Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFD Modelling
2.1.1. Fluid Modelling
2.1.2. Membrane Modelling
2.2. Perfectly Mixed Reactor Model
3. Results and Discussion
3.1. Validation
3.2. Simulation Study
3.2.1. Meshes and Boundary Conditions
- (a)
- Perpendicular impinged rotational symmetric reactor with an active membrane diameter of cm;
- (b)
- A 2D reactor model in co-current flow configuration with an active membrane length of cm;
- (c)
- A 2D reactor model in a counter-current flow configuration with an active membrane length of cm;
- (d)
- A 2D reactor model in a co-current flow configuration with an active membrane length of cm;
- (e)
- A 2D reactor model in a counter-current flow configuration with an active membrane length of cm.
3.2.2. Water Splitting Using Hydrogen as Sweep Gas
3.2.3. Water Splitting Using Methane as Sweep Gas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
UDF | Userdefined function |
References
- Jiang, H.; Wang, H.; Werth, S.; Schiestel, T.; Caro, J. Simultaneous Production of Hydrogen and Synthesis Gas by Combining Water Splitting with Partial Oxidation of Methane in a Hollow-Fiber Membrane Reactor. Angew. Chem. 2008, 120, 9481–9484. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U. Hydrogen Production from Fossil and Renewable Sources Using an Oxygen Transport Membrane. Int. J. Hydrogen Energy 2010, 35, 4103–4110. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, H.; Luo, H.; Baumann, S.; Meulenberg, W.A.; Voss, H.; Caro, J. Simultaneous Overcome of the Equilibrium Limitations in BSCF Oxygen-Permeable Membrane Reactors: Water Splitting and Methane Coupling. Catal. Today 2012, 193, 2–7. [Google Scholar] [CrossRef]
- Wu, X.Y.; Chang, L.; Uddi, M.; Kirchen, P.; Ghoniem, A.F. Toward Enhanced Hydrogen Generation from Water Using Oxygen Permeating LCF Membranes. Phys. Chem. Chem. Phys. 2015, 17, 10093–10107. [Google Scholar] [CrossRef]
- Cai, L.; Hu, S.; Cao, Z.; Li, H.; Zhu, X.; Yang, W. Dual-Phase Membrane Reactor for Hydrogen Separation with High Tolerance to CO2 and H2S Impurities. AIChE J. 2018, 65, 16491. [Google Scholar] [CrossRef]
- Zhang, S.; Li, T.; Wang, B.; Zhou, Z.; Meng, X.; Yang, N.; Zhu, X.; Liu, S. Coupling Water Splitting and Partial Oxidation of Methane (POM) in Ag Modified La0.8Ca0.2Fe0.94O3-δ Hollow Fiber Membrane Reactors for Co-Production of H2 and Syngas. J. Membr. Sci. 2022, 659, 120772. [Google Scholar] [CrossRef]
- Ghanem, A.S.; Liang, F.; Liu, M.; Jiang, H.; Toghan, A. Hydrogen Production by Water Splitting Coupled with the Oxidation of Coke Oven Gas in a Catalytic Oxygen Transport Membrane Reactor. Chem. Eng. J. 2023, 474, 145263. [Google Scholar] [CrossRef]
- Son, S.J.; Lee, H.J.; Kim, S.K.; Lee, J.H.; Park, H.J.; Joo, J.H. Exceptional Performance of Water Splitting Coupled with Methane Partial Oxidation by Oxygen-Permeable Membrane Reactor. Chem. Eng. J. 2023, 466, 143031. [Google Scholar] [CrossRef]
- York, A.P.; Xiao, T.; Green, M.L. Brief Overview of the Partial Oxidation of Methane to Synthesis Gas. Top. Catal. 2003, 22, 345–358. [Google Scholar] [CrossRef]
- Bittner, K.; Margaritis, N.; Schulze-Küppers, F.; Wolters, J.; Natour, G. A Mathematical Model for Initial Design Iterations and Feasibility Studies of Oxygen Membrane Reactors by Minimizing Gibbs Free Energy. J. Membr. Sci. 2023, 685, 121955. [Google Scholar] [CrossRef]
- Rigopoulos, S.; Jones, A. A Hybrid CFD—Reaction Engineering Framework for Multiphase Reactor Modelling: Basic Concept and Application to Bubble Column Reactors. Chem. Eng. Sci. 2003, 58, 3077–3089. [Google Scholar] [CrossRef]
- Rudniak, L.; Machniewski, P.M.; Milewska, A.; Molga, E. CFD Modelling of Stirred Tank Chemical Reactors: Homogeneous and Heterogeneous Reaction Systems. Chem. Eng. Sci. 2004, 59, 5233–5239. [Google Scholar] [CrossRef]
- Zimmermann, S.; Taghipour, F. CFD Modeling of the Hydrodynamics and Reaction Kinetics of FCC Fluidized-Bed Reactors. Ind. Eng. Chem. Res. 2005, 44, 9818–9827. [Google Scholar] [CrossRef]
- Kashid, M.N.; Agar, D.W.; Turek, S. CFD Modelling of Mass Transfer with and without Chemical Reaction in the Liquid–Liquid Slug Flow Microreactor. Chem. Eng. Sci. 2007, 62, 5102–5109. [Google Scholar] [CrossRef]
