance via an Improved Two-Step Method. Chin. Chem. Lett. 2013, 24, 518–520. [Google Scholar] [CrossRef]
- Ameen, S.; Shaheer Akhtar, M.; Seo, H.K.; Shik Shin, H. Advanced ZnO-Graphene Oxide Nanohybrid and Its Photocatalytic Applications. Mater. Lett. 2013, 100, 261–265. [Google Scholar] [CrossRef]
- Mahlangu, T.O.; Thwala, J.M.; Mamba, B.B.; Haese, A.D.; D’Haese, A.; Verliefde, A.R. Factors Governing Combined Fouling by Organic and Colloidal Foulants in Cross-Flow Nanofiltration. J. Membr. Sci. 2015, 491, 53–62. [Google Scholar] [CrossRef]
- Mahlangu, T.O.; Hoek, E.M.V.; Mamba, B.B.; Verliefde, A.R.D. Influence of Organic, Colloidal and Combined Fouling on NF Rejection of NaCl and Carbamazepine: Role of Solute–Foulant–Membrane Interactions and Cake-Enhanced Concentration Polarisation. J. Membr. Sci. 2014, 471, 35–46. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Bhekie, B. Mamba Interdependence of Contributing Factors Governing Dead-End Fouling of Nanofiltration Membranes. Membranes 2021, 11, 47. [Google Scholar] [CrossRef]
- Tow, E.W.; Warsinger, D.M.; Trueworthy, A.M.; Swaminathan, J.; Thiel, G.P.; Zubair, S.M.; Myerson, A.S.; Lienhard V, J.H. Comparison of Fouling Propensity between Reverse Osmosis, Forward Osmosis, and Membrane Distillation. J. Membr. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef]
- Alam, I.; Guiney, L.M.; Hersam, M.C.; Chowdhury, I. Pressure-Driven Water Transport Behavior and Antifouling Performance of Two-Dimensional Nanomaterial Laminated Membranes. J. Membr. Sci. 2020, 599, 117812. [Google Scholar] [CrossRef]
- Alharbi, S.K.; Nghiem, L.D.; van de Merwe, J.P.; Leusch, F.D.L.; Asif, M.B.; Hai, F.I.; Price, W.E. Degradation of Diclofenac, Trimethoprim, Carbamazepine, and Sulfamethoxazole by Laccase from Trametes Versicolor: Transformation Products and Toxicity of Treated Effluent. Biocatal. Biotransf. 2019, 37, 399–408. [Google Scholar] [CrossRef]
- Tufail, A.; Alharbi, S.; Alrifai, J.; Ansari, A.; Price, W.E.; Hai, F.I. Combining Enzymatic Membrane Bioreactor and Ultraviolet Photolysis for Enhanced Removal of Trace Organic Contaminants: Degradation Efficiency and by-Products Formation. Process Saf. Environ. Prot. 2021, 145, 110–119. [Google Scholar] [CrossRef]
- Patala, R.; Mahlangu, O.T.; Nyoni, H.; Mamba, B.B.; Kuvarega, A.T. In Situ Generation of Fouling Resistant Ag/Pd Modified PES Membranes for Treatment of Pharmaceutical Wastewater. Membranes 2022, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Rajakumaran, R.; Boddu, V.; Kumar, M.; Shalaby, M.S.; Abdallah, H.; Chetty, R. Effect of ZnO Morphology on GO-ZnO Modified Polyamide Reverse Osmosis Membranes for Desalination. Desalination 2019, 467, 245–256. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.; Wu, P. Development of Novel SiO2–GO Nanohybrid/Polysulfone Membrane with Enhanced Performance. J. Membr. Sci. 2014, 451, 94–102. [Google Scholar] [CrossRef]
- Lee, J.; Chae, H.R.; Won, Y.J.; Lee, K.; Lee, C.H.; Lee, H.H.; Kim, I.C.; Lee, J. Graphene Oxide Nanoplatelets Composite Membrane with Hydrophilic and Antifouling Properties for Wastewater Treatment. J. Membr. Sci. 2013, 448, 223–230. [Google Scholar] [CrossRef]
