Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Nisin Cell-Free Supernatant (CFS)
2.3. Determination of Optimal Ammonium Sulfate Salting Out Concentration
2.4. Purification by ED
2.5. Analyses
2.5.1. Nisin Antimicrobial Activity Bioassay
2.5.2. Protein Content
2.5.3. Antimicrobial-Specific Activity
2.5.4. Conductivity
2.5.5. pH
2.5.6. Membrane Characterization
2.5.7. ED Energy Consumption (EC)
2.5.8. UPLC-MS Analysis for Nisin Concentration Factor Determination
2.5.9. Statistical Analyses
3. Results and Discussion
3.1. Optimization of Ammonium Sulfate Salting Out
3.2. Purification of Nisin by Electrodialysis
3.2.1. Evolution of Demineralization Rate, pH and Antimicrobial Activity
3.2.2. Membrane Characterization
3.2.3. Energy Consumption
3.2.4. Nisin Final Purification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurst, A. Nisin. Adv. Appl. Microbiol. 1981, 27, 123. [Google Scholar]
- De Vuyst, L.; Vandamme, E.J. Nisin, A Lantibiotic Produced by Lactococcus lactis subsp. Lactis: Properties, Biosynthesis, Fermentation and Applications. In Bacteriocins from Lactic Acid Bacteria; De Vuyst, L., Vandamme, E.J., Eds.; Springer US: Boston, MA, USA, 1994; pp. 151–221. [Google Scholar] [CrossRef]
- Maurício, E.; Rosado, C.; Duarte, M.P.; Verissimo, J.; Bom, S.; Vasconcelos, L. Efficiency of Nisin as Preservative in Cosmetics and Topical Products. Cosmetics 2017, 4, 41. [Google Scholar] [CrossRef]
- DE Vuyst, L.; Vandamme, E.J. Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol. 1992, 138, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Song, W.; Qi, B.; Li, J.; Ghosh, R.; Wan, Y. Separation of protein mixtures by an integrated electro-ultrafiltration–electrodialysis process. Sep. Purif. Technol. 2015, 147, 32–43. [Google Scholar] [CrossRef]
- Negash, A.W.; Tsehai, B.A. Current Applications of Bacteriocin. Int. J. Microbiol. 2020, 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- MarketsandMarkets, Nisin Market|Size, Share and Industry Statistics, Trends & Forecasts to 2025. 2020. Available online: https://www.marketsandmarkets.com/Market-Reports/nisin-market-29041412.html (accessed on 1 July 2023).
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Cheigh, C.-I.; Kook, M.-C.; Kim, S.-B.; Hong, Y.-H.; Pyun, Y.-R. Simple one-step purification of nisin Z from unclarified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnol. Lett. 2004, 26, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Bali, V.; Panesar, P.S.; Bera, M.B. Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Crit. Rev. Biotechnol. 2014, 36, 204–214. [Google Scholar] [CrossRef]
- Jozala, A.F. Processing of byproducts to improve nisin production by Lactococcus lactis. Afr. J. Biotechnol. 2011, 10, 66. [Google Scholar] [CrossRef]
- Jones, D.E.; Salin, D.V.; Williams, D.G.W. Nisin and the Market for Commercial Bacteriocins; TAMRC Consumer and Product: College Station, TX, USA, 2005; p. 25. [Google Scholar]
- Hawley, H.B. Patent, Nisin Production. U.S. Patent 2935503, 3 May 1960. [Google Scholar]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar] [CrossRef]
- Yang, R.; Johnson, M.C.; Ray, B. Novel Method to Extract Large Amounts of Bacteriocins from Lactic Acid Bacteriat. Appl. Environ. Microbiol. 1992, 58, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- Forestier, A.; Belguesmia, Y.; Krier, F.; Drider, D.; Dhulster, P.; Firdaous, L. Recovery of nisin from culture supernatants of Lactococcus lactis by ultrafiltration: Flux properties and separation efficiency. Food Bioprod. Process. 2022, 136, 196–210. [Google Scholar] [CrossRef]
- Wu, Z.; Ji, Y.; Guo, Y.; Hu, J. Application of Ceramic Membrane Filtration to Remove the Solid in Nisin Fermentation Broth. Int. J. Food Eng. 2008, 4, 1192. [Google Scholar] [CrossRef]