- Kruggel-Emden, H.; Stepanek, F.; Munjiza, A. A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion. Oil Gas Sci. Technol.—Rev. d’IFP Energies Nouv. 2011, 66, 313–331. [Google Scholar] [CrossRef]
- Lašič Jurković, D.; Liu, J.L.; Pohar, A.; Likozar, B. Methane Dry Reforming over Ni/Al2O3 Catalyst in Spark Plasma Reactor: Linking Computational Fluid Dynamics (CFD) with Reaction Kinetic Modelling. Catal. Today 2021, 362, 11–21. [Google Scholar] [CrossRef]
- Nemitallah, M.A.; Habib, M.A.; Salaudeen, S.A.; Mansir, I. Hydrogen Production, Oxygen Separation and Syngas Oxy-Combustion inside a Water Splitting Membrane Reactor. Renew. Energy 2017, 113, 221–234. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, C.; Ye, H. CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor. Energies 2021, 14, 7175. [Google Scholar] [CrossRef]
- ANSYS. Ansys Fluent Theory Guide; 2023R2; ANSYS: Canonsburg, PA, USA, 2023. [Google Scholar]
- Goodwin, D.G.; Moffat, H.K.; Schiegl, I.; Speth, R.L.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Kee, R.J.; Coltrin, M.E.; Glarborg, P. Chemically Reacting Flow: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- McGee, H.A., Jr. Molecular Engineering; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Chen, G.; Feldhoff, A.; Weidenkaff, A.; Li, C.; Liu, S.; Zhu, X.; Sunarso, J.; Huang, K.; Wu, X.Y.; Ghoniem, A.F.; et al. Roadmap for Sustainable Mixed Ionic-Electronic Conducting Membranes. Adv. Funct. Mater. 2022, 32, 2105702. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Burggraaf, A. Chapter 10 Dense Ceramic Membranes for Oxygen Separation. In Membrane Science and Technology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 4, pp. 435–528. [Google Scholar] [CrossRef]
- Balachandran, U.; Lee, T.H.; Wang, S.; Dorris, S.E. Use of Mixed Conducting Membranes to Produce Hydrogen by Water Dissociation. Int. J. Hydrogen Energy 2004, 29, 291–296. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, T.H.; Dorris, S.E.; Balachandran, U.B. La0.7Sr0.3Cu0.2Fe0.8O3-x as Oxygen Transport Membrane for Producing Hydrogen via Water Splitting. ECS Trans. 2008, 13, 393–403. [Google Scholar] [CrossRef]
- Liu, T.; Snyder, C.; Veser, G. Catalytic Partial Oxidation of Methane: Is a Distinction between Direct and Indirect Pathways Meaningful? Ind. Eng. Chem. Res. 2007, 46, 9045–9052. [Google Scholar] [CrossRef]
- Elbadawi, A.H.; Ge, L.; Li, Z.; Liu, S.; Wang, S.; Zhu, Z. Catalytic Partial Oxidation of Methane to Syngas: Review of Perovskite Catalysts and Membrane Reactors. Catal. Rev. 2021, 63, 1–67. [Google Scholar] [CrossRef]
- Li, X.; Grace, J.; Watkinson, P.; Lim, J.; Ergüdenler, A. Equilibrium Modeling of Gasification: A Free Energy Minimization Approach and Its Application to a Circulating Fluidized Bed Coal Gasifier. Fuel 2001, 80, 195–207. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Comparison of Several Glycerol Reforming Methods for Hydrogen and Syngas Production Using Gibbs Energy Minimization. Int. J. Hydrogen Energy 2014, 39, 17969–17984. [Google Scholar] [CrossRef]
- Gambarotta, A.; Morini, M.; Zubani, A. A Non-Stoichiometric Equilibrium Model for the Simulation of the Biomass Gasification Process. Appl. Energy 2018, 227, 119–127. [Google Scholar] [CrossRef]
- Mancini, N.D.; Mitsos, A. Ion Transport Membrane Reactors for Oxy-Combustion—Part I: Intermediate-Fidelity Modeling. Energy 2011, 36, 4701–4720. [Google Scholar] [CrossRef]
- Mancini, N.D.; Mitsos, A. Ion Transport Membrane Reactors for Oxy-Combustion—Part II: Analysis and Comparison of Alternatives. Energy 2011, 36, 4721–4739. [Google Scholar] [CrossRef]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C.J.; et al. Gri-Mech. Available online: http://combustion.berkeley.edu/gri-mech/ (accessed on 16 October 2024).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Bittner, K.; Margaritis, N.; Schulze-Küppers, F.; Wolters, J.; Natour, G. Ideal Equilibrium Oxygen Membrane Reactor. 2023. Available online: https://github.com/KabitGit/Ideal-Equilibrium-Oxygen-Membrane-Reactor (accessed on 16 October 2024).
