Modified Membranes for Redox Flow Batteries—A Review
Abstract
:1. Introduction to Redox Flow Batteries
- i.
- Cell voltage (redox potential difference between the catholyte and anolyte),
- ii.
- Solubility of the redox-active species and
- iii.
- Number of electrons involved in the oxidation-reduction reactions, which defines the functioning of RFBs.
Parameters | Unit | Equation | Terms |
---|---|---|---|
Cell resistance (R) | Ω cm2 | Area R = R (Ω) × A (cm2) | |
Cell voltage (Ecell) | Volt (V) | Ecell = Epositi–e − Enegative | Epositive and Enegative are the potentials at the positive and negative electrodes, respectively. |
Volumetric capacity (C) | Ah L−1 | m = mass, n = number of electrons, F = Faraday’s constant, M = molar mass and V = volume. E = energy density, U = Ecell − IR. | |
Theoretical energy density (E) | Wh L−1 | E = C × U | |
Coulombic efficiency (CE) | % | td is the discharging time, and tc is the charging time. Ud = average discharging voltage, and Uc = average charging voltage when the same current was used for charging and discharging. | |
Voltage efficiency (VE) | % | ||
Energy efficiency (EE) | % | ||
Current density | mA cm−2 | I = discharge current, and A = active surface area of the membrane. U = output potential. | |
Power density | mW cm−2 | ||
Capacity retention (CR) | % | × 100% | . |
of active species | cm2 min−1 | ||
Diffusivity of active species (D) | cm2 min−1 | K = partitioning coefficient. It denotes the amount of vanadium in the membrane in relation to the concentration of the bulk solution [13]. |
2. Membrane Modification Techniques
2.1. Plasma Treatment
2.2. UV Irradiation
2.3. Electrodeposition
2.4. Chemical Modification
Modification Materials | Membrane Modification Methods | Controlled/Improved Properties | Outcome/Performance | Ref. |
---|---|---|---|---|
Silver nanoparticles, | Plasma treatment | Surface charge density Permselectivity Membrane electrical conductivity Flux and current efficiency | Membrane with 40 nm thickness demonstrated suitable performance compared to unmodified membrane | [24] |
Fe-Ni oxide nanoparticles and Ag nanolayer. | Plasma treatment | Physicochemical characteristics Antibacterial characteristics | Increased membrane smoothness, increased ionic flux, good ability of membranes for E. coli removal | [25] |
Hydrous ferric oxide particles | UV irradiation | Flux Fouling property | Increased flux, low fouling | [28] |
AMPS MBA | UV irradiation | Monovalent-ion selectivity antifouling potential gross power density | Increased monovalent-ion selectivity, sufficient antifouling potential | [29] |
Polyethyleneimine | Electrodeposition | Monovalent cations selectivity Llifetime | Increased permselectivity, increased lifetime of the membranes | [33] |
PSS HACC | Electrodeposition | Monovalent selectivity Separation efficiency | Increased monovalent selectivity from 0.66 to 2.90, increased separation efficiency from −0.19 to 0.28 | [34] |
PEI solution | Electrodeposition | Permselectivity Hydrophilicity of the membrane surface | Increased permselectivity, increased hydrophilicity of the membrane surface | [35] |
Graphene oxide | Electrodeposition | Membrane roughness Hydrophilicity Fouling properties | Smoother surface, increased hydrophilicity, iIncreased fouling resistance | [36] |
