Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism
Abstract
:1. Introduction
- Membrane oxidation by halogens;
- Organic fouling by low molecular weight organic compounds (LMWOCs) (sorption of LMWOCs to RO/NF membranes).
2. Fouling: Definition and Problems in Membrane Processes
2.1. Definition of General Membrane Fouling
- A process resulting in the loss of performance of a membrane due to the deposition of suspended or dissolved substances on its external surfaces, at its pore openings, or within its pores [1].
2.2. Mechanism of Membrane Fouling
- Starting with a rapid initial drop compared with that of pure water filtration;
- A long-term gradual flux decrease;
- Reaching to a steady-state flux.
2.3. Typical Membrane Foulants
3. RO/NF Fouling: Definition and Foulant Classification
3.1. Definition of RO/NF Membrane Fouling
3.2. RO/NF Foulants
- Colloidal fouling [95]: Deposition of colloidal particles on the membrane. The most common types of this colloid are alumino- or iron-silicates (clay or silt). Dissolved silica can precipitate at a concentration below saturation in the presence of metals, including calcium, aluminum, or iron, forming colloidal materials. Several methods or indices have been proposed to predict the colloidal fouling potential of feed waters, including turbidity, silt density index (SDI), and Modified Fouling Index (MFI). The SDI is the most commonly used fouling index [96].
- Organic fouling: Deposition and sorption of macromolecular organic compounds and specific LMWOCs on and/or inside the membrane.
- Inorganic scaling [21,22,23]: Precipitation or crystallization of sparingly dissolved inorganic compounds such as CaCO3 and CaSO4. Calcium phosphate scaling is a common problem in advanced municipal wastewater treatment. Metals like iron and manganese can be oxidized from soluble to insoluble forms within an RO membrane and precipitate on the membrane [69].
- Biofouling [21,25,26,27,28,29,30,31,32]: Adhesion and accumulation of microorganisms and development of biofilm on the membrane and/or feed spacer. A biofilm is described as bacterial aggregates attached to a surface; the biofilm structure includes a matrix of bacterially produced EPS. The EPS comprises polysaccharides, proteins, and nucleic acids, and has been proven to play a major role in biofouling formation [69]. A typical symptom of biofouling is an increase in the differential pressure, especially at the first stage [97,98].
4. Organic Fouling with LMWOCs
4.1. Potential Organic Foulants in Various Feedwater Sources and Their Classifications
4.2. LMWOCs as Foulants in TFC RO
Foulant | Comments | References |
---|---|---|
Quaternary germicides | [36,130] | |
Cationic detergents | Hyamine 3500 (A blend of alkyl dimethyl benzyl ammonium chlorides) | [38,130] |
Phenolic compounds | Phenolic compounds | [36,130] |
Alkyl phenols | [131] | |
Nitrophenols and chlorophenols, pH-dependent | [132] | |
Nonionic detergents | Triton X-100 (Tends to plasticize the FT-30 membrane) | [36,38] |
Polyethylene glycol mono-4-nonylphenyl Ether (n = 15) | [129] | |
Household soap | Shower/Laundry Water Mixture (Ivory® soap) | [133,134] |
Plasticizer | Tributyl phosphate (TBP) | [135] |
Formaldehyde | Formaldehyde reacts with residual monomers | [38,130] |
Glutaraldehyde shows a similar phenomenon | [87] | |
Wastewater effluent | Secondary effluent in WF-21 | [38,136] |
UF pretreated secondary effluent | [137] | |
Pulp/paper bleach effluents | [138] |
- Phenol: Flux drop = 13.2% (pH: 5.8, feed concentration: 95.6 mg/L)
- Phenol: Flux drop = 7.1% (pH: 7.35, feed concentration: 51.0 mg/L)
- TCP: Flux drop = 48.6% (pH: 4.0, concentration: 101.9 mg/L, recovery: 31.7%)
- TCP: Flux drop = 50.4.% (pH: 4.8, concentration: 94.9 mg/L, recovery: 72.6%)
- TCP: Flux drop = 8.4% (pH: 8.6, concentration: 95.2 mg/L, recovery: 71.0%)
- Note: pKa of phenol and TCP: 9.88 and 5.99, respectively
5. Symptoms of Fouling by LMWOCs
5.1. Case Studies of LMWOC Fouling and Troubleshooting Efforts
5.1.1. Peroxide in a Phenol Production Plant [140]
5.1.2. Alkylated Diphenylamine Compounds [142]
5.1.3. Leachables from RO Elements: Phthalate Esters [143,144]
5.1.4. DnBP from a Reinforced Polyester Pipe [145]
5.1.5. Nonionic Surfactant (Triton X-100) as a CIP Solution [146]
5.1.6. Bisphenol A (BPA) Leached from an NF Permeate Spacer [148]
5.1.7. Unknown Organic Compounds Present in the Demineralized Water [149]
5.1.8. Aliphatic Halogenated Hydrocarbons in Feed Water [150]
5.2. Typical Symptoms of LMWOC Fouling
- Sharp flow decline within a short time of contact;
- Salt rejection sometimes increases;
- No appreciable differential pressure increase;
- Feed organic concentration is very low, a few ppm or less;
- No visible foulant can be seen when fouled elements are autopsied;
- Flow loss is sometimes irreversible or difficult to restore through regular cleaning;
- Methanol (50%), high concentration of nitric acid, or oxidative cleaning are needed to restore performance;
- AC pretreatment is effective in alleviating problems.
5.2.1. Initial Flow Behavior
- Alginate with under high initial flux [154].
5.2.2. Other Symptoms
6. Other Relevant LMWOC Foulants
6.1. Surfactants
- Fouling mechanisms: effects of charge, membrane types (RO/NF), etc.;
- Model compounds associated with low fouling membrane development;
- Compatibility in membrane cleaning;
- Treatment of surfactant-containing industrial process waters and wastewaters;
- Prevention of fouling by surfactants.
Membrane Type | Surfactant Characteristics | Filtration Conditions |
---|---|---|
RO/NF Membranes
| Nonionic surfactants Alcohol ethoxylates (AEO) Alkylphenol ethoxylates (APEO) Anionic surfactants Linear alkyl benzene sulfonate (LAS) Lauryl ether sulfate (LES) Cationic surfactants Dodecyltrimethylammonium bromide (DTAB) Cetyltrimethylammonium bromide (CTAB) Zwitterionic surfactants Cocamidopropyl betaine (CAPB) | Concentration Below CMC Above CMC pH Temperature Flux (LMH) TDS |
Hydrophobic portion
| ||
Charge/Charge density Surface free energy (Contact angle) Surface roughness MWCO | Linear or branched type Molecular weight Critical micelle concentration (CMC) Hydrophilic-lipophilic balance (HLB) Effect of mixture constituents |
6.1.1. Effects of Surfactant Types, Membrane Materials, and Their Charge
6.1.2. Effects of Nonionic Surfactant Chemical Structure
6.1.3. Model Compounds for Low-Fouling Membranes Assessment
6.1.4. Surfactant Fouling in Various Industrial Wastewater Reclamation
6.2. Phonolics
- Phenol, di, and tri-hydroxybenzene: Hydroquinone, Resorcinol, Catechol, Phloroglucinol, Pyrogallol;
- Mono-substituted phenols: 2AP, 2FP, 2CP, 2NP, etc.;
- Di- and Tri- substituted phenols: DCP, TCP, DNP;
- Others: BPA.
| [178] |
| [275,276] |
| [277] |
| [281] |
6.3. Tannins and Tannic Acid
- Wastewater treatment in the tanning (vegetable tannins) industry;
- Investigation as membrane performance enhancers and rejuvenation agents;
- Use as a model for NOM or DBP precursors.
6.4. Dyestuffs
Dyestuffs: Acid Dye | Basic Dye | Others | NF | RO | Reference |
---|---|---|---|---|---|
Reactive Blue 4, Reactive Red 2 | PA | [253] | |||
Reactive Red (Benefix) | NTR-729HF LES90 | ES20 | [303] | ||
Reactive Orange 16, Reactive Blue 2 | UTC-60, NF70, NTR- 7450 | [294] | |||
Acid Red 4, Acid Orange 10, Direct Yellow 8, Direct Red 80, Reactive Orange 16 | Basic Blue 3 | Disperse Blue 56 | 5DK | [300] | |
Reactive Black 5 | DS5 DK | [301] | |||
Crystal Violet | TFC NF | [304] | |||
Cibacron red P-B, Cibacron red LS-B | MPF-34 MPF-36 | [305] | |||
Acid Red 4, Acid Orange 10, Acid Red 27 | DK | [295] | |||
Acid Orange 7 | NF45 | [296] | |||
Crystal Violet | NF (400 MWCO) | [306] | |||
Marine E-EL | ES20, LF10 | [254] | |||
Tartrazine (FD&C Yellow 5) | FM NP1010 | [297] | |||
Marine E-EL | ES20 | [255] | |||
Reactive Black 5 | PPA NF, CA | [307] | |||
Methylene Blue Rhodamine B | PROC10, CPA2, ESPA2 | [308] | |||
Everzol Black, Everzol Blue, Everzol Red | NF200, NF270 | [298] | |||
EV, Amido Black 10V, Eozine Yellow | Azure A | NF270 | [309] | ||
Acid Red 87, Direct Blue 53, Acid Black 1, | Azure A, Basic Blue 9, Basic Green 4 | NF270 | [299] | ||
Reactive Black 5 | TFN, XLE | [310] |
6.5. Aromatic Compounds
6.6. Oil and Grease
- Seawater contamination and oil spillage (hydrocarbon, crude oil, etc.);
- Petrochemical and oil refinery wastewater and produced water treatment;
- Food and beverage industry: vegetable oil production and wastewater treatment;
- Leakage of hydraulic fluid and pump sealing oil.
6.6.1. Hydrocarbons
6.6.2. Fatty Acids
6.7. Leachables from RO/NF Elements and Plant Components
6.7.1. Plasticizers
6.7.2. Leachables from Epoxy
6.7.3. Leachables from Spiral RO/NF Elements
6.7.4. Leachables from Ion Exchange Resins
6.8. Industrial Wastewater
- Tannery industry: [411].
7. LMWOC Contributions in NOM Fouling
8. EfOM Fouling in RO/NF Processes
- Many pilot tests carried out during this period gained a greater understanding of TFC PA membranes;
- Reliability improved as actual plants were put into operation without any significant issues;
- Higher-quality water has been required for reuse applications (indirect potable reuse, boiler make-up water, etc.);
- MF/UF has been utilized as pretreatment for secondary effluent.
8.1. LMWOCs in EfOM
8.2. Initial Rapid Flux Decline and Salt Rejection Improvement
8.3. Effets of AC to Eliminate EfOM Fouling
8.4. Effect of Membranes on Initial Fouling
8.5. Contributions of LMWOCs to RO/NF Fouling by EfOM
9. LMWOC Fouling for Other Membrane Processes
Membrane Process | Material | Foulants (LMWOCs) | References |
---|---|---|---|
Gas transport Gas separation | PMSP | DOP (rubber gaskets in permeability testing) | [505,510,511] |
PMSP | Vacuum pump oil vapor | [504,512,513,514,515] | |
PES | Casting solvent such as NMP | [506] | |
Low Pressure Membrane (LPM) MF UF | NA | Antifoaming agents such as PPGs | [41,61,516] |
Noncellulosic | Nonionic detergents | [517] | |
PSF | Nonionic surfactants (Triton, Dobanol) | [518] | |
PSF | LMW anion-exchange resin leachables | [519] | |
PSF | Nonionic surfactant as a model antifoam | [520] | |
Acrylic polymer | Tannic acid | [521] | |
PES | Tannic acid | [522] | |
PSF, PES, Polyaramide | Octanoic acid | [523,524,525,526,527,528] | |
PES | Nonionic surfactant (Triton X100) | [529] | |
PES, RC, PVDF | Medium to LMW component of NOM | [530] | |
PES | Abietic acid | [531] | |
PES | Cationic surfactant (CTAB) | [532] | |
Pervaporation (PV) | PMSP | Organics in ABE fermentation broth Lipids, stearate, palmitate, diols, etc. | [533,534,535,536] |
PMSP | Butyric acid and long-chain fatty acids | [537] | |
Zeolites, Microporous silica | Amides (DMF, DMAc), glycols and phenol | [538] | |
LTA zeolite | Long-chain hydrocarbon | [539] | |
ZSM-5 zeolite particles dispersed in silicone rubber | Organic acids, esters, alcohols, and esterification reaction products | [540] | |
ZSM-5 zeolite | Contaminants in bio-oil | [541] | |
T-type zeolite | Contaminants in bio-oil | [542] | |
Membrane Distillation (MD) | Polypropylene | Methylene blue | [543] |
Polypropylene | Dye (Methylene blue, indigo, acid red 4, etc.) | [544] | |
Polytetrafluoroethylene | HA (LMW organics) | [545,546] | |
Electrodialysis (ED) | Cation exchange membrane | Strong organic bases (MW > ca. 350) | [547] |
Anion exchange membrane | Strong organic acids (MW > ca. 300) | [547,548] | |
Anion exchange membrane | Dodecylbenzene sulfonate | [549,550,551,552] | |
Anion exchange membrane | Fatty acid and an anionic surfactant | [553] | |
Anion exchange membrane | Aromatic amino acid (phenylalanine) | [554] | |
Forward Osmosis (FO) | Not disclosed | Octanoic acid | [555] |
Cellulose triacetate (CTA) | Octanoic acid | [556] | |
TFC PA | LMW organics in municipal wastewater | [557] |
10. Mechanism of Fouling with LMWOCs
10.1. Evidence of Internal Fouling
10.2. Free Volume Reduction by LMWOC Sorption into RO/NF Membranes
10.3. Factors of LMWOC Governing Fouling
- Increasing the number and hydrophobicity of the hydrophobic groups of organic solutes favors interactions between membrane materials and organic solutes;
- Introducing electron-releasing groups in the aromatic compounds favors interactions;
- Introducing electron-withdrawing groups in the aromatic compounds does not favor interaction;
- Aromatic compounds have stronger geometric matching interactions with membrane materials containing aromatic rings than the corresponding aliphatic compounds.
11. Conclusions
- Sharp flow decline within a short time of contact;
- Salt rejection sometimes increased;
- No appreciable differential pressure increase;
- Organic concentration is very low, sometimes a few ppm or less;
- No visible foulant can be seen when fouled elements are autopsied;
- Flow loss is sometimes irreversible or difficult to restore through regular cleaning;
- AC pretreatment is effective in alleviating problems.
