Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Macroporous Supports
2.3. Fabrication of ZIF Membranes by Vapor-Phase Seeding
2.4. Gas Permeation Measurements
2.5. Characterizations
3. Results and Discussion
3.1. Microstructure Evolvement during Membrane Fabrication
3.2. Effect of ALD Cycle Number
3.3. ZIF-67 Membrane Made by Vapor-Phase Seeding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eldridge, R.B. Olefin/paraffin separation technology: A review. Ind. Eng. Chem. Res. 1993, 32, 2208–2212. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, T.; Lestari, G.; Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 2012, 390, 93–98. [Google Scholar] [CrossRef]
- Ma, X.; Williams, S.; Wei, X.; Kniep, J.; Lin, Y. Propylene/propane mixture separation characteristics and stability of carbon molecular sieve membranes. Ind. Eng. Chem. Res. 2015, 54, 9824–9831. [Google Scholar] [CrossRef]
- Liu, D.; Ma, X.; Xi, H.; Lin, Y. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 2014, 451, 85–93. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Wei, X.; Kniep, J. Ultrathin carbon molecular sieve membrane for propylene/propane separation. AlChE J. 2016, 62, 491–499. [Google Scholar] [CrossRef]
- Zhang, C.; Lively, R.P.; Zhang, K.; Johnson, J.R.; Karvan, O.; Koros, W.J. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 2012, 3, 2130–2134. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.T.; Jeong, H.-K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 2013, 135, 10763–10768. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, Q.; Caro, J.; Huang, A. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis. Sep. Purif. Technol. 2015, 146, 68–74. [Google Scholar] [CrossRef]
- Carreon, M.A. Microporous crystalline molecular sieve membranes for molecular gas separations: What is next? ACS Mater. Lett. 2022, 4, 868–873. [Google Scholar] [CrossRef]
- Yan, T.; Yang, J.; Lu, J.; Zhou, L.; Zhang, Y.; He, G. Preparation and gas separation performance of seeding-free aqueous synthesis ZIF-8 membrane by homologous-like ligands method. Microporous Mesoporous Mater. 2022, 346, 112293. [Google Scholar] [CrossRef]
- Yu, C.; Liang, Y.; Xue, W.; Zhang, Z.; Jia, X.; Huang, H.; Qiao, Z.; Mei, D.; Zhong, C. Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair. J. Membr. Sci. 2021, 625, 119139. [Google Scholar] [CrossRef]
- Choi, E.; Choi, J.I.; Kim, Y.J.; Kim, Y.J.; Eum, K.; Choi, Y.; Kwon, O.; Kim, M.; Choi, W.; Ji, H. Graphene Nanoribbon Hybridization of Zeolitic Imidazolate Framework Membranes for Intrinsic Molecular Separation. Angew. Chem. Int. Ed. 2022, 134, e202214269. [Google Scholar] [CrossRef]
- Huang, A.; Dou, W.; Caro, J.r. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010, 132, 15562–15564. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yang, J.; Wang, J.; Bai, J.; Yin, H.; Yuan, B.; Lu, J.; Zhang, Y.; Zhou, L.; Duan, C. Deposition of chemically modified α-Al 2 O 3 particles for high performance ZIF-8 membrane on a macroporous tube. Chem. Commun. 2012, 48, 5977–5979. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, N.; Caro, J.r.; Huang, A. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 2013, 135, 17679–17682. [Google Scholar] [CrossRef]