PSS PAAS Poly (vinyl sulfonic acid), Sodium salt) (PVS) | Electrodeposition | Physicochemical properties antifouling performance desalination performance | Increased antifouling property and best with PVS | [46] |
Silica nanoparticles | Chemical modification | Ion selectivity | Increased ion selectivity | [39] |
SPVA Glutaraldehyde | Chemical modification | Water flux Salt rejection Fouling resistance | Increased salt rejection rate (99.18%), Increased flux recovery above 95%, Increased antifouling resistance | [47] |
EBIH and BMA monomers | Chemical modification (free radical polymerization) | Zincate crossover Durability Battery life | Reduced Zincate crossover, increased durability and increased battery life | [19] |
Polypyrrole (PPy)/chitosan (CS) | Chemical modification | Ion selectivity Power density | Increased power density from 0.23 W/m2 to 0.45 W m−2, increased ion selectivity | [40] |
PPO N-spirocyclic quaternary ammonium monomer | Chemical modification | Zincate ion crossover Power density | Reduced zincate ions crossover, increased peak power density to 66 mW cm−2 | [18] |
3. Recent Advances in Modified Membranes for RFBs
3.1. Modified Membranes for VRFBs
Modification | Membrane | Property | VO2+ Ion Permeability | Battery Performance | Ref. |
---|---|---|---|---|---|
Interfacial polymerization | Nafion-PEI-2.5 | 196 µm-thick 1.24 Ω cm2 0.89 mmol g−1 (IEC *) | 5.23 × 10−7 cm min−1 | CE: 96.2% VE: 88.4% EE: 85.1% (at 50 mA cm−2) | [54] |
Nafion-PEI-5 | 208 µm-thick 1.34 Ω cm2 0.87 mmol g−1 (IEC) | 1.70 × 10−7 cm min−1 | CE: 97.3% VE: 83.3% EE: 81.1% | ||
Nafion 117 | 175 µm-thick 1.06 Ω cm2 0.91 mmol g−1 (IEC) | 36.55 × 10−7 cm min−1 | CE: 93.8% VE: 90.7% EE: 85.0% | ||
Thin inorganic layer | ZNM-5 | ~120 μm 0.55 Ω (Rm) | αH+/V4+: ~23 | CE: >95% EE: 77% (at 60 mA cm−2) | [59] |
ZNM-15 | ~130 μm 2.23 Ω (Rm) | αH+/V4+: ~46 | CE: >95% EE: ~57% | ||
Nafion-117 | ~183 μm 0.81 Ω (Rm) | αH+/V4+: ~19 | CE: >95% EE: 65% | ||
Deposition of polypyrrole | PHB12 sample (Via electrodeposition of Nafion 117 at 0.025 mA cm−2 and 0 °C for 60 min) | 7.83 mS cm−1 H+ conductivity | 0.54 × 10−6 cm2 min−1 | NA | [49] |
A9 sample (via 9 h electrolyte soaking) | 0.733 mmol g−1 IEC 3.30 mS cm−1 H+ conductivity | 1.02 × 10−6 cm2 min−1 | |||
P2 sample (Via polymerisation by FeCl3) | 3.47 mS cm−1 H+ conductivity | 1.48 × 10−6 cm2 min−1 | |||
Nafion 117 | 0.861 mmol g−1 IEC 8.58 mS cm−1 H+ conductivity | 2.87 × 10−6 cm2 min−1 | |||
Sulfonation (of AEMs) | Sulfonated Selemion AMV | 2.45 Ω cm2 | V(IV) diffusivity: 38.5 × 105 cm min−1 | CE: 96.0% VE: 82.5% EE: 79.2% (100 cycles at 30 mA/cm2) | [69] |
Selemion AMV | 2.80 Ω cm2 | V(IV) diffusivity: 0.32 × 105 cm min−1 | CE: 98.5% VE: 81.4% EE: 80.2% (100 cycles at 30 mA/cm2) | ||
Modified New Selemion (PSSS ** Selemion, 2 h) | 1.25 Ω cm2 | V(IV) diffusivity: 4.11 × 105 cm min−1 | CE: 100% VE: 83.4% EE: 83.4% (50 cycles at 40 mA/cm2) | ||
New Selemion (Type 2) | 0.98 Ω cm2 | V(IV) diffusivity: 11.6 × 105 cm min−1 | CE: 98.6% VE: 87.5% EE: 86.3% (50 cycles at 50 mA/cm2) | ||
Pore filling with ion-exchange resin | Amberlite CG400-filled Daramic | 20 nm pore size Less than 3 Ω cm2 | CE: >90% 1650 cycles | [56] | |