- Electrostatic and hydrophobic interactions between membranes and organics play essential roles in fouling phenomena;
- Surfactants, especially nonionic surfactants, phthalates, and leachable from epoxy resins, are the foulants that require the most attention;
- In the case of nonionic surfactants, hydrophilic longer-chain ethoxylates contribute to fouling. Thus, prominent fouling is seen in PEG as well;
- Low MW aliphatic and aromatic hydrocarbons, e.g., n-hexan, benzene, etc., do not show noticeable flow decline at low concentrations. Thus, O&G may not be a good feedwater quality indicator;
- Leachables from plant components might be an issue for newly constructed plants;
- Similar fouling can be seen in other membrane processes, e.g., UF, gas separation membranes, etc.;
- NOM and EfOM are mixtures of various organics. Low MW portions contribute more initial fouling.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2B3T | Two-bed, three-tower pure water system |
2CP | 2-Chlorophenol |
2NP | 2-Nitrophenol |
4CP | 4-Chlorophenol |
4NP | 4-Nitrophenol |
AC | Activated carbon |
AE | Alkyl ethoxylate |
AEO | Alcohol ethoxylate |
AOM | Algal organic matter |
AOP | Advanced oxidation process |
APA | Aromatic polyamide |
APEO | Alkylphenol ethoxylate |
ATD | Anti-telescoping device |
ATP | Adenosine triphosphate |
ATR | Attenuated total reflection |
BAC | Benzalkonium chloride |
BPA | Bisphenol A |
BSA | Bovine serum albumin |
BTEX | Benzene, Toluene, Ethylbenzene, and Xylenes |
BWRO | Brackish water reverse osmosis |
CA | Cellulose acetate |
CAPB | Cocamidopropyl betaine |
CEB | Chemical-enhanced backwash |
CF | Cartridge filter |
CIP | Cleaning in place |
CMC | Critical micelle concentration |
COD | Chemical oxygen demand |
CTA | Cellulose triacetate |
CTAB | Cetyltrimethylammonium bromide |
CTBD | Cooling tower blowdown |
DBP | Disinfection by-product |
DCHP | Dicyclohexyl phthalate |
DCP | 2,4-Dichlorophenol |
DEHP | Di-2-ethylhexyl phthalate |
DEP | Diethyl phthalate |
DMAc | N,N-Dimethylacetamide |
DMF | N,N-Dimethylformamide |
DMP | Dimethyl phthalate |
DMSO | Dimethyl sulfoxide |
DnBP | Dibutyl phthalate |
DNP | 2, 4-Dinitrophenol |
DO | Dissolved oxygen |
DOC | Dissolved organic carbon |
DOM | Dissolved organic matter |
DOP | Dioctyl phthalate |
DP | Differential pressure |
DTAB | Dodecyltrimethylammonium bromide |
ED | Electrodialysis |
EDTA | Ethylenediaminetetraacetic acid |
EfOM | Effluent organic matter |
EG | Ethylene glycol |
EPS | Extracellular polymeric substances |
ESCA | Electron spectroscopy for chemical analysis |
FPD | Flat panel display |
FRP | Fiber-reinforced plastic |
FT-IR | Fourier transform infrared spectroscopy |
GAC | Granular activated carbon |
GC | Gas chromatography |
gfd | Gallons/ft2/day |
GWRS | Groundwater Replenishment System |
HA | Humic acid |
HEM | n-Hexane Extractable Material |
HLB | Hydrophilic-Lipophilic Balance |
HPM | High-pressure membrane |
HPO | Hydrophobic |
ICP | Inductively coupled plasma |
ICR | Information Collection Rule |
IEX | Ion exchange |
IR | Infrared |
LAS | Linear alkyl benzene sulfonate |
LBL | Layer-by-layer |
LC-OCD | Liquid chromatography—organic carbon detection |
LES | Lauryl ether sulfate |
LMH | L/m2/h |
LMW | Low molecular weight |
LMWOCs | Low molecular weight organic compounds |
Log Dow | Logarithm of the pH-dependent n-octanol/water distribution coefficient |
Log P | Logarithm of the octanol-water partition coefficient |
LOI | Loss on ignition |
LP | Low pressure |
LPM | Low-pressure membrane |
MBR | Membrane bioreactor |
MF | Microfiltration |
MFI | Modified Fouling Index |
MPD | m-phenylenediamine |
MS | Membrane softening |
MTCw | Water mass transfer coefficients |
MWCO | Molecular weight cut-off |
NDMA | N-nitrosodimethylamine |
NF | Nanofiltration |
NMP | N-methyl-2-pyrrolidinone |
NOM | Natural organic matter |
NP | Nitrophenol |
OCWD | Orange County Water District |
O&G | Oil and grease |
O&M | Operation and maintenance |
PA | Polyamide |
PAC | Powdered activated carbon |
PALS | Positron annihilation lifetime spectroscopy |
PAN | Polyacrylonitrile |
PEG | Polyethylene glycol |
PEI | Polyethyleneimine |
PEO | Polyethylene oxide |
PES | Polyether sulfone |
PFAS | Perfluoroalkyl substances |
PFOS | Perfluorooctane sulfonate |
PG | Propylene glycol |
PHE | Phenol |
pKa | Acid dissociation constant |
PMSP | Poly(1-(trimethylsilyl)-1-propyne) |
POE | Polyoxyethylene octyl phenyl ether |
polyDADMAC | Polydiallyldimethylammonium chloride |
PPA | Piperazine polyamide |
PPCPs | Pharmaceuticals and personal care products |
PPO | Polyphenylene oxide |
PSF | Polysulfone |
PT-A | Polyvinyl methyl ether |
PT-B | Tannic acid |
PV | Pervaporation |
PVDF | Polyvinylidene fluoride |
RBSMT | Rapid bench-scale membrane test |
RO | Reverse osmosis |
SDBD | Sodium dodecyl benzenesulfonate |
SDGs | Sustainable development goals |
SDI | Silt density index |
SDS | Sodium dodecyl sulfate |
SEM | Scanning electron microscopy |
SMPs | Soluble microbial products |
SO | Sodium oleate |
SOC | Synthetic organic compound |
SULP | Super ultra-low pressure |
SWRO | Seawater reverse osmosis |
TBP | Tributyl phosphate |
TCP | 2,4,6-trichlorophenol |
TDS | Total dissolved solids |
TEP | Transparent exopolymer particles |
TFC | Thin-film composite |
TFN | Thin-film nanocomposite |
TGA | Thermo gravimetric analysis |
TMC | Trimesoyl chloride |
TMP | Transmembrane pressure |
TOC | Total organic carbon |
TPI | Transphilic |
UF | Ultrafiltration |
ULP | Ultra low-pressure |
UPW | Ultra-pure water |
USEPA | US Environmental Protection Agency |
XAD | Polymeric adsorbent resin |
WBMWD | West Basin Municipal Water District |
WF-21 | Water Factory 21 |
WOCS | Weathered oil-contaminated seawater |
References
- Koros, W.J.; Ma, Y.H.; Shimidzu, T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 1479–1489. [Google Scholar] [CrossRef]
- Maeda, Y. High Performance Nanofiltration Membranes and Hybrid Processes. Membrane 1998, 23, 235–244. (In Japanese) [Google Scholar] [CrossRef]
- Maeda, Y. Roles of Nanofiltration in Water Purification. Trans. Mater. Res. Soc. Jpn. 1999, 24, 181–182. [Google Scholar]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Oron, G. Marginal-water application in arid zones. GeoJournal 1987, 15, 259–266. [Google Scholar] [CrossRef]
- Glueckstern, P.; Nadav, N.; Priel, M. Desalination of marginal water: Environmental and cost impact: Part 1: The effect on long-range regional development Part 2: Case studies of desalinated water vs. local desalination of marginal brackish water. Desalination 2001, 138, 157–163. [Google Scholar] [CrossRef]
- Redondo, J. Combined Systems Tackle Marginal Resources. Desalination Water Reuse 2001, 11, 37–45. [Google Scholar]
- Paul, D.H.; Rahman, A.M. Reverse Osmosis: Membrane Fouling—The Final Frontier? Ultrapure Water 1990, 7, 25–32. [Google Scholar]
- Ibrahim, G.P.S.; Isloor, A.M.; Farnood, R. 7—Reverse osmosis pretreatment techniques, fouling, and control strategies. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Cassano, A., Rastogi, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 165–186. [Google Scholar]
- Matin, A.; Laoui, T.; Falath, W.; Farooque, M. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. Sci. Total Environ. 2021, 765, 142721. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, S. A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: Pretreatment, membrane modification, and chemical cleaning. Desalination Water Treat. 2015, 55, 870–891. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Melián-Martel, N.; Nuez, I. Short Review on Predicting Fouling in RO Desalination. Membranes 2017, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.N.; Chong, T.H.; Taheri, A.H.; Sim, S.T.V.; Lai, L.; Krantz, W.B.; Fane, A.G. A review of fouling indices and monitoring techniques for reverse osmosis. Desalination 2018, 434, 169–188. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Mulyawan, R.; Muarif, A. A Review Of Reverse Osmosis Membrane Fouling: Formation and Control. Int. J. Eng. Sci. Inf. Technol. 2021, 1, 110–115. [Google Scholar] [CrossRef]
- Shahonya, I.; Nangolo, F.; Erinosho, M.; Angula, E. Scaling and Fouling of Reverse Osmosis (RO) Membrane: Technical Review. In Advances in Material Science and Engineering; Awang, M., Emamian, S.S., Eds.; Springer: Singapore, 2021; pp. 41–47. [Google Scholar]
- Qrenawi, L.I.; Abuhabib, A.A.M. A review on sources, types, mechanisms, characteristics, impacts and control strategies of fouling in RO membrane systems. Desalination Water Treat. 2020, 208, 43–69. [Google Scholar] [CrossRef]
- Burlace, L.; Davies, P.A. Fouling and fouling mitigation in batch reverse osmosis: Review and outlook. Desalination Water Treat. 2022, 249, 1–22. [Google Scholar] [CrossRef]
- Najid, N.; Hakizimana, J.N.; Kouzbour, S.; Gourich, B.; Ruiz-García, A.; Vial, C.; Stiriba, Y.; Semiat, R. Fouling control and modeling in reverse osmosis for seawater desalination: A review. Comput. Chem. Eng. 2022, 162, 107794. [Google Scholar] [CrossRef]
- Ong, C.S.; Goh, P.; Lau, W.; Misdan, N.; Ismail, A.F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review. Desalination 2016, 393, 2–15. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, G.-R.; Das, R. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies. Desalination 2019, 468, 114065. [Google Scholar] [CrossRef]
- Matin, A.; Rahman, F.; Shafi, H.Z.; Zubair, S.M. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control: Future directions. Desalination 2019, 455, 135–157. [Google Scholar] [CrossRef]
- Alayande, A.B.; Lim, J.; Kim, J.; Hong, S.; Al-Amoudi, A.S.; Park, B. Fouling control in SWRO desalination during harmful algal blooms: A historical review and future developments. Desalination 2022, 543, 116094. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Jeong, S.; Naidu, G.; Leiknes, T.; Vigneswaran, S. 4.3 Membrane Biofouling: Biofouling Assessment and Reduction Strategies in Seawater Reverse Osmosis Desalination. In Comprehensive Membrane Science and Engineering, 2nd ed.; Drioli, E., Giorno, L., Fontananova, E., Eds.; Elsevier: Oxford, UK, 2017; pp. 48–71. [Google Scholar]
- Sánchez, O. Microbial diversity in biofilms from reverse osmosis membranes: A short review. J. Membr. Sci. 2018, 545, 240–249. [Google Scholar] [CrossRef]
- Nagaraj, V.; Skillman, L.; Li, D.; Ho, G. Review—Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. J. Environ. Manag. 2018, 223, 586–599. [Google Scholar] [CrossRef]
- Goh, P.S.; Zulhairun, A.K.; Ismail, A.F.; Hilal, N. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. Desalination 2019, 468, 114072. [Google Scholar] [CrossRef]
- Kucera, J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes 2019, 9, 111. [Google Scholar] [CrossRef]
- Rana, H.I.; Azzam, A.A.; Sofiah, H. Recent Advances in Measuring and Controlling Biofouling of Seawater Reverse Osmosis SWRO: A Review. In Osmotically Driven Membrane Processes; Muharrem, I., Olcay Kaplan, I., Eds.; IntechOpen: Rijeka, Croatia, 2021; Chapter 5. [Google Scholar]
- Li, H.; Guo, Y.; Liu, C.; Zhou, Y.; Lin, X.; Gao, F. Microbial deposition and growth on polyamide reverse osmosis membrane surfaces: Mechanisms, impacts, and potential cures. Desalination 2023, 548, 116301. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Wong, T.W. Insights into biofouling in reverse osmosis membrane: A comprehensive review on techniques for biofouling assay. J. Environ. Chem. Eng. 2023, 11, 110317. [Google Scholar] [CrossRef]
- Ning, R.Y.; Shen, P.T.L. Observations from Analysis of Reverse Osmosis Membrane Foulants. Ultrapure Water 1998, 15, 37–44. [Google Scholar]
- Darton, T.; Annunziata, U.; del Vigo Pisano, F.; Gallego, S. Membrane autopsy helps to provide solutions to operational problems. Desalination 2004, 167, 239–245. [Google Scholar] [CrossRef]
- Larson, R.E.; Cadotte, J.E.; Petersen, R.J. The FT-30 seawater reverse osmosis membrane—Element test results. Desalination 1981, 38, 473–483. [Google Scholar] [CrossRef]
- Glater, J.; McCutchan, J.W.; McCray, S.B.; Zachariah, M.R. The Effect of Halogens on the Performance and Durability of Reverse-Osmosis Membranes. In Synthetic Membranes; Turbak, A.F., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1981; Volume 153, pp. 171–190. [Google Scholar]
- Larson, R.E.; Cadotte, J.E.; Petersen, R.J. Development of the FT30 Thin-Film Composite Membrane for Brackish Water Desalting Applications. In Proceedings of the NWSIA Ninth Annual Conference and International Trade Fair, Washington, DC, USA, 31 May–4 June 1981. [Google Scholar]
- Macedonio, F.; Drioli, E. 1. Pressure-driven membrane processes. In Membrane Engineering; Enrico, D., Lidietta, G., Francesca, M., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 1–32. [Google Scholar]
- Askenaizer, D. Drinking Water Quality and Treatment. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 651–671. [Google Scholar]
- Cui, Z.F.; Jiang, Y.; Field, R.W. Chapter 1—Fundamentals of Pressure-Driven Membrane Separation Processes. In Membrane Technology; Cui, Z.F., Muralidhara, H.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–18. [Google Scholar]
- Guo, W.; Ngo, H.H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P. Can fouling in membranes be ever defeated? Curr. Opin. Chem. Eng. 2020, 28, 90–95. [Google Scholar] [CrossRef]
- Saffarimiandoab, F.; Gül, B.Y.; Taşdemir, R.Ş.; Ilter, S.E.; Unal, S.; Tunaboylu, B.; Menceloğlu, Y.Z.; Koyuncu, I. A review on membrane fouling: Membrane modification. Desalination Water Treat. 2021, 216, 47–70. [Google Scholar] [CrossRef]
- Zainol Abidin, M.N.; Nasef, M.M.; Matsuura, T. Fouling Prevention in Polymeric Membranes by Radiation Induced Graft Copolymerization. Polymers 2022, 14, 197. [Google Scholar] [CrossRef]
- Hamedi, H.; Ehteshami, M.; Mirbagheri, S.A.; Rasouli, S.A.; Zendehboudi, S. Current Status and Future Prospects of Membrane Bioreactors (MBRs) and Fouling Phenomena: A Systematic Review. Can. J. Chem. Eng. 2019, 97, 32–58. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes 2020, 10, 24. [Google Scholar] [CrossRef]
- Tummons, E.; Han, Q.; Tanudjaja, H.J.; Hejase, C.A.; Chew, J.W.; Tarabara, V.V. Membrane fouling by emulsified oil: A review. Sep. Purif. Technol. 2020, 248, 116919. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Zulkefli, N.F.; Alias, N.H.; Jamaluddin, N.S.; Abdullah, N.; Abdul Manaf, S.F.; Othman, N.H.; Marpani, F.; Mat-Shayuti, M.S.; Kusworo, T.D. Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment. Membranes 2021, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Lipnizki, J. Strategies for controlling membrane fouling. Chem. Eng. 2007, 114, 62–64. [Google Scholar]
- Mulder, M.H.V. Chapter 2 Polarization phenomena and membrane fouling. In Membrane Science and Technology; Noble, R.D., Stern, S.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 2, pp. 45–84. [Google Scholar]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Tay, K.G.; Song, L. A more effective method for fouling characterization in a full-scale reverse osmosis process. Desalination 2005, 177, 95–107. [Google Scholar] [CrossRef]
- Song, L.; Tay, K.G. Advanced Membrane Fouling Characterization in Full-Scale Reverse Osmosis Processes. In Membrane and Desalination Technologies; Wang, L.K., Chen, J.P., Hung, Y.-T., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 101–134. [Google Scholar]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Chapter 8—RO Membrane Fouling. In Reverse Osmosis; Ismail, A.F., Khulbe, K.C., Matsuura, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–220. [Google Scholar]
- Hu, M.; Zhang, T.C.; Stansbury, J.; Zhou, Y.; Chen, H.; Neal, J. Contributions of Internal and External Fouling to Transmembrane Pressure in MBRs: Experiments and Modeling. J. Environ. Eng. 2015, 141, 04014097. [Google Scholar] [CrossRef]
- Trinh, T.A.; Li, W.; Han, Q.; Liu, X.; Fane, A.G.; Chew, J.W. Analyzing external and internal membrane fouling by oil emulsions via 3D optical coherence tomography. J. Membr. Sci. 2018, 548, 632–640. [Google Scholar] [CrossRef]
- Qasim, M.; Darwish, N.N.; Mhiyo, S.; Darwish, N.A.; Hilal, N. The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination 2018, 443, 143–164. [Google Scholar] [CrossRef]
- Tracey, E.M.; Davis, R.H. Protein Fouling of Track-Etched Polycarbonate Microfiltration Membranes. J. Colloid Interface Sci. 1994, 167, 104–116. [Google Scholar] [CrossRef]
- Field, R. Fundamentals of Fouling. In Membrane Technology; Peinemann, K.-V., Nunes, S.P., Eds.; Wiley-VCH: Weinheim, Germany, 2010; pp. 1–23. [Google Scholar]
- Katsoufidou, K.; Yiantsios, S.G.; Karabelas, A.J. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling. J. Membr. Sci. 2005, 266, 40–50. [Google Scholar] [CrossRef]
- Song, L. Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modeling of membrane fouling. J. Membr. Sci. 1998, 139, 183–200. [Google Scholar] [CrossRef]
- Tracey, D. Membrane Fouling—What is it? Where does it come from? And what does it mean? Ultrapure Water 1996, 13, 47–52. [Google Scholar]
- Chang, R. Case Studies on Employing UF Technology to Reclaim Water from Semiconductor Wastewater in Taiwan. In Proceedings of the ULTRAPURE WATER® Asia 2011, Singapore, 6–7 July 2011. [Google Scholar]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Fruit juice processing using membrane technology: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 136–153. [Google Scholar] [CrossRef]
- Scott, K. Introduction to Membrane Separations. In Handbook of Industrial Membranes; Scott, K., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1995; pp. 3–185. [Google Scholar]
- Belfort, G. Pretreatment and cleaning of hyperfiltration (reverse osmosis) membranes in municipal wastewater renovation. Desalination 1977, 21, 285–300. [Google Scholar] [CrossRef]
- Peña, N.; Gallego, S.; del Vigo, F.; Chesters, S.P. Evaluating impact of fouling on reverse osmosis membranes performance. Desalination Water Treat. 2013, 51, 958–968. [Google Scholar] [CrossRef]
- Tran, T.; Bolto, B.; Gray, S.; Hoang, M.; Ostarcevic, E. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Res. 2007, 41, 3915–3923. [Google Scholar] [CrossRef]
- García, N.P.; Vigo, F.d.; Chesters, S.P.; Armstrong, M.W.; Wilson, R.L.; Fazel, M. A Study of the Physical and Chemical Damage on RO Membranes Detected by Autopsies. In Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China, 20–25 October 2013; p. DAWC/TIAN13-184. [Google Scholar]
- García, N.P.; Rodriguez, J.; Vigo, F.D.; Chesters, S.P. 20 Years of Data from 500 Seawater Membrane Autopsies. In Proceedings of the IDA 2022 World Congress, Sydney, Australia, 9–13 October 2022. [Google Scholar]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Dow. FILMTEC Reverse Osmosis Membranes Technical Manual, Form No. 609-00071-104; Dow Liquid Separations: Midland, MI, USA, 2004. [Google Scholar]