- de Arauz, L.J.; Jozala, A.F.; Mazzola, P.G.; Penna, T.C.V. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar] [CrossRef]
- Parente, E.; Ricciardi, A. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 1999, 52, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Tafreshi, S.-Y.H.; Mirdamadi, S.; Khatami, S. Comparison of Different Nisin Separation and Concentration Methods: Industrial and Cost-Effective Perspectives. Probiotics Antimicrob. Proteins 2020, 12, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, N.; Stuckey, D.C.; Ariff, A.B.; Wong, F.W.F. Novel approaches to purifying bacteriocin: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Twomey, E.; Hill, C.; Field, D.; Begley, M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int. J. Microbiol. 2021, 2021, 9990635. [Google Scholar] [CrossRef]
- Suárez, A.M.; Azcona, J.I.; Rodríguez, J.M.; Sanz, B.; Hernández, P.E. One-step purification of nisin A by immunoaffinity chromatography. Appl. Environ. Microbiol. 1997, 63, 4990–4992. [Google Scholar] [CrossRef]
- Gujarathi, S.S.; Bankar, S.B.; Ananthanarayan, L.A. Fermentative Production, Purification and Characterization of Nisin. Int. J. Food Eng. 2008, 4, 1386. [Google Scholar] [CrossRef]
- Lee, K.-H.; Moon, G.-S.; An, J.-Y.; Lee, H.-J.; Chang, H.-C.; Chung, D.-K.; Lee, J.-H. Isolation of a Nisin-Producing Lactococcus lactis Strain from Kimchi and Characterization of its nisZ Gene. J. Microbiol. Biotechnol. 2002, 12, 389–397. [Google Scholar]
- Burianek, L.L.; Yousef, A.E. Solvent extraction of bacteriocins from liquid cultures. Lett. Appl. Microbiol. 2000, 31, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Duong-Ly, K.C.; Gabelli, S.B. Salting out of Proteins Using Ammonium Sulfate Precipitation. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 2014; pp. 85–94. [Google Scholar] [CrossRef]
- Burgess, R.R. Chapter 20 Protein Precipitation Techniques. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 2009; pp. 331–342. [Google Scholar] [CrossRef]
- Abts, A.; Mavaro, A.; Stindt, J.; Bakkes, P.J.; Metzger, S.; Driessen, A.J.M.; Smits, S.H.J.; Schmitt, L. Easy and Rapid Purification of Highly Active Nisin. Int. J. Pept. 2011, 2011, 175145. [Google Scholar] [CrossRef] [PubMed]
- Gough, R.; Gómez-Sala, B.; O’connor, P.M.; Rea, M.C.; Miao, S.; Hill, C.; Brodkorb, A. A Simple Method for the Purification of Nisin. Probiotics Antimicrob. Proteins 2017, 9, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Cheigh, C.-I.; Kim, S.-B.; Pyun, Y.-R. Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J. Appl. Microbiol. 2000, 88, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P. A comprehensive review of saline effluent disposal and treatment: Conventional practices, emerging technologies, and future potential. J. Water Reuse Desalination 2020, 11, 33–65. [Google Scholar] [CrossRef]
- Rulence, A.; Perreault, V.; Thibodeau, J.; Firdaous, L.; Fliss, I.; Bazinet, L. One step purification of active nisin by electrodialysis from a commercial product. Chem. Eng. Sci. 2023, 281, 119134. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Cournoyer, A.; Bazinet, L. Electrodialysis Processes an Answer to Industrial Sustainability: Toward the Concept of Eco-Circular Economy?—A Review. Membranes 2023, 13, 205. [Google Scholar] [CrossRef]
- Bazinet, L.; Ippersiel, D.; Lamarche, F. Recovery of magnesium and protein from soy tofu whey by electrodialytic configurations. J. Chem. Technol. Biotechnol. 1999, 74, 663–668. [Google Scholar] [CrossRef]
- Villeneuve, W.; Perreault, V.; Chevallier, P.; Mikhaylin, S.; Bazinet, L. Use of cation-coated filtration membranes for demineralization by electrodialysis. Sep. Purif. Technol. 2019, 218, 70–80. [Google Scholar] [CrossRef]