Daramic microporous | 100 nm pore size | CE: 77% | |||
Pore filling (impregnating) of sulfonated poly(arylene ether ketone) (SP) | trPTFE/SP50 | 24 μm-thick 1.8 meq g−1 IEC 46 mS cm−1 H+ conductivity | 4.21 × 10−7 cm2 min−1 | CE: >96% EE: 84% (at 40 mA cm−2 for 100 cycles) | [57] |
Porous polytetrafluoroethylene (PTFE) substrate membrane | NA | 20.28 × 10−7 cm2 min−1 | NA | ||
Nafion 117 | 0.9 meq g−1 IEC 50 mS cm−1 H+ conductivity | 20 × 10−7 cm2 min−1 | CE: 90% EE: ~82% (at 40 mA cm−2 for 100 cycles) | ||
Ionomer-filling of PTFE | PTFE/PAPI 2.5 | 1.51 meq g−1 IEC 42 μm | 2.08 × 10−7 cm2 min−1 | 200 cycles, CE: 96.5% EE: 85%, | [58] |
Silica nanocomposite AEM | Silica modified AEM (AEM Sol–gel 30 s) | 60 μm 5.60 wt.% silica 1.13 mmol g−1 IEC 1.088 Ω cm2 | 4.24 × 10−7 cm2 min−1 | CE: ~92%, EE: ~73% (40 mA cm−2) | [64] |
Pristine AEM (Fumasep FAP) | 60 μm 1.16 mmol g−1 IEC 0.7 Ω cm2 | 5.24 × 10−7 cm2 min−1 | CE: ~89%, EE: ~75% (40 mA cm−2) | ||
Nafion 115 CEM | 127 μm 0.91 mmol g−1 IEC 0.987 Ω cm2 | 1.62 × 10−6 cm2 min−1 | CE: ~87%, EE: ~71% (40 mA cm−2) | ||
A hybrid membrane of Nafion/amino-silica (amino-SiO2) | Nafion/amino-SiO2 hybrid membrane | 188 μm 1.05 mmol g−1 3.45 Ω cm2 | 2.32 × 10−7 cm2 min−1 | CE: >96% EE: ~70%, (80 mA cm−2 for 100 cycles) | [65] |
Pristine Nafion 117 | 186 μm 0.96 mmol g−1 3.36 Ω cm2 | 8.65 × 10−7 cm2 min−1 | CE:~92% EE: ~68%, (80 mA cm−2 for 100 cycles) | ||
Graphene-oxide modified membrane | Nafion/GO | 70 μm, 0.88 mmol g−1 29 mS cm−1 H+ conductivity | ~12 × 10−7 cm2 min−1 | CE: 96%, EE: 85% (80 mA cm−2) | [67] |
Recast Nafion | 58 μm, 0.85 mmol g−1 31.5 mS cm−1 H+ conductivity | ~22 × 10−7 cm2 min−1 | CE: 91%, EE: 80% (80 mA cm−2) | ||
Cation-exchange ionomer/(WO3) hybrid membrane | Nafion/(WO3)0.587 | wt% of WO3: 20 0.8407 meq g−1 | 55.8 × 10−7 cm2 min−1 | CE: 93%, CR: 62%, EE: 75% (50 mA cm−2) | [70] |
Nafion 212 | wt% of WO3: 0 0.9200 meq g−1 | 13.2 × 10−7 cm2 min−1 | CE: 88%, CR: 42%, EE: 65% (50 mA cm−2) | ||
SPEEK/(WO3)0.20 | wt% of WO3: 12.20 1.52 meq g−1 | 1.9 × 10−7 cm2 min−1 | CE: 96.4%, CR: 72.5%, EE: 77.5% (30 cycles, 50 mA cm−2) | [71] |
3.2. Modified Membranes for Zn-Air RFBs
3.3. Modified Membranes for AORFBs
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Correction Statement
References
- Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, Y.-L.; Cao, P.-F.; Lin, M.-C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 2018, 82, 3091–3106. [Google Scholar] [CrossRef]
- Noack, J.; Roznyatovskaya, N.; Herr, T.; Fischer, P. The Chemistry of Redox-Flow Batteries. Angew. Chem. Int. Ed. 2015, 54, 9776–9809. [Google Scholar] [CrossRef] [PubMed]
- Sayed, E.T.; Shehata, N.; Abdelkareem, M.A.; Ramadan, M.; Olabi, A.-G. Redox Flow Batteries. In Encyclopedia of Smart Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 176–185. [Google Scholar] [CrossRef]
- Pan, F.; Wang, Q. Redox Species of Redox Flow Batteries: A Review. Molecules 2015, 20, 20499–20517. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef]
- Machado, C.A.; Brown, G.O.; Yang, R.; Hopkins, T.E.; Pribyl, J.G.; Epps, T.H. Redox Flow Battery Membranes: Improving Battery Performance by Leveraging Structure–Property Relationships. ACS Energy Lett. 2021, 6, 158–176. [Google Scholar] [CrossRef]