- Geise, G.M.; Lee, H.-S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1685–1718. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, J.; Maan, O.; Liu, Y.; Zeng, H. Probing molecular interaction mechanisms of organic fouling on polyamide membrane using a surface forces apparatus: Implication for wastewater treatment. Sci. Total Environ. 2018, 622–623, 644–654. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.H. Microfiltration and Ultrafiltration as a Pretreatment for Nanofiltration of Surface Water. Sep. Sci. Technol. 2006, 41, 1–23. [Google Scholar] [CrossRef]
- Choi, J.-S.; Hwang, T.-M.; Lee, S.; Hong, S. A systematic approach to determine the fouling index for a RO/NF membrane process. Desalination 2009, 238, 117–127. [Google Scholar] [CrossRef]
- Potts, D.E.; Ahlert, R.C.; Wang, S.S. A critical review of fouling of reverse osmosis membranes. Desalination 1981, 36, 235–264. [Google Scholar] [CrossRef]
- Combe, C.; Molis, E.; Lucas, P.; Riley, R.; Clark, M.M. The effect of CA membrane properties on adsorptive fouling by humic acid. J. Membr. Sci. 1999, 154, 73–87. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Andritsos, N.; Karabelas, A.J.; Hoek, E.M.V.; Schneider, R.; Nyström, M. Fouling in Nanofiltration. In Nanofiltration, 2nd ed.; Schäfer, A.I., Fane, A.G., Eds.; Wiley-VCH: Weinheim, Germany, 2021; pp. 273–379. [Google Scholar]
- Hoek, E.M.V.; Allred, J.; Knoell, T.; Jeong, B.-H. Modeling the effects of fouling on full-scale reverse osmosis processes. J. Membr. Sci. 2008, 314, 33–49. [Google Scholar] [CrossRef]
- Gorenflo, A.; Marsh, T.; Busch, M. Aspects of high temperature operation with spiral wound SWRO membrane elements. In Proceedings of the IDA World Congress on Desalination and Water Reuse, Maspalomas, Gran Canaria, Spain, 21–26 October 2007; p. IDAWC/MP07-168. [Google Scholar]
- Schrotter, J.-C. Advanced Seawater Characterisation and Performance Evaluation at Seawater Reverse Osmosis Plants Worldwide. In Proceedings of the IDA Desalination and Water Reuse International Forum & Exhibition, Tianjin, China, 6–8 September 2006. [Google Scholar]
- Sehn, P.; Coker, S.; Molina, V.G.; Shrivastava, A. Projection and Validation of Performance of SWRO Systems. In Proceedings of the IDA World Congress on Desalination and Water Reuse, Perth, Australia, 4–9 September 2011; p. IDAWC/PER11-096. [Google Scholar]
- Lagartos, A.; Santos, R.; Son, Y.S.; Lee, S.; Maeda, Y.; Park, J.S. Possible Consequences of Iodine Effect on Reverse Osmosis Membranes and Solution to Remediate and Prevent Them. In Proceedings of the XII Congreso Internacional de Aedyr, Toledo, Spain, 23–25 October 2018; p. AedyrTOL18-TOL18-12. [Google Scholar]
- Byrne, W. Reverse Osmosis: A Practical Guide for Industrial Users, 2nd ed.; Tall Oaks Publishing, Inc.: Littleton, CO, USA, 2002. [Google Scholar]
- Allgeier, S.C.; Summers, R.S. Evaluating NF for DBP control with the RBSMT. J. AWWA 1995, 87, 87–99. [Google Scholar] [CrossRef]
- Horio, K. Eight-year operational experience with a 13,400 M3/d reverse osmosis desalination plant at Kashima Works of Sumitomo Metals. Desalination 1980, 32, 211–220. [Google Scholar] [CrossRef]
- Argo, D.G.; Moutes, J.G. Wastewater Reclamation by Reverse Osmosis. J. (Water Pollut. Control. Fed.) 1979, 51, 590–600. [Google Scholar]
- Applegate, L.E.; Erkenbrecher, C.W.; Winters, H. New chloramine process to control aftergrowth and biofouling in permasepR B-10 RO surface seawater plants. Desalination 1989, 74, 51–67. [Google Scholar] [CrossRef]
- Flemming, H.C.; Schaule, G.; Griebe, T.; Schmitt, J.; Tamachkiarowa, A. Biofouling—The Achilles heel of membrane processes. Desalination 1997, 113, 215–225. [Google Scholar] [CrossRef]
- Flemming, H.-C. Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 1997, 14, 382–391. [Google Scholar] [CrossRef]
- Asadollahi, M.; Bastani, D.; Musavi, S.A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination 2017, 420, 330–383. [Google Scholar] [CrossRef]
- Tang, C.Y.; Chong, T.H.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef]
- DuPont. FilmTec™ Reverse Osmosis Membranes Technical Manual, Form No. 45-D01504-en, Rev. 16; DuPont: Wilmington, DE, USA, 2023. [Google Scholar]
- Boorsma, M.J.; Dost, S.; Klinkhamer, S.; Schippers, J.C. Monitoring and controlling biofouling in an integrated membrane system. Desalination Water Treat. 2011, 31, 347–353. [Google Scholar] [CrossRef]
- Kezia, K.; Reynolds, D.; Doyle, J. RO and Ion Exchange Technologies for Production of Ultrapure Water: Organic Fouling Issues and Mitigation. In Proceedings of the IDA World Congress, Dubai, United Arab Emirates, 20–24 October 2019; p. IDAWC19-KEZIA. [Google Scholar]
- Flemming, H.C. Mechanistic aspects of reverse osmosis membrane biofouling and prevention. In Reverse Osmosis: Membrane Technology, Water Chemistry and Industrial Applications; Amjad, Z., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1993; pp. 163–209. [Google Scholar]
- Tasaka, K.; Katsura, T.; Iwahori, H.; Kamiyama, Y. Analysis of RO elements operated at more than 80 plants in Japan. Desalination 1994, 96, 259–272. [Google Scholar] [CrossRef]
- Goodlett, R. Membrane Autopsy. In Proceedings of the AMTA/NWMOA Workshop, Salt Lake City, UT, USA, 9–11 December 2013. [Google Scholar]
- Baker, J.S.; Dudley, L.Y. Biofouling in membrane systems—A review. Desalination 1998, 118, 81–89. [Google Scholar] [CrossRef]
- Khan, M.T.; Busch, M.; Molina, V.G.; Emwas, A.-H.; Aubry, C.; Croue, J.-P. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Water Res. 2014, 59, 271–282. [Google Scholar] [CrossRef]
- Pietsch, S.; Lee, M.; Furlong, J. Maximizing Membrane Life: Lessons Learned from a Three Year Study on Performance Recovery. In Proceedings of the AMTA/AWWA Membrane Technology Conference, Long Beach, CA, USA, 13–17 February 2017. [Google Scholar]
- Darton, E.G.; Fazel, M. A Statistical Review of 150 Membrane Autopsies. In Proceedings of the Annual Meeting 62nd International Water Conference, Pittsburgh, PA, USA, 21–25 October 2001; pp. 157–163. [Google Scholar]
- Gallego, S.; Darton, E.G. Simple laboratory techniques improve the operation of RO pre-treatment systems. In Proceedings of the IDA World Congress, Maspalomas, Gran Canaria, Spain, 21–26 October 2007. [Google Scholar]
- Armstrong, M.; Gallego, S.; Chesters, S. Removing biofilm from membranes—A practical approach. In Proceedings of the Qingdao International Conference on Desalination and Water Reuse, Qingdao, China, 20–23 June 2011. [Google Scholar]
- Chesters, S.P.; Pena, N.; Gallego, S.; Fazel, M.; Armstrong, M.W.; del Vigo, F. Results from 99 seawater RO membrane autopsies. IDA J. Desalination Water Reuse 2013, 5, 40–47. [Google Scholar] [CrossRef]
- Sato, G.L.; Pena, N.; Sankhe, A.; Chesters, S.; Furukawa, R. Statistical Analysis of Foulant Composition from Membranes Collected from Reuse Applications. In Proceedings of the AMTA/AWWA Membrane Technology Conference, Las Vegas, NV, USA, 21–25 February 2022. [Google Scholar]
- Drewes, J.E.; Fox, P. Fate of Natural Organic Matter (NOM) during Groundwater Recharge using Reclaimed Water. Water Sci. Technol. 1999, 40, 241–248. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Guo, J.; Ma, J.; Wang, W.; Wang, B. Dissolved organic matter in biologically treated sewage effluent (BTSE): Characteristics and comparison. Desalination 2011, 278, 365–372. [Google Scholar] [CrossRef]
- Pandey, S.R.; Jegatheesan, V.; Baskaran, K.; Shu, L. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 125–145. [Google Scholar] [CrossRef]
- Goslan, E.H.; Wilson, D.; Banks, J.; Hillis, P.; Campbell, A.; Parsons, S.A. Natural organic matter fractionation: XAD resins versus UF membranes: An investigation into THM formation. Water Supply 2004, 4, 113–119. [Google Scholar] [CrossRef]
- Villacorte, L.O. Liquid Chromatography—Organic Carbon Detection (LC-OCD). In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–3. [Google Scholar]
- Simon, F.X.; Penru, Y.; Guastalli, A.R.; Esplugas, S.; Llorens, J.; Baig, S. NOM characterization by LC-OCD in a SWRO desalination line. Desalination Water Treat. 2013, 51, 1776–1780. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Snyder, S.A. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Amjad, Z. RO SYSTEMS: Current Fouling Problems and Solutions. Desalination Water Reuse 1997, 6, 55–60. [Google Scholar]
- Ang, W.S.; Elimelech, M. Fatty acid fouling of reverse osmosis membranes: Implications for wastewater reclamation. Water Res. 2008, 42, 4393–4403. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, Y.; Yu, P.; Luo, Y.; Hou, L. FTIR study of fatty acid fouling of reverse osmosis membranes: Effects of pH, ionic strength, calcium, magnesium and temperature. Sep. Purif. Technol. 2011, 77, 171–178. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Vandecasteele, C. Flux decline during nanofiltration of organic components in aqueous solution. Environ. Sci. Technol. 2001, 35, 3535–3540. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Braeken, L.; Vandecasteele, C. Flux decline in nanofiltration due to adsorption of organic compounds. Sep. Purif. Technol. 2002, 29, 23–31. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Braeken, L.; Vandecasteele, C. Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Desalination 2002, 147, 281–288. [Google Scholar] [CrossRef]
- Jonsson, G.; Kristensen, S. Membrane filtration of NSSC-waste liquor. Desalination 1980, 32, 327–339. [Google Scholar] [CrossRef]
- Anderson, J.E.; Heyde, M.E.; Plummer, H.K. Irreversible fouling caused by plasticization of asymmetric reverse osmosis membranes. Desalination 1981, 37, 307–311. [Google Scholar] [CrossRef]
- Glater, J.; Wilson, L.C.; Neethling, J.B. Dissolved Organic Components in Process Water at the Los Banos Desalting Facility. In Aquatic Humic Substances; Suffet, I.H., MacCarthy, P., Eds.; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1988; Volume 219, pp. 783–796. [Google Scholar]
- Moody, C.D.; Kaakinen, J.W.; Lozier, J.C.; Laverty, P.E. Yuma desalting test facility: Foulant component study. Desalination 1983, 47, 239–253. [Google Scholar] [CrossRef]
- Petersen, R.J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1993, 83, 81–150. [Google Scholar] [CrossRef]
- Cadotte, J.E. Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent 4,277,344, 7 July 1981. [Google Scholar]
- Kawaguchi, T.; Tamura, K. Membrane Separation and Treatment of Aqueous Solution Containing Nonionic Surface Active Agent. Japanese Unexamined Patent Application Publication No. JPS59179188A, 11 October 1984. [Google Scholar]
- FilmTec. Description of FilmTec FT-30 Membrane. In FILMTEC Technical Bulletin; FilmTec: Minneapolis, MN, USA, 1985. [Google Scholar]
- Frik Schutte, C.; Belfort, G. Rejection of Alkyl Phenols by Reverse Osmosis Membranes. Water Sci. Technol. 1987, 19, 967–979. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Madadi, M.R. Separation of Phenolic Compounds by Low Pressure Composite Membranes: Mathematical Model and Experimental Results. In New Membrane Materials and Processes for Separation; Sirkar, K.K., Lloyd, D.R., Eds.; American Institute of Chemical Engineers: New York, NY, USA, 1988; pp. 139–157. [Google Scholar]
- Ray, R.J.; Babcock, W.C.; Barss, R.P.; Andrews, T.A.; LaChapelle, E.D. A Novel Reverse-Osmosis Wash Water Recycle System for Manned Space Stations. In Proceedings of the Fourteenth Intersociety Conference on Environmental Systems, San Diego, CA, USA, 16–19 July 1984. [Google Scholar]
- Lonsdale, H.K.; Friesen, D.T.; Ray, R.J.; Hayashi, T. Novel Hollow-fiber Membranes for Reverse Osmosis and Coupled Transport. Sen’i Gakkaishi 1988, 44, P27–P35. [Google Scholar] [CrossRef]
- Poy, F.L. Fouling Effects of Tri-n-butylphosphate on Reverse Osmosis Performance and Techniques for Performance Recovery; DPST-87-387, DE91005116/XAB, AC09-89SR18035; Savannah River Lab.: Aiken, SC, USA, 1987. [Google Scholar]
- Reinhard, M.; Goodman, N.L.; McCarty, P.L.; Argo, D.G. Removing Trace Organics by Reverse Osmosis Using Cellulose Acetate and Polyamide Membranes. J. Am. Water Work. Assoc. 1986, 78, 163–174. [Google Scholar] [CrossRef]
- Olsen, O.; Haagensen, U.H. Membrane filtration for the reuse of city waste water. Desalination 1983, 47, 257–265. [Google Scholar] [CrossRef]
- Simpson, M.J.; Groves, G.R. Treatment of pulp/paper bleach effluents by reverse osmosis. Desalination 1983, 47, 327–333. [Google Scholar] [CrossRef]
- Sugiyama, I.; Yamaki, Y. The Primary Treatment System. In Ultra-Clean Technology Handbook; Ohmi, T., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1993; Volume 1, pp. 97–135. [Google Scholar]
- Saavedra, A.; Bertoni, G.; Fajner, D.; Sarti, G.C. Reverse osmosis treatment of process water streams. Desalination 1991, 82, 249–266. [Google Scholar] [CrossRef]
- Fortuin, J.P.; Waterman, H.I. Production of phenol from cumene. Chem. Eng. Sci. 1953, 2, 182–192. [Google Scholar] [CrossRef]
- Cartwright, P.S. Industrial Wastewater Treatment with Membranes—A United States Perspective. Water Sci. Technol. 1992, 25, 373–390. [Google Scholar] [CrossRef]
- Nickerson, G.; McClain, B.; Bukay, M. Investigation of flux decline in two-pass RO system. In Proceedings of the ULTRAPURE WATER EXPO ’94, Philadelphia, PA, USA, 9–11 May 1994. [Google Scholar]
- Nickerson, G.; McClain, B.; Bukay, M. Investigation of Severe Flux Decline in a Two-Pass CA/Thin-Film Composite Membrane RO System. Ultrapure Water 1994, 11, 26–33. [Google Scholar]
- Hasson, D.; Limoni-Relis, B.; Semiat, R.; Tob, P. Fouling of RO membranes by phthalate esters contamination. Desalination 1996, 105, 13–20. [Google Scholar] [CrossRef]
- Gusses, A.M.; Allgeier, S.C.; Speth, T.F.; Summers, R.S. Verification and Use of the Rapid Bench-Scale Membrane Test. In Proceedings of the American Water Works Association Annual Conference, Toronto, ON, Canada, 23–27 June 1996; pp. 743–778. [Google Scholar]
- Byrne, W. RO Maintenance. In Reverse Osmosis: A Practical Guide for Industrial Users; Tall Oaks Publishing, Inc.: Littleton, CO, USA, 1995; pp. 197–249. [Google Scholar]
- Macintosh, P.D.; Fane, A.G.; Papazoglou, D. Reclamation of Contaminated Ground Waters by a Multiple Membrane Process. In Proceedings of the 3rd International Conference on Membranes in Drinking and Industrial Water Production, Mulheim an der Ruhr, Germany, 22–26 September 2002; pp. 525–534. [Google Scholar]
- Eriksson, P.; Taylor, B.; Scarth, I. Nanofiltration Followed by Reverse Osmosis of Cooling Water Blowdown to Achieve Zero Liquid Discharge—IWC-03-38. In Proceedings of the 64th International Water Conference, Pittsburgh, PA, USA, 19–23 October 2003; pp. 420–432. [Google Scholar]
- Sehn, P. Long-term experiences with reverse osmosis membranes in three different process water plants. VGB PowerTech 2012, 92, 80–83. [Google Scholar]
- Khan, M.T.; Manes, C.-L.d.O.; Aubry, C.; Gutierrez, L.; Croue, J.P. Kinetic Study of Seawater Reverse Osmosis Membrane Fouling. Environ. Sci. Technol. 2013, 47, 10884–10894. [Google Scholar] [CrossRef] [PubMed]
- Macia, M.; Peña, D.; Al-Omar, H.; García-Molina, V.; Gilabert-Oriol, G. Breakthrough dry seawater reverse osmosis elements. Desalination Water Treat. 2022, 259, 280–284. [Google Scholar] [CrossRef]
- Ang, W.S.; Elimelech, M. Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. J. Membr. Sci. 2007, 296, 83–92. [Google Scholar] [CrossRef]
- Lee, S.; Ang, W.S.; Elimelech, M. Fouling of reverse osmosis membranes by hydrophilic organic matter: Implications for water reuse. Desalination 2006, 187, 313–321. [Google Scholar] [CrossRef]
- Seidel, A.; Elimelech, M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: Implications for fouling control. J. Membr. Sci. 2002, 203, 245–255. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions. J. Membr. Sci. 2007, 290, 86–94. [Google Scholar] [CrossRef]
- Zhu, X.; Elimelech, M. Colloidal Fouling of Reverse Osmosis Membranes: Measurements and Fouling Mechanisms. Environ. Sci. Technol. 1997, 31, 3654–3662. [Google Scholar] [CrossRef]
- Roy, A.; Jemenez, J.; Mickols, W. A Critical Flux Loss Phenomena Found in Particulate and Oil/Surfactant Fouling in Seven Commercial TFC Reverse Osmosis Membranes. In Proceedings of the 19th North American Membrane Society Annual Meeting, Charleston, SC, USA, 20–24 June 2009. [Google Scholar]
- Tong, X.; Wu, Y.-H.; Wang, Y.-H.; Bai, Y.; Zhao, X.-H.; Luo, L.-W.; Mao, Y.; Ikuno, N.; Hu, H.-Y. Simulating and predicting the flux change of reverse osmosis membranes over time during wastewater reclamation caused by organic fouling. Environ. Int. 2020, 140, 105744. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Tong, X.; Wu, Y.-H.; Wang, H.-B.; Ikuno, N.; Hu, H.-Y. Comparison of the reverse osmosis membrane fouling behaviors of different types of water samples by modeling the flux change over time. Chemosphere 2022, 289, 133217. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Elimelech, M. Fouling of Reverse Osmosis Membranes by Aluminum Oxide Colloids. J. Environ. Eng. 1995, 121, 884–892. [Google Scholar] [CrossRef]
- Boussu, K.; Belpaire, A.; Volodin, A.; Van Haesendonck, C.; Van der Meeren, P.; Vandecasteele, C.; Van der Bruggen, B. Influence of membrane and colloid characteristics on fouling of nanofiltration membranes. J. Membr. Sci. 2007, 289, 220–230. [Google Scholar] [CrossRef]
- Arseneaux, A.; Stoner, L.; Whipple, S. Case History of a Reverse Osmosis System on High Organic Content Well Water. In Proceedings of the International Water Conference, Pittsburgh, PA, USA, 23–25 October 1989. [Google Scholar]
- Fu, P.; Ruiz, H.; Lozier, J.; Thompson, K.; Spangenberg, C. A pilot study on groundwater natural organics removal by low-pressure membranes. Desalination 1995, 102, 47–56. [Google Scholar] [CrossRef]
- Gorenflo, A.; Velázquez-Padrón, D.; Frimmel, F.H. Nanofiltration of a German groundwater of high hardness and NOM content: Performance and costs. Desalination 2003, 151, 253–265. [Google Scholar] [CrossRef]
- Dangeti, S.R.; Roshani, B.; Clarke, K.; Marchinko, S.; Guenther, G.; Loeffelholz, W. Biofiltration as a Membrane Pre-Treatment Technology: A Success Story at Montana First Nation, AB, Canada. In Proceedings of the AMTA/AWWA Membrane Technology Conference, New Orleans, LA, USA, 25–28 February 2019. [Google Scholar]
- Jacangelo, J.G.; Laîné, J.-M.; Cummings, E.W.; Deutschmann, A.; Mallevialle, J.; Wiesner, M.R. Evaluation of Ultrafiltration Membrane Pretreatment and Nanofiltration of Surface Waters; AWWA Foundation and American Water Works Association: Denver, CO, USA, 1994. [Google Scholar]
- Majamaa, K.; Lehtinen, M.; Pilipenko, P. Comparision of cellulose acetate and nanofiltration membranes for color removal from a norwegian lake. Desalination Water Treat. 2009, 9, 9–14. [Google Scholar] [CrossRef]
- Durand-Bourlier, L.; Tinghir, A.; Masereel, P.; Baig, S. Nanofiltration selection for NOM removal: Pilot and full-scale operation. Water Pract. Technol. 2011, 6, wpt2011026. [Google Scholar] [CrossRef]
- Mulford, L.A.; Taylor, J.S.; Nickerson, D.M. ICR Membrane Pilot Plant Verification Testing. In Proceedings of the AWWA Annual Conference, Atlanta, GA, USA, 15–19 June 1997; pp. 707–722. [Google Scholar]
- USEPA. ICR Treatment Study Database, Version 1.0; EPA 815-C-00-003; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2000.