- Mathaba, M.; Daramola, M.O. Effect of Chitosan’s Degree of Deacetylation on the Performance of PES Membrane Infused with Chitosan during AMD Treatment. Membranes 2020, 10, 52. [Google Scholar] [CrossRef]
- Rattana, T.; Chaiyakun, S.; Witit-Anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and Characterization of Graphene Oxide Nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar] [CrossRef]
- Al-Araji, D.; Al-Ani, F.; Alsalhy, Q. The Permeation and Separation Characteristics of Polymeric Membranes Incorporated with Nanoparticles for Dye Removal and Interaction Mechanisms between Polymer and Nanoparticles: A Mini Review. Eng. Technol. J. 2022, 40, 1399–1411. [Google Scholar] [CrossRef]
- Rosales-Leal, J.I.; Rodríguez-Valverde, M.A.; Mazzaglia, G.; Ramón-Torregrosa, P.J.; Díaz-Rodríguez, L.; García-Martínez, O.; Vallecillo-Capilla, M.; Ruiz, C.; Cabrerizo-Vílchez, M.A. Effect of Roughness, Wettability and Morphology of Engineered Titanium Surfaces on Osteoblast-like Cell Adhesion. Colloids Surf. A Physicochem. Eng. Asp. 2010, 365, 222–229. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, G.; Xie, H.; Xu, Z.; Li, Y.; Wan, J.; Liu, L.; Mao, H. Photocatalytic Antifouling Properties of Novel PVDF Membranes Improved by Incorporation of SnO2-GO Nanocomposite for Water Treatment. Sep. Purif. Technol. 2021, 259, 118184. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, Y.; Jiang, Y. Photocatalytic Self-Cleaning Carbon Nitride Nanotube Intercalated Reduced Graphene Oxide Membranes for Enhanced Water Purification. Chem. Eng. J. 2019, 356, 915–925. [Google Scholar] [CrossRef]
- Shardt, N.; Elliott, J.A.W. Gibbsian Thermodynamics of Wenzel Wetting (Was Wenzel Wrong? Revisited). Langmuir 2020, 36, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Kajau, A.; Motsa, M.; Mamba, B.B.; Mahlangu, O. Leaching of CuO Nanoparticles from PES Ultrafiltration Membranes. ACS Omega 2021, 6, 31797–31809. [Google Scholar] [CrossRef] [PubMed]
- Bellona, C.; Drewes, E. The Role of Membrane Surface Charge and Solute Physico-Chemical Properties in the Rejection of Organic Acids by NF Membranes. J. Membr. Sci. 2005, 249, 227–234. [Google Scholar] [CrossRef]
- Verliefde, A.; Van der Meeren, P.; Van der Bruggen, B. Solution-Diffusion Processes. In Encyclopedia of Membrane Science and Technology; Hoek, E.M.V., Tarabara, V.V., Eds.; Wiley and Sons: Hoboken, NY, USA, 2013; p. 4013. [Google Scholar]
- Vogel, D.; Simon, A.; Alturki, A.A.; Bilitewski, B.; Price, W.E.; Nghiem, L.D. Effects of Fouling and Scaling on the Retention of Trace Organic Contaminants by a Nanofiltration Membrane: The Role of Cake-Enhanced Concentration Polarisation. Sep. Purif. Technol. 2010, 73, 256–263. [Google Scholar] [CrossRef]
- Ilyas, S.; Abtahi, S.M.; Akkilic, N.; Roesink, H.D.W.; de Vos, W.M. Weak Polyelectrolyte Multilayers as Tunable Separation Layers for Micro-Pollutant Removal by Hollow Fiber Nanofiltration Membranes. J. Membr. Sci. 2017, 537, 220–228. [Google Scholar] [CrossRef]
- Stanley, C.; Rau, D.C. Evidence for Water Structuring Forces between Surfaces. Curr. Opin. Colloid Interface Sci. 2011, 16, 551–556. [Google Scholar] [CrossRef]