- Ye, R.; Henkensmeier, D.; Yoon, S.J.; Huang, Z.; Kim, D.K.; Chang, Z.; Kim, S.; Chen, R. Redox Flow Batteries for Energy Storage: A Technology Review. J. Electrochem. Energy Convers. Storage 2018, 15, 010801. [Google Scholar] [CrossRef]
- Redox Flow Batteries: A Sustainable Technology—CIC energiGUNE, (n.d.). Available online: https://cicenergigune.com/en/blog/redox-flow-batteries-sustainable-technology (accessed on 11 July 2023).
- Luo, J.; Hu, B.; Hu, M.; Zhao, Y.; Liu, T.L. Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage. ACS Energy Lett. 2019, 4, 2220–2240. [Google Scholar] [CrossRef]
- Duan, Z.N.; Zhang, G.B.; Zhang, J.F.; Qu, Z.G. Experimental Investigation on the Performance Characteristics of Flow Fields in Redox Flow Batteries Under Various Electrode Parameters. Front. Therm. Eng. 2022, 2, 931160. [Google Scholar] [CrossRef]
- Lawton, J.S.; Jones, A.; Zawodzinski, T. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2013, 160, A697–A702. [Google Scholar] [CrossRef]
- Luo, T.; David, O.; Gendel, Y.; Wessling, M. Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 2016, 312, 45–54. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Mourouga, G.; Schmidt, T.J.; Schumacher, J.O.; Velizarov, S.; Van der Bruggen, B.; Alloin, F.; Iojoiu, C. Towards optimized membranes for aqueous organic redox flow batteries: Correlation between membrane properties and cell performance. Renew. Sustain. Energy Rev. 2023, 173, 113059. [Google Scholar] [CrossRef]
- Lu, W.; Li, X. Advanced Membranes Boost the Industrialization of Flow Battery. Acc. Mater. Res. 2023, 8, 681–692. [Google Scholar] [CrossRef]
- Charyton, M.; Iojoiu, C.; Fischer, P.; Henrion, G.; Etienne, M.; Donten, M.L. Composite Anion-Exchange Membrane Fabricated by UV Cross-Linking Vinyl Imidazolium Poly(Phenylene Oxide) with Polyacrylamides and Their Testing for Use in Redox Flow Batteries. Membranes 2021, 11, 436. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Teklay Gebreslassie, G.; Heon Choi, N.; Milian, D.; Martin, V.; Fischer, P.; Tübke, J.; El Kissi, N.; Donten, M.L.; Alloin, F.; et al. Pristine and Modified Porous Membranes for Zinc Slurry–Air Flow Battery. Molecules 2021, 26, 4062. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Chi, W.S.; Kwon, O.; Lee, J.G.; Kim, J.H.; Shul, Y.-G. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc–Air Battery Systems. ACS Appl. Mater. Interfaces. 2016, 8, 26298–26308. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Memb. Sci. 2018, 555, 429–454. [Google Scholar] [CrossRef]
- Yasuda, H.; Gazicki, M. Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials 1982, 3, 68–77. [Google Scholar] [CrossRef]
- Gancarz, I.; Poźniak, G.; Bryjak, M. Modification of polysulfone membranes. Eur. Polym. J. 2000, 36, 1563–1569. [Google Scholar] [CrossRef]
- Navaneetha Pandiyaraj, K.; Selvarajan, V.; Deshmukh, R.R.; Gao, C. Adhesive properties of polypropylene (PP) and polyethylene terephthalate (PET) film surfaces treated by DC glow discharge plasma. Vacuum 2008, 83, 332–339. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Madaeni, S.S.; Khodabakhshi, A.R.; Zendehnam, A. Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. J. Memb. Sci. 2010, 365, 438–446. [Google Scholar] [CrossRef]