- Handley, G.J. Time to Clean Again? Changes in Cleaning Frequency and Effectiveness at the Reynolds Groundwater Desalination Facility. In Proceedings of the AMTA/AWWA Membrane Technology Conference, San Antonio, TX, USA, 1–5 February 2016. [Google Scholar]
- Kawakatsu, T.; Izawa, S.; Hitotsuyanagi, N.; Orita, N. Regeneration of RO membranes fouled with nonionic surfactants and polyethylene glycols by novel cleaning method. In Proceedings of the ICOM2005, Seoul, Republic of Korea, 21–26 August 2005. [Google Scholar]
- Knoell, T.; Patel, M.; Dunivin, W.; Owens, E. From Qualification to Selection: Orange County’s Groundwater Replenishment System RO Membrane Procurement Process. In Proceedings of the AMTA/AWWA Membrane Technology Conference, San Antonio, TX, USA, 25–28 February 2013. [Google Scholar]
- Alexander, K.; Alt, S.; Owens, E.; Patel, M.; McGovern, L. Low fouling reverse osmosis membranes: Evidence to the contrary on microfiltered secondary effluent. In Proceedings of the 2003 AWWA Membrane Technology Conference, Atlanta, GA, USA, 2–5 March 2003. [Google Scholar]
- Bartels, C.R.; Franks, R. Understanding RO Membrane Fouling at Wastewater Treatment Plants. In Proceedings of the AWWA/AMTA Membrane Technology Conference, Glendale, AZ, USA, 27 February–1 March 2012. [Google Scholar]
- Ko, Y.; Wang, L.; Wu, T.; Maeda, Y. Application of LG NanoH2O™ Second Generation Thin-Film Nanocomposite Membranes for Wastewater Treatment in a Steel Plant. In Proceedings of the IDA World Congress, Sydney, NSW, Australia, 9–13 October 2022. [Google Scholar]
- Williams, M.E.; Hestekin, J.A.; Smothers, C.N.; Bhattacharyya, D. Separation of Organic Pollutants by Reverse Osmosis and Nanofiltration Membranes: Mathematical Models and Experimental Verification. Ind. Eng. Chem. Res. 1999, 38, 3683–3695. [Google Scholar] [CrossRef]
- Castro, M.J.; Kovensky, J.; Cirelli, A.F. Ecologically safe alkyl glucoside-based gemini surfactants. Arkivoc 2005, 12, 253–267. [Google Scholar]
- Fernández Cirelli, A.; Ojeda, C.; Castro, M.J.L.; Salgot, M. Surfactants in sludge-amended agricultural soils: A review. Environ. Chem. Lett. 2008, 6, 135–148. [Google Scholar] [CrossRef]
- Halleb, A.; Nakajima, M.; Yokoyama, F.; Neves, M.A. Effect of Surfactants on Reverse Osmosis Membrane Performance. Separations 2023, 10, 168. [Google Scholar] [CrossRef]
- Castillo, M.; Martínez, E.; Ginebreda, A.; Tirapu, L.; Barceló, D. Determination of non-ionic surfactants and polar degradation products in influent and effluent water samples and sludges of sewage treatment plants by a generic solid-phase extraction protocol. Analyst 2000, 125, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Komori, K.; Okayasu, Y.; Yasojima, M.; Suzuki, Y.; Tanaka, H. Occurrence of nonylphenol, nonylphenol ethoxylate surfactants and nonylphenol carboxylic acids in wastewater in Japan. Water Sci. Technol. 2006, 53, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Morrall, S.W.; Dunphy, J.C.; Cano, M.L.; Evans, A.; McAvoy, D.C.; Price, B.P.; Eckhoff, W.S. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment. Ecotoxicol. Environ. Saf. 2006, 64, 3–13. [Google Scholar] [CrossRef]
- Loyo-Rosales, J.E.; Rice, C.P.; Torrents, A. Fate of Octyl- and Nonylphenol Ethoxylates and Some Carboxylated Derivatives in Three American Wastewater Treatment Plants. Environ. Sci. Technol. 2007, 41, 6815–6821. [Google Scholar] [CrossRef]
- Sanderson, H.; van Compernolle, R.; Dyer, S.D.; Price, B.B.; Nielsen, A.M.; Selby, M.; Ferrer, D.; Stanton, K. Occurrence and risk screening of alcohol ethoxylate surfactants in three U.S. river sediments associated with wastewater treatment plants. Sci. Total Environ. 2013, 463–464, 600–610. [Google Scholar] [CrossRef]
- Iwamori, T. Analysis of Nonionic Surface-Active Agent. Japanese Unexamined Patent Application Publication JPH06102267A, 15 April 1994. [Google Scholar]
- Ushiyama, T.; Nagai, T. Method and Device for Treating Organic Substance-Containing Water. Japanese Unexamined Patent Application Publication JP2006272052A, 12 October 2006. [Google Scholar]
- Ikuno, N. Method and Apparatus for Treating Organic Material-Containing Waste Water. Japanese Unexamined Patent Application Publication No. JP2005169372A, 30 June 2005. [Google Scholar]
- Pellegrino, J.; Wilbert, M.C.; Zydney, A.; Lohnes, T. Electrokinetic Characterization of Surfactant Modification and Fouling on RO/NF Membranes. In Proceedings of the International Membrane Science and Technology Conference (IMSTEC), Sydney, Australia, 12–14 November 1996; pp. 54–56. [Google Scholar]
- Wilbert, M.C. Enhancement of Membrane Fouling Resistance Through Surface Modification; PB97-157473/XAB, WATER TREATMENT TECHNOLOGY-22; Water Treatment Engineering and Research Group, Bureau of Reclamation: Denver, CO, USA, 1997. [Google Scholar]
- Wilbert, M.C.; Pellegrino, J.; Zydney, A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes. Desalination 1998, 115, 15–32. [Google Scholar] [CrossRef]
- Okuma, N.; Sumiyoshi, M.; Nakaoka, A. Treatment for Waste Launder Water. Japanese Unexamined Patent Application Publication No. JPS5995989A, 2 June 1984. [Google Scholar]
- Ishida, K.P.; Bold, R.; Phipps, D. Identification and Evaluation of Unique Chemicals for Optimum Membrane Compatibility and Improved Cleaning Efficiency; Orange County Water District: Fountain Valley, CA, USA, 2005. [Google Scholar]
- Ikeda, K. Development and Practical Uses of Low Pressure Type Reverse Osmosis Membranes. Membrane 1991, 16, 223–232. (In Japanese) [Google Scholar] [CrossRef]
- Gerard, R.; Lesan, R.; Kawada, l.; Tasaka, K. Role of Membrane Equipment in State-of-The-Art Ultrapure Water Systems. In Proceedings of the 10th Annual Semiconductor Pure Water Conference, Santa Clara, CA, USA, 26–28 February 1991; pp. 69–86. [Google Scholar]
- Boussu, K.; Kindts, C.; Vandecasteele, C.; Van der Bruggen, B. Surfactant fouling of nanofiltration membranes: Measurements and mechanisms. Chemphyschem 2007, 8, 1836–1845. [Google Scholar] [CrossRef]
- Childress, A.E.; Deshmukh, S.S. Effect of humic substances and anionic surfactants on the surface charge and performance of reverse osmosis membranes. Desalination 1998, 118, 167–174. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, X.; Li, F.; Zhang, X. Influence of surfactant fouling on rejection of trace nuclides and boron by reverse osmosis. Desalination 2016, 377, 47–53. [Google Scholar] [CrossRef]
- Halleb, A.; Yokoyama, F.; das Neves, M.A.; Nakajima, M. Effects of surfactants and oil-in-water emulsions on reverse osmosis membrane performance. Euro-Mediterr. J. Environ. Integr. 2021, 6, 44. [Google Scholar] [CrossRef]
- Hussain, S.M.S.; Adewunmi, A.A.; Mahboob, A.; Murtaza, M.; Zhou, X.; Kamal, M.S. Fluorinated surfactants: A review on recent progress on synthesis and oilfield applications. Adv. Colloid Interface Sci. 2022, 303, 102634. [Google Scholar] [CrossRef] [PubMed]
- Rozenbaoum, E.; Hyung, H.; Daly, R. PFAS Removal with Thin Film Nanocomposite Reverse Osmosis Membranes. In Proceedings of the International Desalination Association World Congress, Sydney, Australia, 9–13 October 2022; p. IDAWC22-Rozenbaoum. [Google Scholar]
- Tang, C.Y.; Fu, Q.S.; Robertson, A.P.; Criddle, C.S.; Leckie, J.O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 2006, 40, 7343–7349. [Google Scholar] [CrossRef]
- Tang, C.Y.; Fu, Q.S.; Criddle, C.S.; Leckie, J.O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ. Sci. Technol. 2007, 41, 2008–2014. [Google Scholar] [CrossRef]
- Ikeda, K.; Hachisuka, H.; Nakamura, T.; Kimura, S.; Ueyama, K. Zeta-Potential of Fouled Thin Film Composite Membrane. J. Chem. Eng. Jpn. 1999, 32, 581–587. [Google Scholar] [CrossRef]
- Kimura, H.; Kishimoto, N. Fouling behaviour of a reverse osmosis membrane by three types of surfactants. J. Water Reuse Desalination 2012, 2, 40–46. [Google Scholar] [CrossRef]
- Hirose, M.; Ito, H.; Minamizaki, Y.; Kamiyama, Y. Ultra-low-pressure reverse osmosis membrane “ES10”. In Proceedings of the ICOM’96, Yokohama, Japan, 18–23 August 1996. [Google Scholar]
- Fusaoka, Y. Low Fouling RO Membranes for Municipal Wastewater Treatment. In Proceedings of the New Membrane Technology Symposium 2002, Tokyo, Japan, 6 March 2002; pp. 3-2-1–3-2-6. (In Japanese). [Google Scholar]
- Inoue, T.; Sugita, K.; Isaka, H.; Fusaoka, Y. Low Fouling RO Membranes. Membrane 2002, 27, 209–212. (In Japanese) [Google Scholar] [CrossRef]
- Cornelis, G.; Boussu, K.; Van der Bruggen, B.; Devreese, I.; Vandecasteele, C. Nanofiltration of Nonionic Surfactants: Effect of the Molecular Weight Cutoff and Contact Angle on Flux Behavior. Ind. Eng. Chem. Res. 2005, 44, 7652–7658. [Google Scholar] [CrossRef]
- Kaya, Y.; Aydiner, C.; Barlas, H.; Keskinler, B. Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs). J. Membr. Sci. 2006, 282, 401–412. [Google Scholar] [CrossRef]
- Religa, P.; Kowalik-Klimczak, A.; Gierycz, P. Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution. Desalination 2013, 315, 115–123. [Google Scholar] [CrossRef]
- Boussu, K.; De Baerdemaeker, J.; Dauwe, C.; Weber, M.; Lynn, K.G.; Depla, D.; Aldea, S.; Vankelecom, I.F.J.; Vandecasteele, C.; Van der Bruggen, B. Physico-Chemical Characterization of Nanofiltration Membranes. ChemPhysChem 2007, 8, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Boussu, K.; Van der Bruggen, B.; Volodin, A.; Snauwaert, J.; Van Haesendonck, C.; Vandecasteele, C. Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. J. Colloid Interface Sci. 2005, 286, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, A.-S.; Jönsson, B. The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes. J. Membr. Sci. 1991, 56, 49–76. [Google Scholar] [CrossRef]
- Arai, N.; Hitotsuyanagi, N.; Kawakatsu, T. Effect of Trace Organic Substances on Permeation Flux of Reverse Osmosis Membrane. In Proceedings of the SCEJ 69th Annual Meeting, Osaka, Japan, 2–4 April 2004; p. K206. (In Japanese). [Google Scholar]
- Nakagawa, Y.; Murakishi, H.; Uemura, T.; Ooto, K.; Hirai, M. Treatment of Cross-Linked Polyamide-Based Reverse Osmotic Membrane. Japanese Unexamined Patent Application Publication No. JPH022827A, 8 January 1990. [Google Scholar]
- Uemura, T.; Fujimaki, H.; Kurihara, M. Composite Semipermeable Membrane. Japanese Unexamined Patent Application Publication No. JPS62266103A, 18 November 1987. [Google Scholar]
- Nakagawa, Y.; Kurihara, M.; Kanamaru, N.; Ishikawa, M. Solute Separation and Transport Characteristics through Charged Reverse Osmosis Membranes. In Proceedings of the MRS International Meeting on Advanced Materials, Tokyo, Japan, 31 May–3 June 1988; pp. 111–116. [Google Scholar]
- Jefferies, M.; Durham, L.; Gibson, D.; Sneddon, N. Cationic Coagulants in Seawater Media Filtration—Using those that Compatible, Removing those that are not. In Proceedings of the IDA World Congress on Desalination and Water Reuse, San Diego, CA, USA, 30 August–4 September 2015; p. IDAWC15-Jefferies_51656. [Google Scholar]
- Chesters, S.P.; Darton, E.G.; Gallego, S.; Vigo, F.D. The safe use of cationic flocculants with reverse osmosis membranes. Desalination Water Treat. 2009, 6, 144–151. [Google Scholar] [CrossRef]
- Peña, N.; del Vigo, F.; Salmerón, O.; Rodríguez, J.; Borrell, A.; Chesters, S.P. Suitability of cationic flocculants for RO membranes performance improvement. Desalination Water Treat. 2015, 55, 2973–2987. [Google Scholar] [CrossRef]
- Gabelich, C.J.; Ishida, K.P.; Bold, R.M. Testing of water treatment copolymers for compatibility with polyamide reverse osmosis membranes. Environ. Prog. 2005, 24, 410–416. [Google Scholar] [CrossRef]
- Karakane, H.; Tsuyumoto, M.; Maeda, Y.; Honda, Z. Separation of water-ethanol by pervaporation through polyion complex composite membrane. J. Appl. Polym. Sci. 1991, 42, 3229–3239. [Google Scholar] [CrossRef]
- Maeda, Y.; Tsuyumoto, M.; Karakane, H.; Tsugaya, H. Separation of Water-Ethanol Mixture by Pervaporation through Hydrolyzed Polyacrylonitrile Hollow Fiber Membranes. Polym. J. 1991, 23, 501–511. [Google Scholar] [CrossRef]
- Maeda, Y.; Kai, M. Recent Progress in Pervaporation Membranes for Water/Ethanol Separation. In Pervaporation Membrane Separation Processes; Huang, R.Y.M., Ed.; Elsevier Science Publishers, B.V.: Amsterdam, The Netherlands, 1991; pp. 391–435. [Google Scholar]
- Ishigami, T.; Amano, K.; Fujii, A.; Ohmukai, Y.; Kamio, E.; Maruyama, T.; Matsuyama, H. Fouling reduction of reverse osmosis membrane by surface modification via layer-by-layer assembly. Sep. Purif. Technol. 2012, 99, 1–7. [Google Scholar] [CrossRef]
- ln-Chul, K.; Kew-Ho, L. Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes. Membr. J. 2005, 15, 34–43. [Google Scholar]
- Hachisuka, H.; Ikeda, K. Composite Reverse Osmosis Membrane Having a Separation Layer with Polyvinyl Alcohol Coating and Method of Reverse Osmotic Treatment of Water Using the Same. U.S. Patent 6,177,011 B1, 23 January 2001. [Google Scholar]
- Dan, K.; Inoue, T.; Murakami, M. Reverse Osmosis Composite Membrane and Manufacturing Method Therefor. Japanese Unexamined Patent Application Publication JP2001286741A, 16 October 2001. [Google Scholar]
- Gerard, R.; Hachisuka, H.; Hirose, M. New membrane developments expanding the horizon for the application of reverse osmosis technology. Desalination 1998, 119, 47–55. [Google Scholar] [CrossRef]
- Koo, J.-Y.; Hong, S.P.; Kang, J.W.; Kim, N. Selective Memb Having a High Fouling Resistance. U.S. Patent US6913694B2, 5 July 2005. [Google Scholar]
- Kang, G.; Liu, M.; Lin, B.; Cao, Y.; Yuan, Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol). Polymer 2007, 48, 1165–1170. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Xu, J.; Nie, Y.; Li, S.; Zhang, S. Effect of poly(vinyl alcohol) coating process conditions on the properties and performance of polyamide reverse osmosis membranes. Desalination 2016, 379, 42–52. [Google Scholar] [CrossRef]
- Kang, G.-D.; Liu, Z.-N.; Yu, H.-J.; Cao, Y.-M. Enhancing antifouling property of commercial polyamide reverse osmosis membrane by surface coating using a brush-like polymer containing poly (ethylene glycol) chains. Desalination Water Treat. 2012, 37, 139–145. [Google Scholar] [CrossRef]
- Koo, J.-Y.; Lee, J.H.; Jung, Y.D.; Hong, S.P. Fouling Resistant Polyamide RO Membrane and Its Use for Waste Water Treatment. In Proceedings of the American Water Works Association Membrane Technology Conference, Long Beach, CA, USA, 28–31 March 2011. [Google Scholar]
- Koo, J.-Y.; Hong, S.P.; Hyung, H.; Kim, Y.H.; Yoon, S.; Kim, S.S. Fouling Resistant Reverse Osmosis Membranes. In Proceedings of the American Water Works Association Membrane Technology Conference, Atlanta, GA, USA, 2–5 March 2003. [Google Scholar]
- Zhu, L.; Wang, L.; Huang, S.; Yang, Y.; Sugita, K.; Kimura, M. Highly Durable Low Fouling RO Membrane and its Application. In Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China, 20–25 October 2013; p. IDAWC/TIAN13-406. [Google Scholar]
- Tomi, Y.; Manikandan, V.; Miyabe, T.; Yeleswarapu, R.; Echizen, M.; Nomi, S. Comparing a Low-Fouling, High-Pressure RO Membrane with a Conventional Seawater RO Membrane for a Zero-Liquid-Discharge System. J. Chem. Eng. Jpn. 2021, 54, 431–437. [Google Scholar] [CrossRef]