- Tanaka, S.; Okubo, K.; Kida, K.; Sugita, M.; Takewaki, T. Grain size control of ZIF-8 membranes by seeding-free aqueous synthesis and their performances in propylene/propane separation. J. Membr. Sci. 2017, 544, 306–311. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Y.; Xiang, L.; Liu, D.; Wang, C.; Pan, Y. Improved H2/CO2 separation performance on mixed-linker ZIF-7 polycrystalline membranes. Chem. Eng. Sci. 2018, 192, 85–93. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, X.; Jin, H.; Feng, S.; Fang, W.; Li, Y. Highly permeable ZIF-8 membranes for propylene permselective pervaporation under high pressure up to 20 bar. J. Membr. Sci. 2022, 643, 120055. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, X.; Feng, S.; Jin, H.; Mo, K.; Li, Y. Effect of Activation Process on the Performance of ZIF-8 Membrane for Propylene/Propane Separation. Chem. Ing. Tech. 2022, 94, 166–176. [Google Scholar] [CrossRef]
- Dangwal, S.; Ronte, A.; Lin, H.; Liu, R.; Zhu, J.; Lee, J.S.; Gappa-Fahlenkamp, H.; Kim, S.-J. ZIF-8 membranes supported on silicalite-seeded substrates for propylene/propane separation. J. Membr. Sci. 2021, 626, 119165. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, J.; Ji, T.; Du, D.; Sun, Y.; Liu, L.; Zhang, X.; Liu, Y. Fabrication of highly (110)-Oriented ZIF-8 membrane at low temperature using nanosheet seed layer. J. Membr. Sci. 2022, 641, 119915. [Google Scholar] [CrossRef]
- Tao, K.; Kong, C.; Chen, L. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition. Chem. Eng. J. 2013, 220, 1–5. [Google Scholar] [CrossRef]
- James, J.B.; Lang, L.; Meng, L.; Lin, J.Y. Postsynthetic modification of ZIF-8 membranes via membrane surface ligand exchange for light hydrocarbon gas separation enhancement. ACS Appl. Mater. 2019, 12, 3893–3902. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Sheng, L.; Yu, J.; Yao, K.; Zhang, L.; Pan, Y. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation. Chem. Commun. 2016, 52, 12578–12581. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Mo, K.; Gao, S.; Xie, Y.; Wang, J.; Jin, H.; Feldhoff, A.; Xu, S.; Lin, J.Y.; Li, Y. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation. Angew. Chem. 2020, 132, 22093–22098. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, W.; Zhao, Y.; Wang, C.; Lai, Z. Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 2015, 493, 88–96. [Google Scholar] [CrossRef]
- Abdul Hamid, M.R.; Park, S.; Kim, J.S.; Lee, Y.M.; Jeong, H.-K. Synthesis of ultrathin zeolitic imidazolate framework ZIF-8 membranes on polymer hollow fibers using a polymer modification strategy for propylene/propane separation. Ind. Eng. Chem. Res. 2019, 58, 14947–14953. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem. Commun. 2013, 49, 3854–3856. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K.; Lee, A.S.; An, H.S.; Lee, J.S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 2015, 137, 12304–12311. [Google Scholar] [CrossRef]
- Hillman, F.; Zimmerman, J.M.; Paek, S.-M.; Hamid, M.R.; Lim, W.T.; Jeong, H.-K. Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. J. Mater. Chem. A 2017, 5, 6090–6099. [Google Scholar] [CrossRef]
- Ramu, G.; Lee, M.; Jeong, H.-K. Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation. Microporous Mesoporous Mater. 2018, 259, 155–162. [Google Scholar] [CrossRef]
- Kang, D.A.; Jeong, H.-K. Enhancing the C3 separation performances of polycrystalline ZIF-8 membranes by additive-assisted secondary growth. J. Membr. Sci. 2023, 677, 121593. [Google Scholar] [CrossRef]
- Pu, Y.; Zhao, M.; Liang, X.; Wang, S.; Wang, H.; Zhu, Z.; Ren, Y.; Zhang, Z.; He, G.; Zhao, D. Growing ZIF-8 Seeds on Charged COF Substrates toward Efficient Propylene-Propane Separation Membranes. Angew. Chem. Int. Ed. 2023, 62, e202302355. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; jae Kim, Y.; Kim, J.; Hayashi, M.; Kim, D.W.; Kwon, H.T.; Eum, K. A sacrificial ZIF-L seed layer for sub-100 nm thin propylene-selective ZIF-8 membranes. J. Mater. Chem. A 2022, 10, 15390–15394. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K. Improving propylene/propane separation performance of Zeolitic-Imidazolate framework ZIF-8 Membranes. Chem. Eng. Sci. 2015, 124, 20–26. [Google Scholar] [CrossRef]