- Zendehnam, A.; Arabzadegan, M.; Hosseini, S.M.; Robatmili, N.; Madaeni, S.S. Fabrication and modification of polyvinylchloride based heterogeneous cation exchange membranes by simultaneously using Fe-Ni oxide nanoparticles and Ag nanolayer: Physico-chemical and antibacterial characteristics. Korean J. Chem. Eng. 2013, 30, 1265–1271. [Google Scholar] [CrossRef]
- Madalosso, H.B.; Machado, R.; Hotza, D.; Marangoni, C. Membrane Surface Modification by Electrospinning, Coating, and Plasma for Membrane Distillation Applications: A State-of-the-Art Review. Adv. Eng. Mater. 2021, 23, 2001456. [Google Scholar] [CrossRef]
- Berdichevsky, Y.; Khandurina, J.; Guttman, A.; Lo, Y.-H. UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens. Actuators B Chem. 2004, 97, 402–408. [Google Scholar] [CrossRef]
- Abdi, S.; Nasiri, M.; Yuan, S.; Zhu, J.; Van der Bruggen, B. Fabrication of PES-based super-hydrophilic ultrafiltration membranes by combining hydrous ferric oxide particles and UV irradiation. Sep. Purif. Technol. 2021, 259, 118132. [Google Scholar] [CrossRef]
- Güler, E.; van Baak, W.; Saakes, M.; Nijmeijer, K. Monovalent-ion-selective membranes for reverse electrodialysis. J. Memb. Sci. 2014, 455, 254–270. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Khoiruddin; Ariono, D.; Subagjo; Wenten, I.G. Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J. Appl. Polym. Sci. 2017, 134, 45540. [Google Scholar] [CrossRef]
- Augello, C.; Liu, H. Surface modification of magnesium by functional polymer coatings for neural applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 335–353. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, K.; Liu, Q.; Van der Bruggen, B.; Díaz, A.S.; Pan, J.; Gao, C.; Shen, J. Recovery of chemically degraded polyethyleneimine by a re-modification method: Prolonging the lifetime of cation exchange membranes. RSC Adv. 2016, 6, 16548–16554. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, K.; Liu, H.; Van der Bruggen, B.; Sotto Díaz, A.; Shen, J.; Gao, C. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. J. Memb. Sci. 2016, 520, 262–271. [Google Scholar] [CrossRef]
- Pan, J.; Ding, J.; Tan, R.; Chen, G.; Zhao, Y.; Gao, C.; Van der Bruggen, B.; Shen, J. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine. J. Memb. Sci. 2017, 539, 263–272. [Google Scholar] [CrossRef]
- Li, Y.; Shi, S.; Cao, H.; Zhao, Z.; Wen, H. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO). Appl. Surf. Sci. 2018, 442, 700–710. [Google Scholar] [CrossRef]
- Mavukkandy, M.O.; McBride, S.A.; Warsinger, D.M.; Dizge, N.; Hasan, S.W.; Arafat, H.A. Thin film deposition techniques for polymeric membranes– A review. J. Memb. Sci. 2020, 610, 118258. [Google Scholar] [CrossRef]
- Sata, T.; Izuo, R. Modification of transport properties of ion exchange membrane. XI. Electrodialytic properties of cation exchange membranes having polyethyleneimine layer fixed by acid–amide bonding. J. Appl. Polym. Sci. 1990, 41, 2349–2362. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Wei, W. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ. Sci. 2012, 5, 6299–6303. [Google Scholar] [CrossRef]