- Sagle, A.C.; Van Wagner, E.M.; Ju, H.; McCloskey, B.D.; Freeman, B.D.; Sharma, M.M. PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance. J. Membr. Sci. 2009, 340, 92–108. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Wang, L.; Yu, S.; Gao, C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 2015, 367, 11–20. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Wang, Y.; Yan, W.; Wang, J.; Wang, S. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. J. Membr. Sci. 2015, 495, 1–13. [Google Scholar] [CrossRef]
- Kang, G.; Yu, H.; Liu, Z.; Cao, Y. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly(ethylene glycol) derivatives. Desalination 2011, 275, 252–259. [Google Scholar] [CrossRef]
- Van Wagner, E.M.; Sagle, A.C.; Sharma, M.M.; La, Y.-H.; Freeman, B.D. Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Membr. Sci. 2011, 367, 273–287. [Google Scholar] [CrossRef]
- Zhao, L.; Chang, P.C.Y.; Yen, C.; Ho, W.S.W. High-flux and fouling-resistant membranes for brackish water desalination. J. Membr. Sci. 2013, 425–426, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, S.; Gao, C.; Feng, X. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance. Sep. Purif. Technol. 2009, 66, 287–294. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Zhang, P.; Gai, J.-G. Dendritic molecules give excellent long-lasting desalination fouling resistance to reverse osmosis membrane by generating an amine-rich layer. J. Appl. Polym. Sci. 2019, 136, 47368. [Google Scholar] [CrossRef]
- Rong, X.; Yan, L.; Meng, G.; Xiuxiu, R.; Nanhua, W.; Qi, Z.; Jing, Z.; Bo, C. Fabrication and anti-fouling performance of PA/PEG cross-linked copolymer reverse osmosis membranes. Chem. Ind. Eng. Prog. 2021, 40, 6792–6799. [Google Scholar] [CrossRef]
- Liu, M.; Yu, C.; Wu, Y.; Lü, Z.; Yu, S.; Gao, C. In situ modification of polyamide reverse osmosis membrane module for improved fouling resistance. Chem. Eng. Res. Des. 2019, 141, 402–412. [Google Scholar] [CrossRef]
- Xia, Y.; Dai, X.; Gai, J.-G. Preparation of high-performance reverse osmosis membrane by zwitterionic polymer coating in a facile one-step way. J. Appl. Polym. Sci. 2020, 137, 48355. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, F.; Lu, H.; Li, N.; Peng, B.; Yu, H.; Yuan, Y.; Zhang, H. Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC). J. Membr. Sci. 2021, 620, 118843. [Google Scholar] [CrossRef]
- Chen, D.; Gao, F.; Liu, T.; Kang, J.; Xu, R.; Cao, Y.; Xiang, M. Fabrication of anti-fouling thin-film composite reverse osmosis membrane via constructing heterogeneous wettability surface. J. Appl. Polym. Sci. 2021, 138, 51256. [Google Scholar] [CrossRef]
- van’t Hul, J.P.; Racz, I.G.; Reith, T. Application of reverse osmosis for the re-use of process water and the reduction of waste water volume in textile washing processes subsequent to reactive dyeing processes. In Proceedings Colloquium “Entwicklungen zur Produkt- und Wasserruckgewinnung aus Industrieabwassern”; Technische Universitat Berlin: Berlin, Germany, 1998; pp. 169–183. [Google Scholar]
- Srisukphun, T.; Chiemchaisri, C.; Urase, T.; Yamamoto, K. Experimentation and modeling of foulant interaction and reverse osmosis membrane fouling during textile wastewater reclamation. Sep. Purif. Technol. 2009, 68, 37–49. [Google Scholar] [CrossRef]
- Srisukphun, T.; Chiemchaisri, C.; Urase, T.; Yamamoto, K. Foulant interaction and RO productivity in textile wastewater reclamation plant. Desalination 2010, 250, 845–849. [Google Scholar] [CrossRef]
- Marszałek, J.; Żyłła, R. Recovery of Water from Textile Dyeing Using Membrane Filtration Processes. Processes 2021, 9, 1833. [Google Scholar] [CrossRef]
- Kaya, Y.; Dayanir, S. Application of nanofiltration and reverse osmosis for treatment and reuse of laundry wastewater. J. Environ. Health Sci. Eng. 2020, 18, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.G.; Aziz, M.; Kasongo, G. Remediation of laundry wastewater with a low-pressure aromatic polyamide thin-film composite reverse osmosis membrane for membrane fouling minimisation and reuse application. Environ. Prot. Eng. 2022, 48, 43. [Google Scholar] [CrossRef]
- Panpanit, S.; Visvanathan, C.; Muttamara, S. Separation of oil-water emulsion from car washes. Water Sci. Technol. 2000, 41, 109–116. [Google Scholar] [CrossRef]
- Boussu, K.; Kindts, C.; Vandecasteele, C.; Van der Bruggen, B. Applicability of nanofiltration in the carwash industry. Sep. Purif. Technol. 2007, 54, 139–146. [Google Scholar] [CrossRef]
- Ase, T. Waste Water Treatment and Apparatus Thereof. Japanese Unexamined Patent Application Publication No. JPH04354583A, 8 December 1992. [Google Scholar]
- McLaughlin, M. Closed-loop cleaner recycling. Precis. Clean. 1997, 5, 17–24. [Google Scholar]
- Jönsson, A.S.; Wennerbeck, J. Treatment of high-temperature rinsing water from a degreasing plant by reverse osmosis. Desalination 1997, 114, 175–181. [Google Scholar] [CrossRef]
- Han, S.-W.; Lee, H.Y.; Bae, J.-H.; Ryu, J.-H.; Park, B.-D.; Jeon, S.-D. Analysis of Monitoring and Recycling Technology Technologies of Cleaning Solution and Rinse Water in the Aqueous Cleaning System. Clean Technol. 2001, 7, 225–242. [Google Scholar]
- Cooper, C.M.; McCall, J.; Stokes, S.C.; McKay, C.; Bentley, M.J.; Rosenblum, J.S.; Blewett, T.A.; Huang, Z.; Miara, A.; Talmadge, M.; et al. Oil and Gas Produced Water Reuse: Opportunities, Treatment Needs, and Challenges. ACS ES&T Eng. 2022, 2, 347–366. [Google Scholar] [CrossRef]
- Jeong, N.; Wiltse, M.E.; Boyd, A.; Blewett, T.; Park, S.; Broeckling, C.; Borch, T.; Tong, T. Efficacy of Nanofiltration and Reverse Osmosis for the Treatment of Oil-Field Produced Water Intended for Beneficial Reuse. ACS ES&T Eng. 2023, 3, 1568–1581. [Google Scholar] [CrossRef]
- Sugiyama, S.; Hattori, T.; Sawai, H.; Ueda, A.; Makita, S. Research of Recycling Machine for Cleaning Drainage with Microorganisms that Degrade Detergents. Mitsubishi Heavy Ind. Tech. Rev. 2001, 38, 58–61. (In Japanese) [Google Scholar]
- Shamayeli, K.; Merz, T.; Knop, R.-E. Liquid Membrane-Compatible Detergent Composition. U.S. Patent Application Publication No. 20090320214A1, 31 December 2009. [Google Scholar]
- Shamayeli, K.; Merz, T. Liquid Membrane Compatible Detergent Formulation Comprising Branched Alkoxylated Fatty Alcohols as Non-Ionic Surfactants. U.S. Patent Application Publication No. US20100257676A1, 14 October 2010. [Google Scholar]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef]
- Williams, M.; Deshmukh, R.; Bhattacharyya, D. Separation of hazardous organics by reverse osmosis membranes. Environ. Prog. 1990, 9, 118–125. [Google Scholar] [CrossRef]
- Afonso, M.D.; Geraldes, V.; Rosa, M.J.; de Pinho, M.N. Nanofiltration removal of chlorinated organic compounds from alkaline bleaching effluents in a pulp and paper plant. Water Res. 1992, 26, 1639–1643. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chiang, P.C.; Chang, E.E. Reduction of disinfection by-products precursors by nanofiltration process. J. Hazard. Mater. 2006, 137, 324–331. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Arsuaga, J.M.; Sotto, A. Separation of phenols and their advanced oxidation intermediate products in aqueous solution by NF/RO membranes. Sep. Purif. Technol. 2010, 71, 246–251. [Google Scholar] [CrossRef]
- Arsuaga, J.M.; López-Muñoz, M.J.; Sotto, A. Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination 2010, 250, 829–832. [Google Scholar] [CrossRef]
- Arsuaga, J.M.; Sotto, A.; López-Muñoz, M.J.; Braeken, L. Influence of type and position of functional groups of phenolic compounds on NF/RO performance. J. Membr. Sci. 2011, 372, 380–386. [Google Scholar] [CrossRef]
- Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Sorption of phenolic compounds on NF/RO membrane surfaces: Influence on membrane performance. Desalination 2013, 309, 64–73. [Google Scholar] [CrossRef]
- Escalona, I.; Fortuny, A.; Stüber, F.; Bengoa, C.; Fabregat, A.; Font, J. Fenton coupled with nanofiltration for elimination of Bisphenol A. Desalination 2014, 345, 77–84. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; León, G.; Gómez, M.; Murcia, M.D.; Gómez, E.; Giner, C. Behaviour of RO90 membrane on the removal of 4-nitrophenol and 4-nitroaniline by low pressure reverse osmosis. J. Water Process Eng. 2015, 7, 169–175. [Google Scholar] [CrossRef]
- Kargari, A.; Khazaali, F. Effect of operating parameters on 2-chlorophenol removal from wastewaters by a low-pressure reverse osmosis system. Desalination Water Treat. 2015, 55, 114–124. [Google Scholar] [CrossRef]
- Li, H.; Yu, P.; Luo, Y. Correlation between Organic Fouling of Reverse-Osmosis Membranes and Various Interfacial Interactions. Chem. Eng. Technol. 2015, 38, 131–138. [Google Scholar] [CrossRef]
- Li, H.; Xia, H.; Mei, Y. Modeling organic fouling of reverse osmosis membrane: From adsorption to fouling layer formation. Desalination 2016, 386, 25–31. [Google Scholar] [CrossRef]
- Cassano, A.; Adzet, J.; Molinari, R.; Buonomenna, M.G.; Roig, J.; Drioli, E. Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry. Water Res. 2003, 37, 2426–2434. [Google Scholar] [CrossRef]
- Molinari, R.; Buonomenna, M.; Cassano, A.; Drioli, E. Recovery and recycle of tannins in the leather industry by nanofiltration membranes. J. Chem. Technol. Biotechnol. 2004, 79, 361–368. [Google Scholar] [CrossRef]
- Romero-Dondiz, E.M.; Almazán, J.E.; Rajal, V.B.; Castro-Vidaurre, E.F. Comparison of the performance of ultrafiltration and nanofiltration membranes for recovery and recycle of tannins in the leather industry. J. Clean. Prod. 2016, 135, 71–79. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review. Animals 2019, 9, 856. [Google Scholar] [CrossRef]
- Ganci, J.B. Osmosis Efficiency from Tannin Treatment of Non-Porous Semipermeable Membranes Having Hydrous Heavy Metal Coatings. U.S. Patent 3,853,755, 10 December 1974. [Google Scholar]
- DuPont. Posttreatments for Permasep Permeators. In Permasep Engineering Manual; Bulletin 508; DuPont: Wilmington, DE, USA, 1982. [Google Scholar]
- Sato, Y.; Tamura, M. Tannic Acid as an Important Tool to Improve Quality Standards of Commercial RO/NF Membranes. Kagaku Kogaku Ronbunshu 2008, 34, 493–498. (In Japanese) [Google Scholar] [CrossRef]
- Phadunghus, K.; Wongrueng, A.; Rakruam, P.; Wattanachira, S.; Punyapalakul, P. Efficiencies of NF and RO Membranes on Pharmaceutical Removal and Membrane Fouling Effects. Eng. J. 2017, 21, 101–112. [Google Scholar] [CrossRef]
- Tu, S.-C.; Ravindran, V.; Den, W.; Pirbazari, M. Predictive membrane transport model for nanofiltration processes in water treatment. AIChE J. 2001, 47, 1346–1362. [Google Scholar] [CrossRef]
- Lin, Y.L.; Chiang, P.C.; Chang, E.E. Removal of small trihalomethane precursors from aqueous solution by nanofiltration. J. Hazard. Mater. 2007, 146, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Thamaraiselvan, C.; Noel, M. Membrane Processes for Dye Wastewater Treatment: Recent Progress in Fouling Control. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1007–1040. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep. Purif. Technol. 2001, 22–23, 519–528. [Google Scholar] [CrossRef]
- Ku, Y.; Lee, P.-L.; Wang, W.-Y. Removal of acidic dyestuffs in aqueous solution by nanofiltration. J. Membr. Sci. 2005, 250, 159–165. [Google Scholar] [CrossRef]
- Gomes, A.; Goncalves, I.; Pinho, M. The role of adsorption on nanofiltration of azo dyes. J. Membr. Sci. 2005, 255, 157–165. [Google Scholar] [CrossRef]
- Aydiner, C.; Kaya, Y.; Beril Gönder, Z.; Vergili, I. Evaluation of membrane fouling and flux decline related with mass transport in nanofiltration of tartrazine solution. J. Chem. Technol. Biotechnol. 2010, 85, 1229–1240. [Google Scholar] [CrossRef]
- Aouni, A.; Fersi, C.; Cuartas-Uribe, B.; Bes-Piá, A.; Alcaina-Miranda, M.I.; Dhahbi, M. Study of membrane fouling using synthetic model solutions in UF and NF processes. Chem. Eng. J. 2011, 175, 192–200. [Google Scholar] [CrossRef]
- Chidambaram, T.; Oren, Y.; Noel, M. Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater. Chem. Eng. J. 2015, 262, 156–168. [Google Scholar] [CrossRef]
- Akbari, A.; Remigy, J.C.; Aptel, P. Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chem. Eng. Process. Process Intensif. 2002, 41, 601–609. [Google Scholar] [CrossRef]
- Koyuncu, I.; Topacik, D.; Wiesner, M.R. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Res. 2004, 38, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, I.; Topacik, D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep. Purif. Technol. 2003, 33, 283–294. [Google Scholar] [CrossRef]
- Jiraratananon, R.; Sungpet, A.; Luangsowan, P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination 2000, 130, 177–183. [Google Scholar] [CrossRef]
- Chakraborty, S. Prediction of permeate flux and permeate concentration in nanofiltration of dye solution. Sep. Purif. Technol. 2004, 35, 141–152. [Google Scholar] [CrossRef]
- Sungpet, A.; Jiraratananon, R.; Luangsowan, P. Treatment of effluents from textile-rinsing operations by thermally stable nanofiltration membranes. Desalination 2004, 160, 75–81. [Google Scholar] [CrossRef]
- Pal, S.; Ghosh, A.; Ghosh, T.B.; De, S.; DasGupta, S. Optical quantification of fouling during nanofiltration of dyes. Sep. Purif. Technol. 2006, 52, 372–379. [Google Scholar] [CrossRef]
- Yu, S.; Liu, M.; Ma, M.; Qi, M.; Lü, Z.; Gao, C. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J. Membr. Sci. 2010, 350, 83–91. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Luo, Y.; Yu, P.; Hou, L. Relating organic fouling of reverse osmosis membranes to adsorption during the reclamation of secondary effluents containing methylene blue and rhodamine B. J. Hazard. Mater. 2011, 192, 490–499. [Google Scholar] [CrossRef]
- Chidambaram, T.; Noel, M. Impact of the dye molecule charge on recovery of concentrated salt solution from wastewaters containing dyes by nanofiltration. J. Water Chem. Technol. 2015, 37, 133–139. [Google Scholar] [CrossRef]
- Khoo, Y.S.; Lau, W.J.; Liang, Y.Y.; Karaman, M.; Gürsoy, M.; Ismail, A.F. Eco-friendly surface modification approach to develop thin film nanocomposite membrane with improved desalination and antifouling properties. J. Adv. Res. 2022, 36, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Jee, K.Y.; Lee, Y.T. Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance. Membr. J. 2013, 23, 439–449. [Google Scholar] [CrossRef]
- Li, H.; Yu, P.; Luo, Y. Fouling mechanisms and primary foulant constituents in reverse osmosis membrane reclamation of a petrochemical secondary effluent. Desalination Water Treat. 2015, 54, 3200–3210. [Google Scholar] [CrossRef]
- Martinez, F.; Lopez-Munoz, M.J.; Aguado, J.; Melero, J.A.; Arsuaga, J.; Sotto, A.; Molina, R.; Segura, Y.; Pariente, M.I.; Revilla, A.; et al. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Res. 2013, 47, 5647–5658. [Google Scholar] [CrossRef] [PubMed]
- Katebian, L.; Hoffmann, M.R.; Jiang, S.C. Incorporation of Quorum Sensing Inhibitors onto Reverse Osmosis Membranes for Biofouling Prevention in Seawater Desalination. Environ. Eng. Sci. 2018, 35, 261–269. [Google Scholar] [CrossRef]
- Katebian, L.; Hoffmann, M.R.; Jiang, S. Membrane Surface Modification Using Quorum Sensing Inhibitors for Biofouling Prevention. In Proceedings of the AMTA/AWWA Membrane Technology Conference, Long Beach, CA, USA, 13–17 February 2017. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Method 1664, Revision B: N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-Polar Material) by Extraction and Gravimetry; PB2011-100735/XAB, EPA/821/R-10/001; Environmental Protection Agency, Office of Water: Washington, DC, USA, 2010.
