Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Membrane Preparation
2.2. MD Pilot Plant
2.3. Characterization of the Membrane Properties
2.3.1. Structural Properties
2.3.2. Wettability Indicators
2.4. Characterization of Membrane Performances
2.4.1. Knudsen Permeability Coefficient
2.4.2. Evaporation Rate
2.5. DDTI Method for Wetting Characterization
- Feed inlet: three samples (I1, I2, and I3);
- Middle of membrane: three samples (M1, M2, and M3); and
- Feed outlet: three samples (O1, O2, and O3).
3. Results and Discussion
3.1. The Raw Materials
3.2. Membrane Morphology and Structure
- The membrane thickness is between 50 µm and 62 µm for both the NP materials and the loads. Overall, the thickness increased with the proportion of NPs from 2% to 25% for the MoS2 and carbon black membranes. Similar results have been reported for Ag NPs [23].
- The membrane porosity was between 57% and 62% for the reference and MoS2 and carbon black-based membranes, and the porosity can be considered as being within the same range for all three types of membrane. The Ag-NP membrane porosity, conversely, was higher than that of the reference membrane (68–75%).
3.3. Membrane Wettability Indicators
3.4. Knudsen Permeability
3.5. Evaporation Test
3.6. Permeate Fluxes Obtained during VMD Operation with a Saline Solution
3.7. Wetting Characterization According to the DDTI Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H.A.; Curcio, E. Photothermal Membrane Distillation for Seawater Desalination. Adv. Mater. 2017, 29, 1603504. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jiang, Q.; Ghim, D.; Singamaneni, S.; Jun, Y.S. Localized Heating with a Photothermal Polydopamine Coating Facilitates a Novel Membrane Distillation Process. J. Mater. Chem. A 2018, 6, 18799–18807. [Google Scholar] [CrossRef]
- Fuzil, N.S.; Othman, N.H.; Alias, N.H.; Marpani, F.; Othman, M.H.D.; Ismail, A.F.; Lau, W.J.; Li, K.; Kusworo, T.D.; Ichinose, I.; et al. A Review on Photothermal Material and Its Usage in the Development of Photothermal Membrane for Sustainable Clean Water Production. Desalination 2021, 517, 115259. [Google Scholar] [CrossRef]
- Razaqpur, A.G.; Wang, Y.; Liao, X.; Liao, Y.; Wang, R. Progress of Photothermal Membrane Distillation for Decentralized Desalination: A Review. Water Res. 2021, 201, 117299. [Google Scholar] [CrossRef]
- Gao, M.; Peh, C.K.; Meng, F.L.; Ho, G.W. Photothermal Membrane Distillation toward Solar Water Production. Small Methods 2021, 5, e2001200. [Google Scholar] [CrossRef]
- Santoro, S.; Avci, A.H.; Politano, A.; Curcio, E. The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 2022, 51, 6087–6125. [Google Scholar] [CrossRef]
- Elmaghraoui, D.; Politano, A.; Jaziri, S. Photothermal response of plasmonic nanofillers for membrane distillation. J. Chem. Phys. 2020, 152, 114102. [Google Scholar] [CrossRef]
- Politano, A.; Di Profio, G.; Fontananova, E.; Sanna, V.; Cupolillo, A.; Curcio, E. Overcoming Temperature Polarization in Membrane Distillation by Thermoplasmonic Effects Activated by Ag Nanofillers in Polymeric Membranes. Desalination 2019, 451, 192–199. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-Based Photothermal Actuators. Adv. Funct. Mater. 2018, 28, 1–23. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Padilla, W.J.; Kim, K. Efficient Solar Vapour Generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef]
- Chen, M.; He, Y.; Ye, Q.; Wang, X.; Hu, Y. Shape-Dependent Solar Thermal Conversion Properties of Plasmonic Au Nanoparticles under Di Ff Erent Light Fi Lter Conditions. Sol. Energy 2019, 182, 340–347. [Google Scholar] [CrossRef]