- Kiebach, R.; Pirou, S.; Aguilera, L.M.; Haugen, A.B.; Kaiser, A.; Hendriksen, P.V.; Balaguer, M.; García-Fayos, J.; Serra, J.M.; Schulze-Küppers, F.; et al. A Review on Dual-Phase Oxygen Transport Membranes: From Fundamentals to Commercial Deployment. J. Mater. Chem. A 2022, 10, 2152–2195. [Google Scholar] [CrossRef]
- Kozhevnikov, V.L.; Leonidov, I.A.; Patrakeev, M.V.; Markov, A.A.; Blinovskov, Y.N. Evaluation of La0.5Sr0.5FeO3-δ Membrane Reactors for Partial Oxidation of Methane. J. Solid State Electrochem. 2009, 13, 391–395. [Google Scholar] [CrossRef]
- Shin, Y.C.; Hashimoto, S.i.; Yashiro, K.; Amezawa, K.; Kawada, T. Thermal Properties of Perovskite-Type Oxides La0.6Sr0.4Co1-XFexO3-δ (0 ≤ x ≤ 1.0). ECS Trans. 2016, 72, 105–110. [Google Scholar] [CrossRef]
- Srivastava, D.; Norman, C.; Azough, F.; Schäfer, M.C.; Guilmeau, E.; Freer, R. Improving the Thermoelectric Properties of SrTiO3-based Ceramics with Metallic Inclusions. J. Alloys Compd. 2018, 731, 723–730. [Google Scholar] [CrossRef]
- Tihtih, M.; Ibrahim, J.E.F.; Kurovics, E.; Gömze, L.A. Study of the Structure, Microstructure and Temperature Dependent Thermal Conductivity Properties of SrTiO3: Via Y3+ Substitution. J. Nano Res. 2021, 69, 33–42. [Google Scholar] [CrossRef]
- Bulfin, B. Thermodynamic Limits of Countercurrent Reactor Systems, with Examples in Membrane Reactors and the Ceria Redox Cycle. Phys. Chem. Chem. Phys. 2019, 21, 2186–2195. [Google Scholar] [CrossRef]
Perpendicular Impinged Membrane (a) | Parallel Flow, Lmem = 3 cm (b,c) | Parallel Flow, Lmem = 9 cm (d,e) | |
---|---|---|---|
Co-current | |||
Counter-current |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bittner, K.; Margaritis, N.; Schulze-Küppers, F.; Wolters, J.; Natour, G. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Membranes 2024, 14, 219. https://doi.org/10.3390/membranes14100219
Bittner K, Margaritis N, Schulze-Küppers F, Wolters J, Natour G. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Membranes. 2024; 14(10):219. https://doi.org/10.3390/membranes14100219
Chicago/Turabian StyleBittner, Kai, Nikolaos Margaritis, Falk Schulze-Küppers, Jörg Wolters, and Ghaleb Natour. 2024. "Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors" Membranes 14, no. 10: 219. https://doi.org/10.3390/membranes14100219
APA StyleBittner, K., Margaritis, N., Schulze-Küppers, F., Wolters, J., & Natour, G. (2024). Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Membranes, 14(10), 219. https://doi.org/10.3390/membranes14100219