- Desjardins, P.; Meghrous, J.; Lacroix, C. Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. Int. Dairy J. 2001, 11, 943–951. [Google Scholar] [CrossRef]
- Bertrand, N.; Fliss, I.; Lacroix, C. High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int. Dairy J. 2001, 11, 953–960. [Google Scholar] [CrossRef]
- Meghrous, J.; Lacroix, C.; Bouksaïm, M.; LaPointe, G.; Simard, R. Note: Genetic and biochemical characterization of nisin Z produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. J. Appl. Microbiol. 1997, 83, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Lebrun, L.; Da Silva, E.; Pourcelly, G.; Métayer, M. Elaboration and characterisation of ion-exchange films used in the fabrication of bipolar membranes. J. Membr. Sci. 2003, 227, 95–111. [Google Scholar] [CrossRef]
- Lteif, R.; Dammak, L.; Larchet, C.; Auclair, B. Conductivité électrique membranaire: Étude de l’effet de la concentration, de la nature de l’électrolyte et de la structure membranaire. Eur. Polym. J. 1999, 9, 1187–1195. [Google Scholar] [CrossRef]
- Ruiz, B.; Sistat, P.; Huguet, P.; Pourcelly, G.; Araya-Farias, M.; Bazinet, L. Application of relaxation periods during electrodialysis of a casein solution: Impact on anion-exchange membrane fouling. J. Membr. Sci. 2007, 287, 41–50. [Google Scholar] [CrossRef]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef]
- Doran, P.M. Unit Operations. In Bioprocess Engineering Principles; Elsevier: Amsterdam, The Netherlands, 2013; pp. 445–595. [Google Scholar] [CrossRef]
- Novák, P.; Havlíček, V. Protein Extraction and Precipitation. In Proteomic Profiling and Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 51–62. [Google Scholar] [CrossRef]
- Poole, C.F. Milestones in the Development of Liquid-Phase Extraction Techniques. In Liquid–Liquid Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–44. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey-ing up the options—Yesterday, today and tomorrow. Int. Dairy J. 2015, 48, 2–14. [Google Scholar] [CrossRef]
- Tanaka, Y. Water dissociation in ion-exchange membrane electrodialysis. J. Membr. Sci. 2002, 203, 227–244. [Google Scholar] [CrossRef]
- Amara, M.; Kerdjoudj, H. Modified cation exchange resin applied to demineralisation of a liquid industrial waste. Comparison to a classical treatment and electrodialysis. Hydrometallurgy 2002, 65, 59–68. [Google Scholar] [CrossRef]
- Khetsomphou, E.; Deboli, F.; Donten, M.L.; Bazinet, L. Impact of Hierarchical Cation-Exchange Membranes’ Chemistry and Crosslinking Level on Electrodialysis Demineralization Performances of a Complex Food Solution. Membranes 2023, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Kress, N. Chapter 2-Desalination Technologies. In Marine Impacts of Seawater Desalination; Kress, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 11–34. [Google Scholar] [CrossRef]
- Nielsen, E.N.; Merkel, A.; Yazdi, S.R.; Ahrné, L. The effect of acid whey composition on the removal of calcium and lactate during electrodialysis. Int. Dairy J. 2021, 117, 104985. [Google Scholar] [CrossRef]
- Xiao, D.; Davidson, P.M.; D’souza, D.H.; Lin, J.; Zhong, Q. Nisin extraction capacity of aqueous ethanol and methanol from a 2.5% preparation. J. Food Eng. 2010, 100, 194–200. [Google Scholar] [CrossRef]
- Taylor, T.M.; Davidson, P.M.; Zhong, Q. Extraction of Nisin from a 2.5% Commercial Nisin Product Using Methanol and Ethanol Solutions. J. Food Prot. 2007, 70, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.W.F.; Ariff, A.B.; Stuckey, D.C. Downstream protein separation by surfactant precipitation: A review. Crit. Rev. Biotechnol. 2018, 38, 31–46. [Google Scholar] [CrossRef]