- Biazon, C.L.; Barreto, G.O.; de Oliveira, E.C. The Impact of the Recovery in the Uncertainty Evaluation of the Oil and Grease by Extraction and Gravimetry in Produced Waters Derived From the Petroleum Extraction Process. Pet. Sci. Technol. 2015, 33, 487–493. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies: A critical review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Kiefer, C.; Mussalli, Y. Effect of oil spills on coastal power plants, refineries, and desalination plants. In Proceedings of the International Joint Power Generation Conference, Atlanta, GA, USA, 18–25 October 1992. [Google Scholar]
- Mussalli, Y.; Paisie, J.; Tanura, R. Oil Spill Protection of Water Intakes. In Proceedings of the 55th International Water Conference, Pittsburgh, PA, USA, 31 October–3 November 1994; p. IWC-94-27. [Google Scholar]
- Redondo, J.A.; Lomax, I. Experiences with the pretreatment of raw water with high fouling potential for reverse osmosis plant using FILMTEC membranes. Desalination 1997, 110, 167–182. [Google Scholar] [CrossRef]
- AMTA. Pretreatment for Membrane Processes. In Membrane Technology Fact Sheets; American Membrane Technology Association (AMTA): Englewood, FL, USA, 2010. [Google Scholar]
- IPIECA. Petroleum Refining Water/Wastewater Use and Management; IPIECA: London, UK, 2010. [Google Scholar]
- Voutchkov, N. Desalination Engineering: Planning and Design; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Muirhead, A.; Beardsley, S.; Aboudiwan, J. Performance of the 12,000 m3/d seawater reverse osmosis desalination plant at Jeddah, Saudi Arabia January 1979 through January 1981. Desalination 1982, 42, 115–128. [Google Scholar] [CrossRef]
- Muhurji, M.; Faggard, G.; Van Der Mast, V.; Imai, H. Jeddah 1 RO plant—Phase I 15 MGD reverse osmosis plant. Desalination 1989, 76, 75–88. [Google Scholar] [CrossRef]
- Al Ketbi, F.S.; Isnasious, E.Z.; Al Mahyas, A.M. Practical observations on reverse osmosis plants including raw water contamination problems, different intake stations and permeator performance. Desalination 1993, 93, 259–272. [Google Scholar] [CrossRef]
- Goto, T. Oil Spills into Persian Gulf, Their Effect on Desalination Plants and Countermeasures. Bull. Soc. Sea Water Sci. Jpn. 1991, 45, 253–258. (In Japanese) [Google Scholar] [CrossRef]
- Hassan, A.M.; Abanmy, A.; Farooque, A.M.; Rowaili, A.; Al-Rasheed, R.; Mubeen, F.M.; Thankachan, T.S.; Maruyama, K.; Kitigawa, M.; Lwahori, H.; et al. Oil Removal from Oil-Contaminated SWRO Feed. In Proceedings of the IDA World Conference on Desalination and Water Sciences, Abu-Dhabi, United Arab Emirates, 18–24 November 1995. [Google Scholar]
- Jian, W.; Kitanaka, A.; Nishijima, W.; Baes, A.U.; Okada, M. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process. Water Res. 1999, 33, 1857–1863. [Google Scholar] [CrossRef]
- Tansel, B.; Villate, J. Assessment of Oil Pretreatment Technologies to Improve Performance of Reverse Osmosis Systems; DAAK70-91-K-0004, DI-S-30592, AD-A252 360/3/XAB; Florida International University: Miami, FL, USA, 1992. [Google Scholar]
- Ogunbiyi, O.; Al-Rewaily, R.; Saththasivam, J.; Lawler, J.; Liu, Z. Oil spill management to prevent desalination plant shutdown from the perspectives of offshore cleanup, seawater intake and onshore pretreatment. Desalination 2023, 564, 116780. [Google Scholar] [CrossRef]
- Tao, F.; Curtice, S.; Hobbs, R.; Sides, J.L.; Wieser, J.; Dyke, C.; Tuohey, D.; Pilger, P.F. Reverse osmosis process successfully converts oil field brine into freshwater. Oil Gas J. 1993, 91, 88–91. [Google Scholar]
- Franks, R.; Bartels, C.; Anit, A. RO Membrane Performance when Reclaiming Produced Water from the Oil Extraction Process. In Proceedings of the IDA World Congress 2009 on Desalination and Water Reuse, Dubai, United Arab Emirates, 7–12 November 2009. [Google Scholar]
- Loganathan, K.; Chelme-Ayala, P.; Gamal El-Din, M. Pilot-scale study on the reverse osmosis treatment of oil sands tailings pond water: Impact of pretreatment on process performance. Desalination 2015, 360, 52–60. [Google Scholar] [CrossRef]
- Visvanathan, C.; Svenstrup, P.; Ariyamethee, P. Volume reduction of produced water generated from natural gas production process using membrane technology. Water Sci. Technol. 2000, 41, 117–123. [Google Scholar] [CrossRef]
- Bastos, P.D.A.; Santos, M.A.; Carvalho, P.J.; Crespo, J.G. Reverse osmosis performance on stripped phenolic sour water treatment—A study on the effect of oil and grease and osmotic pressure. J. Environ. Manag. 2020, 261, 110229. [Google Scholar] [CrossRef]
- Saatci, Y.; Arslan, E.I.; Konar, V. Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor. Bioresour. Technol. 2003, 87, 269–272. [Google Scholar] [CrossRef]
- Abbott, K.W.; Dittburner, D. RO/DI Pretreatment To Remove Oils and Organics and Allow for Process Water Reuse. Ultrapure Water 2007, 24, 38–43. [Google Scholar]
- Adamson, W.L.; Weber, B.E.; Nordham, D.J. Navy Shipboard Three-Pass Reverse Osmosis System for Production of High-Purity Water from Seawater. Ultrapure Water 1996, 13, 21–30. [Google Scholar]
- Piekutin, J. The Identification of Fouling in Reverse Osmosis in the Treatment of Water with Petroleum Substances. Water 2021, 13, 1092. [Google Scholar] [CrossRef]
- Nordham, D.J. Oil-Fouling Evaluation of Membranes and Components of a Navy Shipboard RO Desalination System. Ultrapure Water 1999, 16, 18–28. [Google Scholar]
- Mohammadi, T.; Kazemimoghadam, M.; Saadabadi, M. Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination 2003, 157, 369–375. [Google Scholar] [CrossRef]
- Hodgkiess, T.; Hanbury, W.T.; Law, G.B.; Al-Ghasham, T.Y. Effect of hydrocarbon contaminants on the performance of RO membranes. Desalination 2001, 138, 283–289. [Google Scholar] [CrossRef]
- Owadally, M.H. Effects of Hydrocarbon Fouling on Reverse Osmosis Membranes. Master’s Thesis, University of Glasgow, Glasgow, UK, 2008. [Google Scholar]
- Shaw, D.G. (Ed.) Hydrocarbons with Water and Seawater: Part I: Hydrocarbons C5 to C7; Pergamon-Press: Oxford, UK, 1989; Volume 37. [Google Scholar]
- Shaw, D.G. (Ed.) Hydrocarbons with Water and Seawater: Part II: Hydrocarbons C8 to C36; Pergamon-Press: Oxford, UK, 1989; Volume 38. [Google Scholar]
- Yaws, C.L.; Narasimhan, P.K. Solubility of Hydrocarbons in Salt Water. In Water Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 559–561. [Google Scholar]
- Quéméneur, M.; Marty, Y. Fatty acids and sterols in domestic wastewaters. Water Res. 1994, 28, 1217–1226. [Google Scholar] [CrossRef]
- Ang, W.S.; Tiraferri, A.; Chen, K.L.; Elimelech, M. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. J. Membr. Sci. 2011, 376, 196–206. [Google Scholar] [CrossRef]
- Puro, L.; Mänttäri, M.; Pihlajamäki, A.; Nyström, M. Characterization of Modified Nanofiltration Membranes by Octanoic Acid Permeation and FTIR Analysis. Chem. Eng. Res. Des. 2006, 84, 87–96. [Google Scholar] [CrossRef]
- Kim, H.-S.; Ham, S.-Y.; Jang, Y.; Sun, P.-F.; Park, J.-H.; Hoon Lee, J.; Park, H.-D. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel 2019, 253, 754–761. [Google Scholar] [CrossRef]
- Omar, H. Advances in string-wound sediment filter cartridges. Water Cond. Purif. 2001, 43, 34–37. [Google Scholar]
- Johnson, J. Part 1: Reducing the total costs of operation-the art of membrane cleaning. Ultrapure Water 2010, 27, 31–36. [Google Scholar]
- Kucera, J. Reverse Osmosis: Industrial Processes and Applications, 2nd ed.; Scrivener Publishing/John Wiley & Sons: Beverly, MA, USA, 2015. [Google Scholar]
- Kumari, M.; Pulimi, M. Phthalate esters: Occurrence, toxicity, bioremediation, and advanced oxidation processes. Water Sci. Technol. 2023, 87, 2090–2115. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, Z. Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination 2001, 141, 15–22. [Google Scholar] [CrossRef]
- Bodzek, M.; Dudziak, M.; Luks-Betlej, K. Application of membrane techniques to water purification. Removal of phthalates. Desalination 2004, 162, 121–128. [Google Scholar] [CrossRef]
- Kinjo, N.; Nakagawa, T. Antiplasticization in the Slightly Plasticized Poly(vinyl chloride). Polym. J. 1973, 4, 143–153. [Google Scholar] [CrossRef]
- Jackson, W.J., Jr.; Caldwell, J.R. Antiplasticization. II. Characteristics of antiplasticizers. J. Appl. Polym. Sci. 1967, 11, 211–226. [Google Scholar] [CrossRef]
- Kinjo, N.; Nakagawa, T. Antiplasticization in the Slightly Plasticized Polyvinyl Chloride. J. Soc. Mater. Sci. Jpn. 1973, 22, 462–465. (In Japanese) [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.Y.; Sheth, P.M.; Mengote, D.M.P.; Fane, A.G. Interaction of Endocrine Disrupting Chemicals with Reverse Osmosis and Nanofiltration Membranes. In Proceedings of the IDA World Congress, Dubai, United Arab Emirates, 7–12 November 2009; p. IDAWC/DB09-166. [Google Scholar]
- Cheng, A.H.; Wang, X.D.; Wang, L.; Zhao, D. Adsorption of Phthalates onto Nanofiltration Membranes: Effect of Solution Chemistry. Appl. Mech. Mater. 2014, 538, 68–71. [Google Scholar] [CrossRef]
- Siler, J.L. Reverse Osmosis Performance with Solutions Containing Tri-n-butyl Phosphate; Savannah River Site (SRS): Aiken, SC, USA, 1991. [Google Scholar] [CrossRef]
- Kosaka, K.; Hayashida, T.; Terasaki, M.; Asami, M.; Yamada, T.; Itoh, M.; Akiba, M. Elution of bisphenol A and its chlorination by-products from lined pipes in water supply process. Water Supply 2012, 12, 791–798. [Google Scholar] [CrossRef]
- Bruchet, A.; Elyasmino, N.; Decottignies, V.; Noyon, N. Leaching of bisphenol A and F from new and old epoxy coatings: Laboratory and field studies. Water Supply 2014, 14, 383–389. [Google Scholar] [CrossRef]
- Kleffner, C.; Braun, G.; Antonyuk, S. Influence of Membrane Intrusion on Permeate-Sided Pressure Drop During High-Pressure Reverse Osmosis. Chem. Ing. Tech. 2019, 91, 443–454. [Google Scholar] [CrossRef]
- Andes, K.; Bartels, C.R.; Liu, E.; Sheehy, N. Method for Enhanced Cleaning of Fouled RO Elements. In Proceedings of the IDA World Congress on Desalination and Water Reuse, Tianjin, China, 20–25 October 2013; p. IDAWC/TIAN13-094. [Google Scholar]
- Bairinji, R.; Tanaka, T. Separating Unit for Liquid. Japanese Unexamined Patent Application Publication No. JPS5417383A, 8 February 1979. [Google Scholar]
- Dutton, F.G.; Baynard, V.A. Non-Fouling Epoxy Resin System for Permeate Carrier Reverse Osmosis Membrane. U.S. Patent Application US20030034294A1, 20 February 2003. [Google Scholar]
- Okazaki, M.; Fusaoka, Y.; Murakishi, H. Treatment of Reverse Osmosis Membrane and Reverse Osmosis Membrane Separation Element. Japanese Unexamined Patent Application Publication No. JPH0780261A, 28 March 1995. [Google Scholar]
- Anastasio, D.; McCutcheon, J.R. Teaching Mass Transfer and Filtration Using Crossflow Reverse Osmosis and Nanofiltration: An Experiment for the Undergraduate Unit Operations Lab. Chem. Eng. Educ. 2012, 46, 19–28. [Google Scholar]
- Wright, S.; Pellegrino, J.; Amy, G. Humectant release from membrane materials. J. Membr. Sci. 2005, 246, 227–234. [Google Scholar] [CrossRef]
- Beciragic, A.; Weinberg, H. Membrane-Disinfectant Reactions: Developing Methods for the Detection of Membrane Leachates and Byproducts. In Proceedings of the AMTA/AWWA Membrane Technology Conference, New Orleans, LA, USA, 25 February–1 March 2019. [Google Scholar]
- Ersan, M.S.; Ladner, D.A.; Karanfil, T. N-Nitrosodimethylamine (NDMA) Precursors Leach from Nanofiltration Membranes. Environ. Sci. Technol. Lett. 2015, 2, 66–69. [Google Scholar] [CrossRef]
- Maeda, Y. Recent Progress in RO Membranes for High-Purity Water Production. In Proceedings of the ULTRAPURE WATER Asia 2000, Singapore, 2–4 October 2000. [Google Scholar]
- Kawada, I. Production of Ultrapure Water and Exchange Method for Replacing Reverse Osmotic Membrane Element. Japanese Unexamined Patent Application Publication No. JPH09299950A, 25 November 1997. [Google Scholar]
- Cordoba, S.P.; Das, A.; Warsinger, D.M. Improved Batch Reverse Osmosis Configuration for Better Energy Efficiency. In Proceedings of the IDA World Congress, Dubai, United Arab Emirates, 20–24 October 2019; p. IDA-ES-Warsinger. [Google Scholar]
- Collentro, W.V. Pharmaceutical Water: System Design, Operation, and Validation, 2nd ed.; Informa Healthcare: New York, NY, USA, 2011. [Google Scholar]
- Damasiewicz, M.J.; Polkinghorne, K.R.; Kerr, P.G. Water quality in conventional and home haemodialysis. Nat. Rev. Nephrol. 2012, 8, 725–734. [Google Scholar] [CrossRef]
- Van Wagner, E.M.; Sagle, A.C.; Sharma, M.M.; Freeman, B.D. Effect of crossflow testing conditions, including feed pH and continuous feed filtration, on commercial reverse osmosis membrane performance. J. Membr. Sci. 2009, 345, 97–109. [Google Scholar] [CrossRef]
- Koizumi, M.; Furuichi, M. Water Treating Apparatus. Japanese Unexamined Patent Application Publication No. JPH04354581A, 8 December 1992. [Google Scholar]
- Shimizu, K.; Tanabe, M. Pure Water Producing Apparatus. Japanese Unexamined Patent Application Publication No. JPH11165168A, 22 June 1999. [Google Scholar]
- Tanaka, K.; Hachisuka, H. Pure Water Producing System. Japanese Unexamined Patent Application Publication No. JPH11309354A, 9 November 1999. [Google Scholar]
- Simister, C.; Caron, F.; Gedye, R. Determination of the thermal degradation rate of polystyrene-divinyl benzene ion exchange resins in ultra-pure water at ambient and service temperature. J. Radioanal. Nucl. Chem. 2004, 261, 523–531. [Google Scholar] [CrossRef]
- Agui, W.; Takeuchi, M.; Abe, M.; Ogino, K. Fundamental Study on the Production of Ultrapure Water. VI Leachables from Strong Base Anion Exchange Resins. J. Jpn. Oil Chem. Soc. 1990, 39, 307–313. [Google Scholar] [CrossRef]
- Mickols, W.E.; Roy, A.; Jemenez, J.; Majamaa, K.; Connolly, C. A Step Forward in Fouling Prevention with Novel Membrane Chemistry. In Proceedings of the 7th IWA World Congress on Water Reclamation and Reuse, Brisbane, Australia, 20–25 September 2009. [Google Scholar]
- Löwenberg, J.; Baum, J.A.; Zimmermann, Y.-S.; Groot, C.; van den Broek, W.; Wintgens, T. Comparison of pre-treatment technologies towards improving reverse osmosis desalination of cooling tower blow down. Desalination 2015, 357, 140–149. [Google Scholar] [CrossRef]
- Davood Abadi Farahani, M.H.; Borghei, S.M.; Vatanpour, V. Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis. J. Water Process Eng. 2016, 10, 188–199. [Google Scholar] [CrossRef]
- Ahmed, J.; Jamal, Y.; Shujaatullah, M. Recovery of cooling tower blowdown water through reverse osmosis (RO): Review of water parameters affecting membrane fouling and pretreatment schemes. Desalination Water Treat. 2020, 189, 9–17. [Google Scholar] [CrossRef]
- Bhattacharya, P.K.; Jayan, R.; Bhattacharjee, C. A combined biological and membrane-based treatment of prehydrolysis liquor from pulp mill. Sep. Purif. Technol. 2005, 45, 119–130. [Google Scholar] [CrossRef]
- Pizzichini, M.; Russo, C.; Meo, C.D. Purification of pulp and paper wastewater, with membrane technology, for water reuse in a closed loop. Desalination 2005, 178, 351–359. [Google Scholar] [CrossRef]
- Manttari, M.; Nystrom, M. Membrane filtration for tertiary treatment of biologically treated effluents from the pulp and paper industry. Water Sci. Technol. 2007, 55, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mänttäri, M.; Kuosa, M.; Kallas, J.; Nyström, M. Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry. J. Membr. Sci. 2008, 309, 112–119. [Google Scholar] [CrossRef]
- Beril Gönder, Z.; Arayici, S.; Barlas, H. Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Sep. Purif. Technol. 2011, 76, 292–302. [Google Scholar] [CrossRef]
- Kaya, Y.; Barlas, H.; Arayici, S. Nanofiltration of Cleaning-in-Place (CIP) wastewater in a detergent plant: Effects of pH, temperature and transmembrane pressure on flux behavior. Sep. Purif. Technol. 2009, 65, 117–129. [Google Scholar] [CrossRef]
- Muraleedaaran, S.; Li, X.; Li, L.; Lee, R.L. Is Reverse Osmosis Effective for Produced Water Purification: Viability and Economic Analysis. In Proceedings of the SPE Western Regional Meeting, San Jose, CA, USA, 24–26 March 2009. [Google Scholar]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Kim, E.-S.; Liu, Y.; Gamal El-Din, M. The effects of pretreatment on nanofiltration and reverse osmosis membrane filtration for desalination of oil sands process-affected water. Sep. Purif. Technol. 2011, 81, 418–428. [Google Scholar] [CrossRef]
- Mondal, S. Polymeric membranes for produced water treatment: An overview of fouling behavior and its control. Rev. Chem. Eng. 2016, 32, 611–628. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Firdaus, S. Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Sep. Purif. Technol. 2013, 104, 26–31. [Google Scholar] [CrossRef]
- Koyuncu, I. An advanced treatment of high-strength opium alkaloid processing industry wastewaters with membrane technology: Pretreatment, fouling and retention characteristics of membranes. Desalination 2003, 155, 265–275. [Google Scholar] [CrossRef]
- Dolar, D.; Drašinac, N.; Košutić, K.; Škorić, I.; Ašperger, D. Adsorption of hydrophilic and hydrophobic pharmaceuticals on RO/NF membranes: Identification of interactions using FTIR. J. Appl. Polym. Sci. 2017, 134, 44426. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; De Vreese, I.; Vandecasteele, C. Water Reclamation in the Textile Industry: Nanofiltration of Dye Baths for Wool Dyeing. Ind. Eng. Chem. Res. 2001, 40, 3973–3978. [Google Scholar] [CrossRef]
- Cornelis, G.; Van der Bruggen, B.; Vandecasteele, C.; De Vreese, I. Purification of surfactant containing effluents from the carpet industry using ultrafiltration and nanofiltration. In Proceedings of the ICOM, Seoul, Republic of Korea, 21–26 August 2005; pp. 91–92. [Google Scholar]