- Yao, J.; Dong, D.; Li, D.; He, L.; Xu, G.; Wang, H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 2011, 47, 2559–2561. [Google Scholar] [CrossRef]
- Li, B.; You, X.; Wu, H.; Li, R.; Xiao, K.; Ren, Y.; Wang, H.; Song, S.; Wang, Y.; Pu, Y. A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. J. Membr. Sci. 2022, 650, 120419. [Google Scholar] [CrossRef]
- Brown, A.J.; Brunelli, N.A.; Eum, K.; Rashidi, F.; Johnson, J.; Koros, W.J.; Jones, C.W.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014, 345, 72–75. [Google Scholar] [CrossRef]
- Eum, K.; Ma, C.; Rownaghi, A.; Jones, C.W.; Nair, S. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures. ACS Appl. Mater. 2016, 8, 25337–25342. [Google Scholar] [CrossRef]
- Wei, R.; Chi, H.Y.; Li, X.; Lu, D.; Wan, Y.; Yang, C.W.; Lai, Z. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation. Adv. Funct. Mater. 2020, 30, 1907089. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, Y.; Li, L.; Duan, Y.; Hou, Q.; Zhang, L.; Ding, L.-X.; Xue, J.; Wang, H.; Caro, J. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Lyu, L.; Hou, Q.; Caro, J.r.; Wang, H. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. J. Am. Chem. Soc. 2020, 142, 20915–20919. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Liu, Y.; Wu, H.; Zhao, M.; Ren, Y.; Pu, Y.; Li, W.; Wang, S.; Song, S. Ultrathin ZIF-8 Membrane through Inhibited Ostwald Ripening for High-Flux C3H6/C3H8 Separation. Adv. Funct. Mater. 2022, 32, 2208064. [Google Scholar] [CrossRef]
- He, G.; Dakhchoune, M.; Zhao, J.; Huang, S.; Agrawal, K.V. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. Adv. Funct. Mater. 2018, 28, 1707427. [Google Scholar] [CrossRef]
- Li, W.; Su, P.; Li, Z.; Xu, Z.; Wang, F.; Ou, H.; Zhang, J.; Zhang, G.; Zeng, E. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat. Commun. 2017, 8, 406. [Google Scholar] [CrossRef]
- Su, P.; Tu, M.; Ameloot, R.; Li, W. Vapor-Phase Processing of Metal–Organic Frameworks. Acc. Chem. Res. 2021, 55, 186–196. [Google Scholar] [CrossRef]
- Ma, X.; Kumar, P.; Mittal, N.; Khlyustova, A.; Daoutidis, P.; Mkhoyan, K.A.; Tsapatsis, M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 2018, 361, 1008–1011. [Google Scholar] [CrossRef]
- Eum, K.; Hayashi, M.; De Mello, M.D.; Xue, F.; Kwon, H.T.; Tsapatsis, M. ZIF-8 membrane separation performance tuning by vapor phase ligand treatment. Angew. Chem. 2019, 131, 16542–16546. [Google Scholar] [CrossRef]
- Ronte, A.; Wagle, P.; Mahmodi, G.; Chevula, M.; Dangwal, S.; Saeb, M.R.; Lee, J.S.; Mcllroy, D.N.; Kim, S.-J. High-Flux ZIF-8 Membranes on ZnO-Coated Supports for Propane/Propylene Separation. Energy Fuels 2023, 37, 8456–8464. [Google Scholar] [CrossRef]
- Bo, R.; Taheri, M.; Liu, B.; Ricco, R.; Chen, H.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G.; Ameloot, R. Hierarchical metal-organic framework films with controllable meso/macroporosity. Adv. Sci. 2020, 7, 2002368. [Google Scholar] [CrossRef] [PubMed]
- Stassen, I.; Styles, M.; Grenci, G.; Gorp, H.V.; Vanderlinden, W.; Feyter, S.D.; Falcaro, P.; Vos, D.D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Zareba, J.K.; Nyk, M.; Samoc, M. Co/ZIF-8 heterometallic nanoparticles: Control of nanocrystal size and properties by a mixed-metal approach. Cryst. Growth Des. 2016, 16, 6419–6425. [Google Scholar] [CrossRef]