- Zada, I.; Zhang, W.; Sun, P.; Imtiaz, M.; Iqbal, N.; Ghani, U.; Naz, R.; Zhang, Y.; Li, Y.; Gu, J.; et al. Superior Photothermal Black TiO2 with Random Size Distribution as Flexible Film for Efficient Solar Steam Generation. Appl. Mater. Today 2020, 20, 100669. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Yao, L.; Ren, X.; Li, Y.; Deng, L. Fe3O4/PVDF-HFP Photothermal Membrane with in-Situ Heating for Sustainable, Stable and Efficient Pilot-Scale Solar-Driven Membrane Distillation. Desalination 2020, 478, 114288. [Google Scholar] [CrossRef]
- Dongare, P.D.; Alabastri, A.; Pedersen, S.; Zodrow, K.R.; Hogan, N.J.; Neumann, O.; Wud, J.; Wang, T.; Deshmukh, A.; Elimelech, M.; et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA 2017, 114, 6936–6941. [Google Scholar] [CrossRef] [PubMed]
- Miao, E.D.; Ye, M.Q.; Guo, C.L.; Liang, L.; Liu, Q.; Rao, Z.H. Enhanced Solar Steam Generation Using Carbon Nanotube Membrane Distillation Device with Heat Localization. Appl. Therm. Eng. 2019, 149, 1255–1264. [Google Scholar] [CrossRef]
- Kim, K.; Yu, S.; An, C.; Kim, S.W.; Jang, J.H. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 Sun Illumination. ACS Appl. Mater. Interfaces 2018, 10, 15602–15608. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Liu, Z.; Jiang, B.; Huang, Y. A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy 2017, 139, 210–219. [Google Scholar] [CrossRef]
- Huang, S.; Long, Y.; Yi, H.; Yang, Z.; Pang, L.; Jin, Z.; Liao, Q.; Zhang, L.; Zhang, Y.; Chen, Y.; et al. Multifunctional Molybdenum Oxide for Solar-Driven Water Evaporation and Charged Dyes Adsorption. Appl. Surf. Sci. 2019, 491, 328–334. [Google Scholar] [CrossRef]
- Chou, S.S.; Kaehr, B.; Kim, J.; Foley, B.M.; De, M.; Hopkins, P.E.; Huang, J.; Brinker, C.J.; Dravid, V.P. Chemically Exfoliated MoS2 as near-Infrared photothermal agents. Angew. Chem. Int. 2013, 52, 4254–4258. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, H.; Wang, D.; Sun, J. Spray-Coated Commercial PTFE Membrane from MoS2/LaF3/PDMS Ink as Solar Absorber for Efficient Solar Steam Generation. Sol. RRL 2020, 4, 2000126. [Google Scholar] [CrossRef]
- Jacob, P.; Laborie, S.; Cabassud, C. Visualizing and Evaluating Wetting in Membrane Distillation: New Methodology and Indicators Based on Detection of Dissolved Tracer Intrusion (DDTI). Desalination 2018, 443, 307–322. [Google Scholar] [CrossRef]
- Eljaddi, T.; Cabassud, C. Wetting of Photoplasmonic PVDF/Silver Membranes in Photothermal Membrane Distillation: Identification of Wetting Mechanisms and Comparison of Wetting Dynamics. Desalination 2022, 540, 116019. [Google Scholar] [CrossRef]
- Jacob, P.; Dejean, B.; Laborie, S.; Cabassud, C. An Optical In-Situ Tool for Visualizing and Understanding Wetting Dynamics in Membrane Distillation. J. Memb. Sci. 2020, 595, 117587. [Google Scholar] [CrossRef]
- Rácz, G.; Kerker, S.; Kovács, Z.; Vatai, G.; Ebrahimi, M.; Czermak, P. Theoretical and experimental approaches of liquid entry pressure determination in membrane distillation processes. Period. Polytech. Chem. Eng. 2014, 58, 81–91. [Google Scholar] [CrossRef]
- Jacob, P.; Zhang, T.; Laborie, S.; Cabassud, C. Influence of operating conditions on wetting and wettability in membrane distillation using Detection of Dissolved Tracer Intrusion (DDTI). Desalination 2019, 468, 114086. [Google Scholar] [CrossRef]
- Gryta, M. Influence of Polypropylene Membrane Surface Porosity on the Performance of Membrane Distillation Process. J. Memb. Sci. 2007, 287, 67–78. [Google Scholar] [CrossRef]
- Yeow, M.L.; Liu, Y.T.; Li, K. Morphological Study of Poly(Vinylidene Fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789. [Google Scholar] [CrossRef]
Material Family | Examples of Effective Materials [4,6,8] | Solar to Heat Energy Conversion Mechanism [3,7] |
---|---|---|
Metallic nanostructures | Gold, silver, aluminum, copper, and palladium in the form of nanoparticles or composites | Localized plasmonic heating |