- Tufa, R.A.; Piallat, T.; Hnát, J.; Fontananova, E.; Paidar, M.; Chanda, D.; Curcio, E.; di Profio, G.; Bouzek, K. Salinity gradient power reverse electrodialysis: Cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity. Chem. Eng. J. 2020, 380, 122461. [Google Scholar] [CrossRef]
- Dong, X.; Lu, D.; Harris, T.A.L.; Escobar, I.C. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef]
- Ehsani, M.; Kalugin, D.; Doan, H.; Lohi, A.; Abdelrasoul, A. Bio-Sourced and Biodegradable Membranes. Appl. Sci. 2022, 12, 12837. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Adel, K.; Murielle, R.-B.; Anthony, S.; Cédric, F.; Noureddine, R. Eco-Friendly Functionalization of Pes Membranes by Bio-Sourced Derived Aryl Diazonium Grafting. Available online: https://ssrn.com/abstract=4448645 (accessed on 17 July 2023).
- Upadhyaya, L.; Qian, X.; Ranil Wickramasinghe, S. Chemical modification of membrane surface—Verview. Curr. Opin. Chem. Eng. 2018, 20, 13–18. [Google Scholar] [CrossRef]
- Zhao, Z.; Cao, H.; Shi, S.; Li, Y.; Yao, L. Characterization of anion exchange membrane modified by electrodeposition of polyelectrolyte containing different functional groups. Desalination 2016, 386, 58–66. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Y.; Pan, G.; Shi, H.; Yan, H.; Xu, J.; Guo, M.; Wang, Z.; Liu, Y. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling. Appl. Surf. Sci. 2017, 419, 177–187. [Google Scholar] [CrossRef]
- Prifti, H.; Parasuraman, A.; Winardi, S.; Lim, T.M.; Skyllas-Kazacos, M. Membranes for Redox Flow Battery Applications. Membranes 2012, 2, 275–306. [Google Scholar] [CrossRef]
- Zeng, J.; Jiang, C.; Wang, Y.; Chen, J.; Zhu, S.; Zhao, B.; Wang, R. Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochem. Commun. 2008, 10, 372–375. [Google Scholar] [CrossRef]
- Shirasaki, K.; Yamamura, T. Direct observation of vanadium ion permeation behavior through Nafion 117 using 48V radiotracer for all-vanadium redox flow battery. J. Memb. Sci. 2019, 592, 117367. [Google Scholar] [CrossRef]
- Xi, J.; Wu, Z.; Qiu, X.; Chen, L. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 2007, 166, 531–536. [Google Scholar] [CrossRef]
- Aziz, M.A.; Shanmugam, S. Zirconium oxide nanotube–Nafion composite as high performance membrane for all vanadium redox flow battery. J. Power Sources 2017, 337, 36–44. [Google Scholar] [CrossRef]
- Teng, X.; Dai, J.; Su, J.; Zhu, Y.; Liu, H.; Song, Z. A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J. Power Sources 2013, 240, 131–139. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, H.; Chen, J.; Qian, P.; Zhai, Y. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. J. Memb. Sci. 2008, 311, 98–103. [Google Scholar] [CrossRef]
- Vallois, C. Separation of H+/Cu2+ cations by electrodialysis using modified proton conducting membranes. J. Memb. Sci. 2003, 216, 13–25. [Google Scholar] [CrossRef]