- Van der Bruggen, B.; Cornelis, G.; Vandecasteele, C.; Devreese, I. Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 2005, 175, 111–119. [Google Scholar] [CrossRef]
- Kim, I.-C.; Lee, K.-H. Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes. Desalination 2006, 192, 246–251. [Google Scholar] [CrossRef]
- Yu, S.C.; Chen, Z.W.; Liu, M.H.; Zhao, J.W. Comparative Study on the Treatment of Biologically Treated Textile Effluent by Nanofiltration and Reverse Osmosis for Water Reuse. Adv. Mater. Res. 2012, 441, 584–588. [Google Scholar] [CrossRef]
- Srisukphun, T.; Chiemchaisri, C.; Chiemchaisri, W.; Thanuttamavong, M. Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater. Environ. Eng. Res. 2016, 21, 45–51. [Google Scholar] [CrossRef]
- Fababuj-Roger, M.; Mendoza-Roca, J.A.; Galiana-Aleixandre, M.V.; Bes-Piá, A.; Cuartas-Uribe, B.; Iborra-Clar, A. Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment. Desalination 2007, 204, 219–226. [Google Scholar] [CrossRef]
- Wagner, T.V.; Parsons, J.R.; Rijnaarts, H.H.M.; de Voogt, P.; Langenhoff, A.A.M. A review on the removal of conditioning chemicals from cooling tower water in constructed wetlands. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1094–1125. [Google Scholar] [CrossRef]
- Alborzfar, M.; Jonsson, G.; GrØn, C. Removal of natural organic matter from two types of humic ground waters by nanofiltration. Water Res. 1998, 32, 2983–2994. [Google Scholar] [CrossRef]
- George, J.E., III; Hansen, E.; Thoma, J.J. The ICR Benchscale Treatment Study Experience: Summary of Data and Insights from a Commercial Laboratory. In Proceedings of the AWWA Water Quality Technology Conference, Tampa, FL, USA, 31 October–3 November 1999. [Google Scholar]
- Richards, A.; Suratt, W.; Winters, H.; Kree, D. Solving Membrane Fouling for the Boca Raton 40-mgd Membrane Water Treatment Plant: The Interaction of Humic Acids, pH and Antiscalant with Membrane Surfaces. In Proceedings of the AWWA Membrane Technology Conference, San Santonio, TX, USA, 4–7 March 2001. [Google Scholar]
- Brinson, F.A.; Kiefer, C.A.; Suratt, W.B.; Helfrich, C.; Casey, W.; Said, H. Process Optimization During the First Year of Operation of a 40-mgd Nanofiltration Plant. In Proceedings of the AWWA Annual Meeting, San Francisco, CA, USA, 12–16 June 2005. [Google Scholar]
- Hobbs, C.; Taylor, J.; Hong, S. Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater. J. Water Supply Res. Technol. AQUA 2006, 55, 559–570. [Google Scholar] [CrossRef]
- Brown, D.T.; Barnes, A.; Jurczak, P.M.; Cantor, M.; Watson, I.C.; Harris, C.; Duranceau, S.J.; Hart, G. Pilot Testing the Center Port Vessel Design, Town of Jupiter, Florida. In Proceedings of the AMTA Biennial Conference, Las Vegas, NV, USA, 23–26 July 2007. [Google Scholar]
- Watson, I.C.; Wilder, R.; Jurczak, P. 14.5 mgd Split Feed Nanofiltration Water Treatment Plant Five Successful Years of Operation at Jupiter, Florida. In Proceedings of the IDA World Congress on Desalination and Water Reuse, San Diego, CA, USA, 30 August–4 September 2015; p. IDA15WC-Watson_51547. [Google Scholar]
- Atoche, J.C.; Wietgrefe, J.M.; Hart, G.K.; Arroyo, M.; Johnson, R.; Alza, C. Design, Construction and Operation of the City of Fort Lauderdale Peele-Dixie Plant. In Proceedings of the AMTA/SEDA Annual Conference, Miami Beach, FL, USA, 18–21 July 2011. [Google Scholar]
- Owens, E.; Lauri, P.; Igar, K.; Mitchell, R. The Mesa Water Reliability Facility— Achieving a Local, Sustainable Water Supply in Southern California. In Proceedings of the AWWA/AMTA Membrane Technology Conference, Las Vegas, NV, USA, 10–14 March 2014. [Google Scholar]
- Brown, D.; White, M.; Almanzar, L.; Kramer, M. Pilot Testing of Nanofiltration To Minimize TOC Levels and DBP Formation. In Proceedings of the AWWA/AMTA Membrane Technology Conference, New Orleans, LA, USA, 25–28 February 2019. [Google Scholar]
- Jin, X.; Jawor, A.; Kim, S.; Hoek, E.M.V. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination 2009, 239, 346–359. [Google Scholar] [CrossRef]
- Nederlof, M.M.; Kruithof, J.C.; Taylor, J.S.; van der Kooij, D.; Schippers, J.C. Comparison of NF/RO membrane performance in integrated membrane systems. Desalination 2000, 131, 257–269. [Google Scholar] [CrossRef]
- van der Hoek, J.P.; Bonné, P.A.C.; van Soest, E.A.M.; Graveland, A. Fouling of Reverse Osmosis Membranes: Effect of Pretreatment and Operating Conditions. In Proceedings of the AWWA Membrane Technology Conference, New Orleans, LA, USA, 23–26 February 1997; pp. 1029–1042. [Google Scholar]
- Bonné, P.A.C.; Hofman, J.A.M.H.; van der Hoek, J.P. Scaling control of RO membranes and direct treatment of surface water. Desalination 2000, 132, 109–119. [Google Scholar] [CrossRef]
- Lozier, J.C.; Carlson, M. Nanofiltration Treatment of a Highly Organic Surface Water. In Proceedings of the AWWA Annual Conference, Vancouver, BC, Canada, 18–22 June 1992; pp. 715–746. [Google Scholar]
- Kruithof, J.C.; Hiemstra, P.; Kamp, P.C.; Hoek, J.P.v.d.; Taylor, J.S.; Schippers, J.C. Integrated Multi-Objective Membrane Systems for Control of Microbials and DBP-Precursors. In Proceedings of the AWWA Membrane Technology Conference, New Orleans, LA, USA, 23–26 February 1997; pp. 307–326. [Google Scholar]
- Cho, J.; Amy, G.; Pellegrino, J. Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Res. 1999, 33, 2517–2526. [Google Scholar] [CrossRef]
- Yoon, Y.; Amy, G.; Cho, J.; Her, N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005, 173, 209–221. [Google Scholar] [CrossRef]
- Sentana, I.; Rodríguez, M.; Sentana, E.; M’Birek, C.; Prats, D. Reduction of disinfection by-products in natural waters using nanofiltration membranes. Desalination 2010, 250, 702–706. [Google Scholar] [CrossRef]
- Wilkes, D.R.; Chellam, S.; Bonacquisti, T.P.; Long, B.W.; Jacangelo, J.G. Conventional Treatment as a Pretreatment for Nanofiltration: Impact on DBP Precursor Removal, Fouling, and Facilities Design. In Proceedings of the AWWA Annual Conference, Volume D, Water Quality, Toronto, ON, Canada, 23–27 June 1996; pp. 1041–1068. [Google Scholar]
- Kruithof, J.C.; Schoonenberg, F.; van Passen, J.A.M.; Hiemstra, P. Integrated Multi-Objective Membrane Systems River Bank Filtration as a Pretreatment Step for Nanofiltration. In Proceedings of the AWWA Annual Conference, Volume D, Water Quality, Dallas, TX, USA, 21–25 June 1998; pp. 513–526. [Google Scholar]
- van Paassen, J.A.; Kruithof, J.C.; Bakker, S.M.; Kegel, F.S. Integrated multi-objective membrane systems for surface water treatment: Pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment. Desalination 1998, 118, 239–248. [Google Scholar] [CrossRef]
- Kouadio, P.; Tétrault, M. Nanofiltration of colored surface water, Quebec’s experience. In Proceedings of the Membranes in Drinking and Industrial Water Production, Mulheim an der Ruhr, Germany, 22–26 September 2002. [Google Scholar]
- Lee, S.; Lee, C.-H. Effect of membrane properties and pretreatment on flux and NOM rejection in surface water nanofiltration. Sep. Purif. Technol. 2007, 56, 1–8. [Google Scholar] [CrossRef]
- Speth, T.F.; Gusses, A.M.; Scott Summers, R. Evaluation of nanofiltration pretreatments for flux loss control. Desalination 2000, 130, 31–44. [Google Scholar] [CrossRef]
- Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Petrinic, I.; Luxbacher, T.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C. Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. J. Membr. Sci. 2009, 330, 90–103. [Google Scholar] [CrossRef]
- Makdissy, G.; Huck, P.M.; Reid, M.M.; Leppard, G.G.; Haberkamp, J.; Jekel, M.; Peldszus, S. Investigating the fouling layer of polyamide nanofiltration membranes treating two different natural waters: Internal heterogeneity yet converging surface properties. J. Water Supply Res. Technol. AQUA 2010, 59, 164–178. [Google Scholar] [CrossRef]
- Kamp, P.C.; Kruithof, J.C.; Folmer, H.C. UF/RO treatment plant Heemskerk: From challenge to full scale application. Desalination 2000, 131, 27–35. [Google Scholar] [CrossRef]
- Kruthiof, J.C.; Kamp, P.C.; Folmer, H.C. Three Years of Practical Experience at PWN’s UF/RO Treatment Plant at Heemskerk. In Proceedings of the AWWA Membrane Technology Conference, Atlanta, GA, USA, 2–5 March 2003. [Google Scholar]
- Kilduff, J.E.; Mattaraj, S.; Belfort, G. Flux decline during nanofiltration of naturally-occurring dissolved organic matter: Effects of osmotic pressure, membrane permeability, and cake formation. J. Membr. Sci. 2004, 239, 39–53. [Google Scholar] [CrossRef]
- Lee, S.; Cho, J.; Elimelech, M. Combined influence of natural organic matter (NOM) and colloidal particles on nanofiltration membrane fouling. J. Membr. Sci. 2005, 262, 27–41. [Google Scholar] [CrossRef]
- Teixeira, M.R.; Sousa, V.S. Fouling of nanofiltration membrane: Effects of NOM molecular weight and microcystins. Desalination 2013, 315, 149–155. [Google Scholar] [CrossRef]
- Feng, G.; Chu, H.; Dong, B. Characterizing dissolved organic matter fouling of nanofiltration membranes and evaluating effects of naproxen retention. Desalination Water Treat. 2015, 56, 2835–2847. [Google Scholar] [CrossRef]
- Nilson, J.A.; DiGiano, F.A. Influence of NOM composition on nanofiltration. J. AWWA 1996, 88, 53–66. [Google Scholar] [CrossRef]
- Higashi, S.; Kawabata, Y.; Ikeda, K.; Shimizu, Y. Fouling of RO membranes by Natural Organic Matter: Effects of Molecular Weight Fraction. J. EICA 2008, 13, 15–20. [Google Scholar]
- Richardson, N.L.; Argo, D.G. Orange County’s 5 MGD reverse osmosis plant. Desalination 1977, 23, 563–573. [Google Scholar] [CrossRef]
- Freeman, S.D.N.; Morin, O.J. Recent developments in membrane water reuse projects. Desalination 1995, 103, 19–30. [Google Scholar] [CrossRef]
- Leslie, G.L.; Dunivin, W.R.; Gabillet, P.; Conklin, S.R.; Mills, W.R.; Sudak, R.G. Pilot testing of microfiltration and ultrafiltration upstream of reverse osmosis during reclamation of municipal wastewater. In Proceedings of the ADA Biennial Conference & Exposition, Monterey, CA, USA, 4–8 August 1996. [Google Scholar]
- Gagliardo, P.; Adham, S.; Trussell, R. Water Repurification Using Reverse Osmosis: Thin Film Composite vs. Cellulose Acetate Membranes. In Proceedings of the AWWA Membrane Technology Conference, New Orleans, LA, USA, 23–26 February 1997; pp. 597–608. [Google Scholar]
- Thomas, J.C. Advanced water treatment (AWT) facility at Madras Refineries Limited, Madras—Sewage water reused. Desalination 1994, 98, 295–301. [Google Scholar] [CrossRef]
- Turner, A.G.; Neelakantan, P.S.; Gajendran, N. A novel new water source for Madras Fertilisers Ltd. and Supplement: Assessment of Train ‘A’ Performance During Six Months Operations at Madras Fertilisers Ltd. In Proceedings of the IDA and WRPC World Conference on Desalination and Water Treatment, Yokohama, Japan, 3–6 November 1993; pp. 453–461. [Google Scholar]
- Zhao, Y.; Song, L.; Ong, S.L. Fouling of RO membranes by effluent organic matter (EfOM): Relating major components of EfOM to their characteristic fouling behaviors. J. Membr. Sci. 2010, 349, 75–82. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Z.; Huo, Y.; Yang, M.; Zheng, X.; Zhang, Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018, 67, 309–317. [Google Scholar] [CrossRef]
- Jarusutthirak, C.; Amy, G. Membrane filtration of wastewater effluents for reuse: Effluent organic matter rejection and fouling. Water Sci. Technol. 2001, 43, 225–232. [Google Scholar] [CrossRef]
- Jarusutthirak, C.; Amy, G.; Croué, J.-P. Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination 2002, 145, 247–255. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Bellona, C.; Amy, G.; Macalady, D. Utilizing Membrane Surface and Solute Properties to Assess the Rejection Behavior of Organic Trace Pollutants in High-Pressure Membrane Applications. In Proceedings of the 18th Annual Symposium, WateReuse Association, San Antonio, TX, USA, 7–9 September 2003. [Google Scholar]
- Jarusutthirak, C.; Amy, G. Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ. Sci. Technol. 2006, 40, 969–974. [Google Scholar] [CrossRef]
- Mortensen, E.R.; Cath, T.Y.; Brant, J.A.; Dennett, K.E.; Childress, A.E. Evaluation of Membrane Processes for Reducing Total Dissolved Solids Discharged to the Truckee River. J. Environ. Eng. 2007, 133, 1136–1144. [Google Scholar] [CrossRef]
- Kent, F.; Farahbakhsh, K. Addressing Reverse Osmosis Fouling within Water Reclamation—A Side-By-Side Comparison of Low-Pressure Membrane Pretreatments. In Proceedings of the WEF Membrane Applications 2010, Anaheim, CA, USA, 6–9 June 2010. [Google Scholar]
- Kent, F.C.; Farahbakhsh, K.; Mahendran, B.; Jaklewicz, M.; Liss, S.N.; Zhou, H. Water reclamation using reverse osmosis: Analysis of fouling propagation given tertiary membrane filtration and MBR pretreatments. J. Membr. Sci. 2011, 382, 328–338. [Google Scholar] [CrossRef]
- Salgado, B.; Majamaa, K.; Sanz, J.; Molist, J. Design and start-up experiences of 19,000 m3/d Camp de Tarragona-Vilaseca Water Reclamation Plant. Desalination Water Treat. 2013, 51, 1519–1526. [Google Scholar] [CrossRef]
- Brown, D.J.; Malki, M.; Utter, J. The Perils of Using Chloramines for Pretreatment of Water Reuse RO. In Proceedings of the AMTA/AWWA Membrane Technology Conference, Las Vegas, NV, USA, 21–25 February 2022. [Google Scholar]
- Bellona, C.; Drewes, J.E.; Luna, J.; Xu, P.; Hoppe, C.; Amy, G. Comparison of Nanofiltration and Reverse Osmosis in Terms of Water Quality and Operational Performance for Treating Recycled Water. In Proceedings of the AMTA Biennial Conference, Anaheim, CA, USA, 30 July–2 August 2006. [Google Scholar]
- Bellona, C.; Drewes, J.E.; Oelker, G.; Luna, J.; Filteau, G.; Amy, G. Comparing nanofiltration and reverse osmosis for drinking water augmentation. J. Am. Water Work. Assoc. 2008, 100, 102–116. [Google Scholar] [CrossRef]
- Won, W.; Broley, W.; Owens, E. More Than a Decade of Operational Experience with MF/RO Technology at West Basin Municipal Water District. In Proceedings of the AWWA Annual Conference, San Diego, CA, USA, 14–18 June 2009. [Google Scholar]
- Bellona, C.L.; Wuertle, A.; Xu, P.; Drewes, J.E. Evaluation of a bench-scale membrane fouling protocol to determine fouling propensities of membranes during full-scale water reuse applications. In Proceedings of the 7th IWA World Congress on Water Reclamation and Reuse, Brisbane, Australia, 20–25 September 2009. [Google Scholar]
- Won, W.; Owens, E. Comparison of RO Membrane Performance: From Qualification Testing to Full Scale Application at West Basin MWD. In Proceedings of the AMTA Annual Meeting, San Diego, CA, USA, 12–15 July 2010. [Google Scholar]
- Knoell, T.; Dunivin, W.; Patel, M.; Owens, E. Groundwater Replenishment System RO Membrane Replacement—Looking Beyond Permeability and Salt Rejection. In Proceedings of the Water Reuse California Annual Conference, Sacramento, CA, USA, 25–27 March 2012. [Google Scholar]
- Knoell, T. Fast and Furious—Key to Qualifying Membranes for Orange County’s Expanding Groundwater Replenishment System. In Proceedings of the WateReuse California Annual Conference, Monterey, CA, USA, 17–19 March 2013. [Google Scholar]
- Knoell, T.; Shu, J.; Coker, S.; Majamaa, K.; Patel, M.; Dunivin, W. Establishment of an Application Center to Enhance RO Membrane Performance for Municipal Water Reuse. In Proceedings of the IDA World Congress on Desalination and Water Reuse, San Diego, CA, USA, 30 August–4 September 2015. [Google Scholar]
- Rozenbaoum, E.; Daly, R.; Hyung, H. TFN Membranes for Indirect Potable Reuse at Orange County Water District: A Case Study. In Proceedings of the IDA World Congress, Dubai, United Arab Emirates, 20–24 October 2019; p. IDAWC19-Rozenbaoum. [Google Scholar]
- Reardon, R.; Treadway, J.; Buckley, B.; Hobbs, C.; DiGiano, F.A.; Kim, J. Is Ultrafiltration Better Than Microfiltration as Pretreatment for Reverse Osmosis?—Pilot Scale Results. Proc. Water Environ. Fed. 2005, 2005, 3530–3546. [Google Scholar] [CrossRef]
- Geselbracht, J.; Freeman, S. Polyamide RO Membranes Help Reclaim Water. Water Environ. Technol. 1995, 7, 18. [Google Scholar]
- Darji, J.D.; Ballard, P.T. Treatment of Secondary Wastewater for Reverse Osmosis Systems. In Proceedings of the International Water Conference, Pittsburgh, PA, USA, 11–13 October 1993; p. IWC-93-18. [Google Scholar]
- Gur-Reznik, S.; Katz, I.; Dosoretz, C.G. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Res. 2008, 42, 1595–1605. [Google Scholar] [CrossRef]
- Kim, S.L.; Paul Chen, J.; Ting, Y.P. Study on feed pretreatment for membrane filtration of secondary effluent. Sep. Purif. Technol. 2002, 29, 171–179. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Ngo, H.H.; Aim, R.B. Low Pressure Nanofiltration with Adsorption As Pretreatment In Tertiary Wastewater Treatment for Reuse. In Proceedings of the Fifth International Membrane Science & Technology Conference, The University of New South Wales, Sydney, Australia, 10–14 November 2003. [Google Scholar]
- Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. Effect of pretreatment on the fouling of membranes: Application in biologically treated sewage effluent. J. Membr. Sci. 2004, 234, 111–120. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: A detailed effluent organic matter (EfOM) characterization. Water Res. 2004, 38, 1933–1939. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Ngo, H.H.; Kim, I.S.; Ben Aim, R. Foulant characterization of the NF membranes with and without pretreatment of biologically treated wastewater. Water Sci. Technol. 2005, 51, 277–284. [Google Scholar] [CrossRef] [PubMed]