- Bazinet, L.; Geoffroy, T.R. Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies. Membranes 2020, 10, 221. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.Q.; Wang, Q.; Xu, T.; Kentish, S.E. Transforming salty whey into cleaning chemicals using electrodialysis with bipolar membranes. Desalination 2020, 492, 114598. [Google Scholar] [CrossRef]
Salt Saturation | Volume (mL) | Mass of Protein Recovered (mg) * | Total Activity (AU) | Antimicrobial Activity Yield (%) | Specific Activity (AU/mg of Protein) | Fold Purification |
---|---|---|---|---|---|---|
CFS | 200 | 725.1 ± 120.1 a | 51200 a | 100 a | 72.0 ± 12.7 c | 1 a |
20% | 30 | n/d c | 2240 a | 4.4 a | n/d | n/d a |
40% | 30 | 5.9 ± 1.2 c | 30720 a | 60 a | 5310.4 ± 1007.1 a | 73.8a |
60% | 30 | 10.3 ± 1.7 b | 25600 a | 50 a | 2481.6 ± 827.2 b | 34.5 a |
Membrane | Thickness (mm) | Conductivity (mS/cm) | ||
---|---|---|---|---|
Before | After | Before | After | |
CEM 1 | 0.138 ± 0.008 a,*,A,** | 0.138 ± 0.006 a,A | 8.47 ± 0.29 a,A | 7.73 ± 0.47 a,A |
CEM 2 | 0.138 ± 0.006 a,A | 0.143 ± 0.003 a,A | 8.40 ± 0.30 a,A | 7.93 ± 0.21 a,A |
CEM 3 | 0.143 ± 0.004 a,A | 0.140 ± 0.006 a,A | 8.63 ± 0.75 a,A | 8.03 ± 0.21 a,A |
AEM 1 | 0.145 ± 0.009 a,A | 0.138 ± 0.006 a,A | 5.90 ± 0.62 a,B | 5.27 ± 0.35 a,B |
AEM 2 | 0.144 ± 0.010 a,A | 0.140 ± 0.006 a,A | 5.43 ± 0.35 a,B | 5.23 ± 0.21 a,B |
Samples | Volume (mL) | Protein Content (mg) | Total Activity (AU) | Specific Activity (AU/mg of Protein) | Activity Yield (%) | Fold Purification |
---|---|---|---|---|---|---|
CFS (initial) | 2000 | 6760.0 ± 383.0 | 512,000 | 75.9 ± 4.4 | 100 | 1.0 |
After salting out | 350 | n/d | 358,400 | n/d | 70 | n/d |
After ED | 350 | 219.7 ± 29.7 | 358,400 | 1652.7 ± 236.8 | 70 | 21.8 |
Technique | Source of Nisin | Fold Purification | Nisin Activity Yields (%) | Reference |
---|---|---|---|---|
Electrodialysis with salting out | Crude extract | 21.8 | 70 | Present study |
Electrodialysis | 2.5% nisin solution | 1.9 | / | [33] |
Ammonium sulfate | Crude extract | 3.8 | 94 | [25] |
Crude extract | 2.5 | 62 | [24] | |
Crude extract | 5.1 | 98 | [31] | |
Cation exchange chromatography | Crude extract | 31 | 20 | [20] |
Expanded-bed IEC | Crude extract | 31 | 90 | [9] |
Immunoaffinity chromatography | Crude extract | 10 | 72 | [23] |
Hydrophobic interaction chromatography with salting out | Crude extract | 10.9 | 50.8 | [24] |
Methanol | 2.5% nisin solution | 5.3 | 91 | [56] |
2.5% nisin solution | 6.0 | 52.4 | [57] | |
Ethanol | 2.5% nisin solution | 5.5 | 85 | [56] |
2.5% nisin solution | 1.9 | / | [57] | |
Chloroform | Crude extract | 37.4 | 24 | [20,26] |
Ultrafiltration | Crude extract | 4.01 | 100 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rulence, A.; Perreault, V.; Thibodeau, J.; Firdaous, L.; Fliss, I.; Bazinet, L. Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework. Membranes 2024, 14, 2. https://doi.org/10.3390/membranes14010002
Rulence A, Perreault V, Thibodeau J, Firdaous L, Fliss I, Bazinet L. Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework. Membranes. 2024; 14(1):2. https://doi.org/10.3390/membranes14010002
Chicago/Turabian StyleRulence, Alexandre, Véronique Perreault, Jacinthe Thibodeau, Loubna Firdaous, Ismail Fliss, and Laurent Bazinet. 2024. "Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework" Membranes 14, no. 1: 2. https://doi.org/10.3390/membranes14010002
APA StyleRulence, A., Perreault, V., Thibodeau, J., Firdaous, L., Fliss, I., & Bazinet, L. (2024). Nisin Purification from a Cell-Free Supernatant by Electrodialysis in a Circular Economy Framework. Membranes, 14(1), 2. https://doi.org/10.3390/membranes14010002