- Chieng, S.C.; Kazacos, M.; Skyllas-Kazacos, M. Modification of Daramic, microporous separator, for redox flow battery applications. J. Memb. Sci. 1992, 75, 81–91. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, D. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate. Energy Storage Mater. 2020, 31, 105–114. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, D. High energy efficiency and stability of vanadium redox flow battery using pore-filled anion exchange membranes with ultra-low V4+ permeation. J. Ind. Eng. Chem. 2022, 110, 395–404. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Z.; Yang, S.; Michos, I.; Xu, Z.; Dong, J. Colloidal silicalite-nafion composite ion exchange membrane for vanadium redox-flow battery. J. Memb. Sci. 2015, 484, 1–9. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Schwenzer, B.; Kim, S.; Yang, Z.; Thevuthasan, S.; Liu, J.; Graff, G.L.; Hu, J. Investigation of local environments in Nafion–SiO2 composite membranes used in vanadium redox flow batteries. Solid State Nucl. Magn. Reson. 2012, 42, 71–80. [Google Scholar] [CrossRef]
- Teng, X.; Zhao, Y.; Xi, J.; Wu, Z.; Qiu, X.; Chen, L. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J. Memb. Sci. 2009, 341, 149–154. [Google Scholar] [CrossRef]
- Xi, J.; Wu, Z.; Teng, X.; Zhao, Y.; Chen, L.; Qiu, X. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Mater. Chem. 2008, 18, 1232. [Google Scholar] [CrossRef]
- Teng, X.; Zhao, Y.; Xi, J.; Wu, Z.; Qiu, X.; Chen, L. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J. Power Sources 2009, 189, 1240–1246. [Google Scholar] [CrossRef]
- Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries. Electrochim. Acta 2013, 105, 584–592. [Google Scholar] [CrossRef]
- Lin, C.-H.; Yang, M.-C.; Wei, H.-J. Amino-silica modified Nafion membrane for vanadium redox flow battery. J. Power Sources 2015, 282, 562–571. [Google Scholar] [CrossRef]
- Zhao, N.; Platt, A.; Riley, H.; Qiao, R.; Neagu, R.; Shi, Z. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries. J. Energy Storage 2023, 72, 108321. [Google Scholar] [CrossRef]
- Yu, L.; Lin, F.; Xu, L.; Xi, J. A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries. RSC Adv. 2016, 6, 3756–3763. [Google Scholar] [CrossRef]
- Sophia, S.; Abouzari Lotf, E.; Ahmad, A.; Moozarm Nia, P.; Rasit Ali, R. GO-modified membranes for vanadium redox flow battery. E3S Web Conf. 2019, 90, 01004. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kazacos, M.S. Modification of anion-exchange membranes for vanadium redox flow battery applications. J. Power Sources 1996, 63, 179–186. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Herve Bang, Y.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Abbasi, A.; Xu, Y.; Khezri, R.; Etesami, M.; Lin, C.; Kheawhom, S.; Lu, Y. Advances in characteristics improvement of polymeric membranes/separators for zinc-air batteries, Mater. Today Sustain. 2022, 18, 100126. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Alloin, F.; Iojoiu, C.; Tufa, R.A.; Aili, D.; Fischer, P.; Velizarov, S. Membranes for zinc-air batteries: Recent progress, challenges and perspectives. J. Power Sources 2020, 475, 228689. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Alloin, F.; Iojoiu, C. Prospects for Anion-Exchange Membranes in Alkali Metal–Air Batteries. Energies 2019, 12, 4702. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Choi, N.H.; Fischer, P.; Tübke, J.; Planes, E.; Alloin, F.; Iojoiu, C. Anion Exchange Membranes Incorporating Multi N -Spirocyclic Quaternary Ammonium Cations via Ultraviolet-Initiated Polymerization for Zinc Slurry-Air Flow Batteries. ACS Appl. Energy Mater. 2022, 5, 7069–7080. [Google Scholar] [CrossRef]