- Botton, S.; Verliefde, A.R.D.; Quach, N.T.; Cornelissen, E.R. Surface Characterisation of Biofouled NF Membranes: Role of Surface Energy for Improved Rejection Predictions. Water Sci. Technol. 2012, 66, 2122–2130. [Google Scholar] [CrossRef]
- Ndlwana, L.; Sikhwivhilu, K.; Moutloali, R.M.; Ngila, J.C. The Synthesis and Characterization of Novel Bi-/Trimetallic Nanoparticles and Their Nanocomposite Membranes for Envisaged Water Treatment. Membranes 2020, 10, 232. [Google Scholar] [CrossRef]
Membrane Name | Concentration (wt%) | ||||
---|---|---|---|---|---|
PES | NMP | Nanoparticle | |||
GO | Ag | ZnO | |||
PES membrane | 22 | 78.0 | 0 | 0 | 0 |
GO membrane | 22 | 77.8 | 0.2 | 0 | 0 |
Ag membrane | 22 | 77.8 | 0 | 0.2 | 0 |
Ag-GO membrane | 22 | 77.8 | 0.1 | 0.1 | 0 |
ZnO membrane | 22 | 77.8 | 0 | 0 | 0.2 |
ZnO-GO membrane | 22 | 77.8 | 0.1 | 0 | 0.1 |
Size (nm) | Zeta Potential (mV) | |
---|---|---|
GO | 220.2 ± 72 | −22.4 ± 1.2 |
Ag | 98 ± 17 | 25.6 ± 0.9 |
Ag-GO | 382 ± 30 | −4.7 ± 0.2 |
ZnO | 392.4 ± 55 | 28.8 ± 1.8 |
ZnO-GO | 420.5 ± 83 | −6.9 ± 0.7 |
Contact Angle (°) | PWP (L/m2 hbar) | Zeta Potential (mV) | Stress (N/mm2) | MgSO4 Rejection (%) | Mean Pore Radius (nm) | |
---|---|---|---|---|---|---|
PES membrane | 77 ± 2 | 11.9 ± 1.5 | −29.8 ± 2 | 3.46 ± 0.3 | 8.5 ± 0.2 | 23.9 ± 1.1 |
GO membrane | 65 ± 2 | 14.8 ± 1.2 | −25.9 ± 1 | 3.79 ± 0.5 | 8.3 ± 0.3 | 31.8 ± 2.3 |
Ag membrane | 68 ± 2 | 13.7 ± 0.8 | −24.2 ± 1 | 2.69 ± 0.2 | 8.7 ± 0.1 | 27.8 ± 2.5 |
Ag-GO membrane | 62 ± 2 | 16.1 ± 1.8 | −23.4 ± 2 | 3.89 ± 0.5 | 8.6 ± 0.2 | 44.1 ± 2.1 |
ZnO membrane | 63 ± 2 | 14.3 ± 1.3 | −25.9 ± 3 | 2.11 ± 0.3 | 9.1 ± 0.2 | 37.7 ± 1.4 |
ZnO-GO membrane | 65 ± 2 | 17.7 ± 1.7 | −23.5 ± 2 | 4.11 ± 0.6 | 9.5 ± 0.3 | 48.4 ± 2.3 |
Surface Tension Parameters (mJ/m2) | ||||
---|---|---|---|---|
PES membrane | 38.6 ± 4 | 0.6 ± 0.1 | 5.5 ± 1 | 42.1 ± 3 |
GO membrane | 43.8 ± 3 | 0.1 | 15.3 ± 2 | 45.5 ± 4 |
Ag membrane | 41.1± 4 | 0.1 | 14.1 ± 2 | 42.8 ± 3 |
Ag-GO membrane | 38.6 ± 2 | 0.5 ± 0.1 | 16.9 ± 3 | 44.6 ± 2 |
ZnO membrane | 39.1 ± 3 | 0.9 ± 0.1 | 13.8 ± 2 | 46.4 ± 3 |
ZnO-GO membrane | 35.4 ± 2 | 0.6 ± 0.1 | 15.8 ± 2 | 41.6 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahlangu, O.T.; Motsa, M.M.; Hai, F.I.; Mamba, B.B. Role of Membrane–Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes. Membranes 2023, 13, 744. https://doi.org/10.3390/membranes13080744
Mahlangu OT, Motsa MM, Hai FI, Mamba BB. Role of Membrane–Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes. Membranes. 2023; 13(8):744. https://doi.org/10.3390/membranes13080744
Chicago/Turabian StyleMahlangu, Oranso Themba, Mxolisi Machawe Motsa, Faisal Ibney Hai, and Bhekie Brilliance Mamba. 2023. "Role of Membrane–Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes" Membranes 13, no. 8: 744. https://doi.org/10.3390/membranes13080744
APA StyleMahlangu, O. T., Motsa, M. M., Hai, F. I., & Mamba, B. B. (2023). Role of Membrane–Solute Affinity Interactions in Carbamazepine Rejection and Resistance to Organic Fouling by Nano-Engineered UF/PES Membranes. Membranes, 13(8), 744. https://doi.org/10.3390/membranes13080744