Inorganic semiconductors | TiOx, TiN, CuS, and MoOx | Electron-hole generation and relaxation |
Carbon-based light-absorbing materials | Carbon nanotubes, graphene, graphene oxide (GO), reduced graphene oxide (rGO), carbon black (CB), and carbonized natural products | Thermal molecular vibration |
Polymeric materials | Polypyrene (PPy) | Thermal molecular vibration |
For 100 g of Collodion | |||||
---|---|---|---|---|---|
Notation | Membrane Code | PVDF (g) | DMF (g) | NPs (g) | % NPs in Membrane |
R | PVDF-REF | 15 | 85 | 0 | 0% |
X2 | PVDF-2% NPs | 15 | 84.7 | 0.3 | 2% |
X6 | PVDF-6% NPs | 15 | 84 | 1 | 6% |
X12 | PVDF-12% NPs | 15 | 83 | 2 | 12% |
X25 | PVDF-25% NPs | 15 | 80 | 5 | 25% |
Pore Wetting Ratio (ωp) | Wetting Mechanism and Visualization of the Corresponding Color Codes |
---|---|
ωp ≤ 1% | No wetting |
1.1% < ωp ≤ 10% | Surface wetting |
10.1% < ωp ≤ 90% | Partial wetting |
ωp > 90% | Total wetting |
Membrane | SEM Image (Magnification1000×, HV 20 kV, WD: 25 mm, Scale 30 µm) |
---|---|
R PVDF-REF | |
M2 PVDF-2% MoS2 | |
M6 PVDF-6% MoS2 | |
M12 PVDF-12% MoS2 | |
M25 PVDF-25% MoS2 | |
C2 PVDF-2% Carbon black | |
C6 PVDF-6% Carbon black | |
C12 PVDF-12% Carbon black | |
C25 PVDF-25% Carbon black | |
A6 PVDF-6% Ag | |
A25 PVDF-25% Ag |
Membrane | LEPw (bars) | Contact Angle (°) | Thickness (µm) | Porosity (%) |
---|---|---|---|---|
R | >4 | 88 | 58 | 62 |
M2 | >4 | 61 | 49 | 61 |
M6 | 3.6 | 85 | 50 | 60 |
M12 | 2.6 | 79 | 60 | 66 |
M25 | 2.8 | 80 | 61 | 62 |
C2 | >4 | 60 | 49 | 62 |
C6 | >4 | 80 | 48 | 57 |
C12 | >4 | 85 | 53 | 62 |
C25 | 3 | 88 | 59 | 60 |
A6 | >4 | 78 | 62 | 68 |
A25 | 4 | 72 | 60 | 75 |
Membrane | ωp local (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
I1 | I2 | I3 | M1 | M2 | M3 | O1 | O2 | O3 | |
R | 0 | 0 | 3 | 0 | 0 | 8.3 | 0.6 | 0.9 | 1.9 |
M2 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 5 | - |
M6 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
M12 | 3 | 2 | 0 | 0 | 1 | 4 | 0 | 0 | 2 |
M25 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 1 | 4 |
C2 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
C6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C12 | 0 | 0 | 0 | 3 | 3 | 0 | 2 | 0 | 0 |
C25 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
A6 | 0 | 44 | 4 | 16 | 93 | 1 | 2 | 0 | 7 |
A25 | 0 | 82 | 95 | 0 | 0 | 0 | 0 | 0 | 3 |
Membrane | ωp Global (%) |
---|---|
R | 1.6 |
M2 | 1.0 |
M6 | 0.9 |
M12 | 1.3 |
M25 | 1.0 |
C2 | 1.2 |
C6 | 0 |
C12 | 0.9 |
C25 | 0.4 |
A6 | 19 |
A25 | 20 |
Membrane | PVDF | PVDF-MoS2 | PVDF-Carbon Black | PVDF-Ag |
---|---|---|---|---|
KM | Reference | +++ Increases with NP load | ++ Increases with NP load | + Increases with NP load |
Evaporation rate | Reference | ++ | +++ | + |
Permeate flux during VMD with a saline solution | Reference | +++ | ++ | = |
Wettability | Reference | Increases with NP load | Slight increase with NP load | = |
Wetting | Reference | Less wetting | Less wetting | Much more wetting |
Cost | Low | Moderate | Low | Very high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eljaddi, T.; Cabassud, C. Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation. Membranes 2023, 13, 780. https://doi.org/10.3390/membranes13090780
Eljaddi T, Cabassud C. Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation. Membranes. 2023; 13(9):780. https://doi.org/10.3390/membranes13090780
Chicago/Turabian StyleEljaddi, Tarik, and Corinne Cabassud. 2023. "Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation" Membranes 13, no. 9: 780. https://doi.org/10.3390/membranes13090780
APA StyleEljaddi, T., & Cabassud, C. (2023). Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation. Membranes, 13(9), 780. https://doi.org/10.3390/membranes13090780