- Kiros, Y. Separation and permeability of zincate ions through membranes. J. Power Sources 1996, 62, 117–119. [Google Scholar] [CrossRef]
- Salmeron-Sanchez, I.; Asenjo-Pascual, J.; Avilés-Moreno, J.R.; Pérez-Flores, J.C.; Mauleón, P.; Ocón, P. Chemical physics insight of PPy-based modified ion exchange membranes: A fundamental approach. J. Memb. Sci. 2022, 643, 120020. [Google Scholar] [CrossRef]
- Tan, R.; Wang, A.; Ye, C.; Li, J.; Liu, D.; Darwich, B.P.; Petit, L.; Fan, Z.; Wong, T.; Alvarez-Fernandez, A.; et al. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. Adv. Sci. 2023, 10, 220688. [Google Scholar] [CrossRef]
- Yue, X.; He, Q.; Lim, H.-D.; Liu, P. Hierarchical structural designs of ion exchange membranes for flow batteries. J. Mater. Chem. A 2019, 7, 5794–5802. [Google Scholar] [CrossRef]
Modification Type | Membrane | Property | Application | Zincate Ions Diffusion Coefficient (m2 s−1) | Battery Performance | Ref. |
---|---|---|---|---|---|---|
Pore filling/impregnation | Celgard3501 | 25 µm-thick Pore size: 64 nm | ZAFB | 9.2 × 10−12 | Cell resistance: 2 Ω cm2 Peak power density: 90 mW cm−2 | [18] |
Celgard3501 + FAA | 2 mg cm−2 ionomer coating | 3.3 × 10−14 | Cell resistance: 5.6 Ω cm2 Peak power density: 28 mW cm−2 | |||
Celgard3501+ PPO-3.45 | 2 µm-thin layer | 5.2 × 10−13 | Cell resistance: 2.6 Ω cm2 Peak power density: 66 mW cm−2. | |||
Pore filling/impregnation | Celgard 5550 | 25 µm-thick Pore size: 64 nm | Secondary Zn–air battery | 5 × 10−7 | CE = 99.8% Initial EE = 59.4% Cycle = 37 | [19] |
PEBIH-PBMA-coated PP separator | 25 µm | 1.1 × 10−5 | CE = 99.9% Initial EE = 60.8% Cycle = 107 | |||
Coating with Mn(OH)2 | Two Celgard® 3401 membranes | 6.9 × 10−12 | NA | [76] | ||
Two Celgard® 3401 coated with Mn(OH)2 | 6.0 × 10−15 |
Membrane | Property | Ion Permeability | |
---|---|---|---|
BP7 Permeability (× 1010 cm2 s−1) | TEMPOL Permeability (× 1010 cm2 s−1) | ||
FS-950 |
| 2.49 | 96.0 |
FS-950-PPy |
| 2.49 | 30.6 |
E-630(K) |
| 122.0 | 1.21 |
E-630(K)-PPy |
| 1.45 | 0.97 |
FAA-3-50 |
| 1.26 | 192.0 |
FAA-3-50-PPy |
| 1.26 | 0.63 |
FAA-3-PE-30 |
| 5.41 | 68.8 |
FAA-3-PE-30-PPy |
| 1.39 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsehaye, M.T.; Tufa, R.A.; Berhane, R.; Deboli, F.; Gebru, K.A.; Velizarov, S. Modified Membranes for Redox Flow Batteries—A Review. Membranes 2023, 13, 777. https://doi.org/10.3390/membranes13090777
Tsehaye MT, Tufa RA, Berhane R, Deboli F, Gebru KA, Velizarov S. Modified Membranes for Redox Flow Batteries—A Review. Membranes. 2023; 13(9):777. https://doi.org/10.3390/membranes13090777
Chicago/Turabian StyleTsehaye, Misgina Tilahun, Ramato Ashu Tufa, Roviel Berhane, Francesco Deboli, Kibrom Alebel Gebru, and Svetlozar Velizarov. 2023. "Modified Membranes for Redox Flow Batteries—A Review" Membranes 13, no. 9: 777. https://doi.org/10.3390/membranes13090777
APA StyleTsehaye, M. T., Tufa, R. A., Berhane, R., Deboli, F., Gebru, K. A., & Velizarov, S. (2023). Modified Membranes for Redox Flow Batteries—A Review. Membranes, 13(9), 777. https://doi.org/10.3390/membranes13090777