- Taheri, M.; Enge, T.G.; Tsuzuki, T. Water stability of cobalt doped ZIF-8: A quantitative study using optical analyses. Mater. Today Chem. 2020, 16, 100231. [Google Scholar] [CrossRef]
- Yu, J.; Pan, Y.; Wang, C.; Lai, Z. ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chem. Eng. Sci. 2016, 141, 119–124. [Google Scholar] [CrossRef]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Diffusive separation of propylene/propane with ZIF-8 membranes. J. Membr. Sci. 2014, 450, 215–223. [Google Scholar] [CrossRef]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. ZIF-8 membranes prepared at miscible and immiscible liquid–liquid interfaces. Microporous Mesoporous Mater. 2015, 206, 75–80. [Google Scholar] [CrossRef]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Effect of temperature on synthesis of ZIF-8 membranes for propylene/propane separation by counter diffusion method. J. Jpn. Pet. Inst. 2015, 58, 237–244. [Google Scholar] [CrossRef]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Effect of solution concentration on structure and permeation properties of ZIF-8 membranes for propylene/propane separation. J. Chem. Eng. Jpn. 2018, 49, 97–103. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K.; Lee, A.S.; An, H.S.; Lee, T.; Jang, E.; Lee, J.S.; Choi, J. Defect-induced ripening of zeolitic-imidazolate framework ZIF-8 and its implication to vapor-phase membrane synthesis. Chem. Commun. 2016, 52, 11669–11672. [Google Scholar] [CrossRef]
- Lee, M.J.; Kwon, H.T.; Jeong, H.K. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew. Chem. Int. Ed. 2018, 57, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.T.; Kim, J.; Othman, M.R. Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport. Sep. Purif. Technol. 2020, 233, 116026. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.J.; Yu, C.; Kim, J.; Eum, K. Facile Fabrication of α-Alumina Hollow Fiber-Supported ZIF-8 Membrane Module and Impurity Effects on Propylene Separation Performance. Membranes 2022, 12, 1015. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Yang, Y.; Chen, J.; Bao, B.; Yang, W.; Hou, R.; Ju, S.; Pan, Y. Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. J. Membr. Sci. 2022, 660, 120813. [Google Scholar] [CrossRef]
- Song, E.; Wei, K.; Lian, H.; Hua, J.; Tao, H.; Wu, T.; Pan, Y.; Xing, W. Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes. J. Membr. Sci. 2021, 617, 118655. [Google Scholar] [CrossRef]
- Lian, H.; Bao, B.; Chen, J.; Yang, W.; Yang, Y.; Hou, R.; Ju, S.; Pan, Y. Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation. Sep. Purif. Technol. 2022, 300, 121811. [Google Scholar] [CrossRef]
Membranes | Propylene Permeance (×10−10 mol m−2 s−1 Pa−1) | Separation Factor |
---|---|---|
M1 | 202.91 | 64 |
M2 | 235.25 | 48 |
M3 | 246.99 | 45 |
M4 | 79.17 | 52 |
M5 | 241.1 | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, Z.; Yi, Z.; Wang, J.-W.; Khandge, R.S.; Ma, X. Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method. Membranes 2023, 13, 782. https://doi.org/10.3390/membranes13090782
Qiang Z, Yi Z, Wang J-W, Khandge RS, Ma X. Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method. Membranes. 2023; 13(9):782. https://doi.org/10.3390/membranes13090782
Chicago/Turabian StyleQiang, Zhiqin, Zihao Yi, Jun-Wei Wang, Rahul Sampat Khandge, and Xiaoli Ma. 2023. "Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method" Membranes 13, no. 9: 782. https://doi.org/10.3390/membranes13090782
APA StyleQiang, Z., Yi, Z., Wang, J. -W., Khandge, R. S., & Ma, X. (2023). Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method. Membranes, 13(9), 782. https://doi.org/10.3390/membranes13090782