- McCarty, P.L.; Argo, D.; Reinhard, M. Operational Experiences with Activated Carbon Adsorbers at Water Factory 21. J. AWWA 1979, 71, 683–689. [Google Scholar] [CrossRef]
- Freeman, S.D.N.; Crook, J. An Update on Membrane Water Reuse Projects. In Proceedings of the AWWA Membrane Technology Conference, Reno, NV, USA, 13–16 August 1995; pp. 665–698. [Google Scholar]
- Jones, G.N.; Bergman, R.A.; Pickard, D. Recovery of municipal wastewater using advanced treatment technologies at Tampa, Florida. In Proceedings of the AWWA Annual Conference, Los Angeles, CA, USA, 18–22 June 1989; pp. 391–416. [Google Scholar]
- Suzuki, Y.; Minami, T. Technological Development of a Wastewater Reclamation Process for Recreational Reuse: An Approach to Advanced Wastewater Treatment Featuring Reverse Osmosis Membrane. Water Sci. Technol. 1991, 23, 1629–1638. [Google Scholar] [CrossRef]
- Kohl, H.R.; McKim, T.; Smith, D.; Bedford, D.; Lozier, J.; Fulgham, B. Reclamation of Secondary Effluent with Membrane Processes. In Proceedings of the AWWA Membrane Technology Conference, Baltimore, MD, USA, 1–4 August 1993; pp. 833–862. [Google Scholar]
- López-Ramírez, J.A.; Oviedo, M.D.C.; Alonso, J.M.Q. Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination 2006, 191, 137–147. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Kim, T.-U.; Bellona, C.; Amy, G. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci. 2006, 279, 165–175. [Google Scholar] [CrossRef]
- Fusaoka, Y. Super Ultra Low Pressure Composite Reverse Osmosis Membrane Elements for Brackish Water Desalination and Ultrapure Water Production. Membrane 1999, 24, 319–323. (In Japanese) [Google Scholar] [CrossRef]
- Drewes, J.E.; Xu, P.; Bellona, C.L.; Marts, M. Influence of Fouling on the Rejection of Organic Micropollutants During NF/RO Treatment. In Proceedings of the AWWA Membrane Technology Conference & Exposition, Tampa, FL, USA, 18–21 March 2007. [Google Scholar]
- Bellona, C.; Marts, M.; Drewes, J.E. The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Sep. Purif. Technol. 2010, 74, 44–54. [Google Scholar] [CrossRef]
- Xu, P.; Bellona, C.; Drewes, J.E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. J. Membr. Sci. 2010, 353, 111–121. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; McDonald, J.A.; Henderson, R.K.; Poussade, Y.; Drewes, J.E.; Nghiem, L.D. Effects of membrane fouling on N-nitrosamine rejection by nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2013, 427, 311–319. [Google Scholar] [CrossRef]
- Antony, A.; Subhi, N.; Henderson, R.K.; Khan, S.J.; Stuetz, R.M.; Le-Clech, P.; Chen, V.; Leslie, G. Comparison of reverse osmosis membrane fouling profiles from Australian water recycling plants. J. Membr. Sci. 2012, 407–408, 8–16. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Zhang, G.; Wang, X. Fouling of nanofiltration membrane by effluent organic matter: Characterization using different organic fractions in wastewater. J. Environ. Sci. 2009, 21, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Aizawa, H.; Kodamatani, H. Fouling substances causing variable rejection of a small and uncharged trace organic chemical by reverse osmosis membranes. Environ. Technol. Innov. 2020, 17, 100576. [Google Scholar] [CrossRef]
- Cabral, J.M.S.; Casale, B.; Cooney, C.L. Effect of antifoam agents and efficiency of cleaning procedures on the cross-flow filtration of microbial suspensions. Biotechnol. Lett. 1985, 7, 749–752. [Google Scholar] [CrossRef]
- Kroner, K.H.; Hummel, W.; Völkel, J.; Kula, M.R. Effects of Antifoams on Cross-flow Filtration of Microbial Suspensions. In Membranes and Membrane Processes; Drioli, E., Nakagaki, M., Eds.; Springer: Boston, MA, USA, 1986; pp. 223–232. [Google Scholar]
- Takada, K.; Matsuya, H.; Masuda, T.; Higashimura, T. Gas permeability of polyacetylenes carrying substituents. J. Appl. Polym. Sci. 1985, 30, 1605–1616. [Google Scholar] [CrossRef]
- Shimomura, H.; Nakanishi, K.; Odani, H.; Kurata, M.; Masuda, T.; Higashimura, T. Permeation of gases in poly(1-(trimethylsilyl)-1-propyne). Kobunshi Ronbunshu 1986, 43, 747–753. (In Japanese) [Google Scholar] [CrossRef]
- Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B.D.; Pinnau, I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001, 26, 721–798. [Google Scholar] [CrossRef]
- Okamoto, K.; Tanaka, K.; Ito, M.; Kita, H.; Ito, Y. Positron Annihilation Lifetime Studies on Free Volume in Poly [1-(Trimethylsilyl)-1-Propyne] Films. Mater. Sci. Forum 1995, 175–178, 743–746. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mohshim, D.F.; Nasir, R.; Mannan, H.A.; Mukhtar, H. Effect of solvents on the morphology and performance of Polyethersulfone (PES) polymeric membranes material for CO2/CH4 separation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 290, 012074. [Google Scholar] [CrossRef]
- Chiou, J.S.; Maeda, Y.; Paul, D.R. Gas permeation in polyethersulfone. J. Appl. Polym. Sci. 1987, 33, 1823–1828. [Google Scholar] [CrossRef]
- Maeda, Y.; Paul, D.R. Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 1005–1016. [Google Scholar] [CrossRef]
- Maeda, Y.; Paul, D.R. Effect of antiplasticization on selectivity and productivity of gas separation membranes. J. Membr. Sci. 1987, 30, 1–9. [Google Scholar] [CrossRef]
- Nakagawa, T.; Saito, T.; Asakawa, S.; Saito, Y. Polyacetylene derivatives as membranes for gas separation. Gas Sep. Purif. 1988, 2, 3–8. [Google Scholar] [CrossRef]
- Okamoto, K. Amorphous Structure and Relaxation in Glassy Polymers. Amorphous Structure of Glassy Polymers and Its Relaxation Seen by Ortho-Positronium. Kobunshi 1998, 47, 320–321. (In Japanese) [Google Scholar] [CrossRef]
- Asakawa, S.; Saitoh, Y.; Waragai, K.; Nakagawa, T. Composite membrane of poly (1-(trimethylsilyl)-propyne) as a potential oxygen separation membrane. Gas Sep. Purif. 1989, 3, 117–122. [Google Scholar] [CrossRef]
- Witchey-Lakshmanan, L.C.; Hopfenberg, H.B.; Chern, R.T. Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne]. J. Membr. Sci. 1990, 48, 321–331. [Google Scholar] [CrossRef]
- Nakagawa, T. Gas permeability of Poly(1-(trimethylsilyl)-1-propyne) Membrane. Membrane 1995, 20, 156–168. (In Japanese) [Google Scholar] [CrossRef]
- Nagai, K.; Nakagawa, T. Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts. J. Membr. Sci. 1995, 105, 261–272. [Google Scholar] [CrossRef]
- Russotti, G.; Göklen, K.E. Crossflow Membrane Filtration of Fermentation Broth. In Membrane Separations in Biotechnology, 2nd ed.; Revised and Expanded; Wang, W.K., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 85–159. [Google Scholar]
- Bhattacharyya, D.; Jumawan, A.B.; Grieves, R.B.; Harris, L.R. Ultrafiltration Characteristics of Oil-Detergent-Water Systems: Membrane Fouling Mechanisms. Sep. Sci. Technol. 1979, 14, 529–549. [Google Scholar] [CrossRef]
- Doulia, D.; Gekas, V.; Trägådh, G. Interaction behaviour in ultrafiltration of nonionic surfactants. Part 1. Flux behaviour. J. Membr. Sci. 1992, 69, 251–258. [Google Scholar] [CrossRef]
- Maki, M.L.; Katsura, T.; Tasaka, K.; Ionue, K. External Pressurizing Capillary Ultrafiltration Module for High-Purity Water Systems. Ultrapure Water 1993, 10, 20. [Google Scholar]
- Yamagiwa, K.; Kobayashi, H.; Ohkawa, A.; Onodera, M. Membrane fouling in ultrafiltration of hydrophobic nonionic surfactant. J. Chem. Eng. Jpn. 1993, 26, 13–18. [Google Scholar] [CrossRef]
- Crozes, G.; Anselme, C.; Mallevialle, J. Effect of adsorption of organic matter on fouling of ultrafiltration membranes. J. Membr. Sci. 1993, 84, 61–77. [Google Scholar] [CrossRef]
- Chu, K.H.; Huang, Y.; Yu, M.; Her, N.; Flora, J.R.; Park, C.M.; Kim, S.; Cho, J.; Yoon, Y. Evaluation of Humic Acid and Tannic Acid Fouling in Graphene Oxide-Coated Ultrafiltration Membranes. ACS Appl. Mater. Interfaces 2016, 8, 22270–22279. [Google Scholar] [CrossRef] [PubMed]
- Lindau, J.; Jönsson, A.-S.; Wimmerstedt, R. The influence of a low-molecular hydrophobic solute on the flux of polysulphone ultrafiltration membranes with different cut-off. J. Membr. Sci. 1995, 106, 9–16. [Google Scholar] [CrossRef]
- Jönsson, C.; Jönsson, A.-S. Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. J. Membr. Sci. 1995, 108, 79–87. [Google Scholar] [CrossRef]
- Jönsson, A.S.; Lindau, J.; Wimmerstedt, R.; Brinck, J.; Jönsson, B. Influence of the concentration of a low-molecular organic solute on the flux reduction of a polyethersulphone ultrafiltration membrane. J. Membr. Sci. 1997, 135, 117–128. [Google Scholar] [CrossRef]
- Lindau, J.; Jönsson, A.S.; Bottino, A. Flux reduction of ultrafiltration membranes with different cut-off due to adsorption of a low-molecular-weight hydrophobic solute-correlation between flux decline and pore size. J. Membr. Sci. 1998, 149, 11–20. [Google Scholar] [CrossRef]
- Lindau, J.; Jönsson, A.S. Adsorptive fouling of modified and unmodified commercial polymeric ultrafiltration membranes. J. Membr. Sci. 1999, 160, 65–76. [Google Scholar] [CrossRef]
- Brinck, J.; Jönsson, A.S.; Jönsson, B.; Lindau, J. Influence of pH on the adsorptive fouling of ultrafiltration membranes by fatty acid. J. Membr. Sci. 2000, 164, 187–194. [Google Scholar] [CrossRef]
- Byhlin, H.; Jönsson, A.S. Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination 2003, 151, 21–31. [Google Scholar] [CrossRef]
- Lee, E.K.; Chen, V.; Fane, A.G. Natural organic matter (NOM) fouling in low pressure membrane filtration—Effect of membranes and operation modes. Desalination 2008, 218, 257–270. [Google Scholar] [CrossRef]
- Kwon, B.; Shon, H.K.; Cho, J. Investigating the relationship between model organic compounds and ultrafiltration membrane fouling. Desalination Water Treat. 2009, 8, 177–187. [Google Scholar] [CrossRef]
- Majewska-Nowak, K. Ultrafiltration of dye solutions in the presence of cationic and anionic surfactants. Environ. Prot. Eng. 2009, 35, 111–121. [Google Scholar]
- Fadeev, A.G.; Meagher, M.M.; Kelley, S.S.; Volkov, V.V. Fouling of poly[-1-(trimethylsilyl)-1-propyne] membranes in pervaporative recovery of butanol from aqueous solutions and ABE fermentation broth. J. Membr. Sci. 2000, 173, 133–144. [Google Scholar] [CrossRef]
- Fadeev, A.G.; Selinskaya, Y.A.; Kelley, S.S.; Meagher, M.M.; Litvinova, E.G.; Khotimsky, V.S.; Volkov, V.V. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 2001, 186, 205–217. [Google Scholar] [CrossRef]
- Fadeev, A.G.; Meagher, M.M. Poly(1-trimethysilyl-1-propyne) Membrane Regeneration Process. U.S. Patent 6,423,119 B1, 23 July 2002. [Google Scholar]
- Fadeev, A.; Kelley, S.; McMillan, J.; Selinskaya, Y.A.; Khotimsky, V.; Volkov, V. Effect of yeast fermentation by-products on poly [1-(trimethylsilyl)-1-propyne] pervaporative performance. J. Membr. Sci. 2003, 214, 229–238. [Google Scholar] [CrossRef]
- Dubreuil, M.F.S.; Vandezande, P.; Van Hecke, W.H.S.; Porto-Carrero, W.J.; Dotremont, C.T.E. Study on ageing/fouling phenomena and the effect of upstream nanofiltration on in-situ product recovery of n-butanol through poly[1-(trimethylsilyl)-1-propyne] pervaporation membranes. J. Membr. Sci. 2013, 447, 134–143. [Google Scholar] [CrossRef]
- Sommer, S.; Melin, T. Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents. Chem. Eng. Process. Process Intensif. 2005, 44, 1138–1156. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liu, J.; Li, H.; Yang, W. Pervaporation and vapor permeation dehydration of Fischer–Tropsch mixed-alcohols by LTA zeolite membranes. Sep. Purif. Technol. 2007, 57, 140–146. [Google Scholar] [CrossRef]
- Vane, L.M.; Namboodiri, V.V.; Meier, R.G. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes. J. Membr. Sci. 2010, 364, 102–110. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Yang, H.; Fan, S.; Lang, X.; Wang, Y.; Li, W.; Liu, Y.; Zhou, L. A graphene oxide membrane with self-regulated nanochannels for the exceptionally stable bio-oil dehydration. AIChE J. 2020, 66, e16753. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Ye, F.; Luo, Y.; Fan, S.; Lang, X.; Wang, Y.; Zhou, L. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration. Microporous Mesoporous Mater. 2021, 315, 110884. [Google Scholar] [CrossRef]
- Banat, F.; Al-Asheh, S.; Qtaishat, M.R. Treatment of waters colored with methylene blue dye by vacuum membrane distillation. Desalination 2005, 174, 87–96. [Google Scholar] [CrossRef]
- Criscuoli, A.; Zhong, J.; Figoli, A.; Carnevale, M.; Huang, R.; Drioli, E. Treatment of dye solutions by vacuum membrane distillation. Water Res. 2008, 42, 5031–5037. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Kim, S.-J.; Kim, I.S.; Vigneswaran, S. Organic fouling behavior in direct contact membrane distillation. Desalination 2014, 347, 230–239. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Vigneswaran, S. Interaction of humic substances on fouling in membrane distillation for seawater desalination. Chem. Eng. J. 2015, 262, 946–957. [Google Scholar] [CrossRef]
- Kubo, M.; Deguchi, K.; Murakami, T. Fouling of Ion Exchange Membranes in Electrodialysis by Organic Compounds. J. Met. Finish. Soc. Jpn. 1977, 28, 468–472. (In Japanese) [Google Scholar] [CrossRef]
- Tanaka, N.; Nagase, M.; Higa, M. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances. Desalination 2012, 296, 81–86. [Google Scholar] [CrossRef]
- Schoeman, J.J. Rapid determination of the fouling of electrodialysis membranes by industrial effluents. Water SA 1986, 12, 103–106. [Google Scholar]
- Lee, H.-J.; Hong, M.-K.; Han, S.-D.; Cho, S.-H.; Moon, S.-H. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants. Desalination 2009, 238, 60–69. [Google Scholar] [CrossRef]
- Tanaka, N.; Higa, M. Organic fouling properties of anion-exchange membranes with various electrodialysis conditions. Bull. Soc. Sea Water Sci. Jpn. 2011, 65, 362–363. [Google Scholar] [CrossRef]
- Higa, M.; Hironaga, R.; Takamura, K.; Chinen, M. Fouling Evaluation of Anion-exchange Membranes in Electrodialysis Systems. Bull. Soc. Sea Water Sci. Jpn. 2016, 70, 116–117. [Google Scholar] [CrossRef]
- Lindstrand, V.; Sundström, G.; Jönsson, A.-S. Fouling of electrodialysis membranes by organic substances. Desalination 2000, 128, 91–102. [Google Scholar] [CrossRef]
- Bukhovets, A.; Eliseeva, T.; Oren, Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution. J. Membr. Sci. 2010, 364, 339–343. [Google Scholar] [CrossRef]
- Ruengruehan, K.; Kim, H.; Hai Yen, L.T.; Jang, A.; Lee, W.; Kang, S. Fatty acids fouling on forward osmosis membrane: Impact of pH. Desalination Water Treat. 2016, 57, 7531–7537. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, B.; Yue, Q.; Liu, P.; Shon, H.K. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition. J. Environ. Sci. 2016, 46, 55–62. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.A. Effect of the coagulation/persulfate pre-treatment to mitigate organic fouling in the forward osmosis of municipal wastewater treatment. J. Environ. Manag. 2019, 249, 109394. [Google Scholar] [CrossRef]
- Elimelech, M.; Xiaohua, Z.; Childress, A.E.; Seungkwan, H. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127, 101–109. [Google Scholar] [CrossRef]
- Vrijenhoek, E.M.; Hong, S.; Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 2001, 188, 115–128. [Google Scholar] [CrossRef]
- Hoek, E.M.V.; Kim, A.S.; Elimelech, M. Influence of Crossflow Membrane Filter Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration Separations. Environ. Eng. Sci. 2002, 19, 357–372. [Google Scholar] [CrossRef]
- Fang, Y.; Duranceau, S.J. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity. Membranes 2013, 3, 196–225. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.Y.; Elimelech, M. Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. J. Membr. Sci. 2004, 244, 215–226. [Google Scholar] [CrossRef]
- Kimura, K.; Amy, G.; Drewes, J.; Watanabe, Y. Adsorption of hydrophobic compounds onto NF/RO membranes: An artifact leading to overestimation of rejection. J. Membr. Sci. 2003, 221, 89–101. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 2006, 286, 52–59. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Sep. Purif. Technol. 2009, 66, 194–201. [Google Scholar] [CrossRef]
- Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 2004, 245, 71–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Causserand, C.; Aimar, P.; Cravedi, J.P. Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res. 2006, 40, 3793–3799. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Coleman, P.J. NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling. Sep. Purif. Technol. 2008, 62, 709–716. [Google Scholar] [CrossRef]
- Sato, Y.; Tsuru, T.; Nakao, S.-i. Model Analysis of Separation Performance of Commercial Nanofiltration Membranes Improved by Tannic Acid. J. Chem. Eng. Jpn. 2009, 42, 95–106. [Google Scholar] [CrossRef]
- Chan, K.; Liu, T.; Matsuura, T.; Sourirajan, S. Effect of shrinkage on pore size and pore size distribution of cellulose acetate reverse osmosis membranes. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 124–133. [Google Scholar] [CrossRef]
- Henmi, M.; Fusaoka, Y.; Tomioka, H.; Kurihara, M. High performance RO membranes for desalination and wastewater reclamation and their operation results. Water Sci. Technol. 2010, 62, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kwak, S.-Y.; Suzuki, T. Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane. Environ. Sci. Technol. 2005, 39, 1764–1770. [Google Scholar] [CrossRef] [PubMed]
- Shantarovich, V.P.; Kevdina, I.B.; Yampolskii, Y.P.; Alentiev, A.Y. Positron Annihilation Lifetime Study of High and Low Free Volume Glassy Polymers: Effects of Free Volume Sizes on the Permeability and Permselectivity. Macromolecules 2000, 33, 7453–7466. [Google Scholar] [CrossRef]
- Consolati, G.; Genco, I.; Pegoraro, M.; Zanderighi, L. Positron annihilation lifetime (PAL) in poly[1-(trimethyl-silyl)propine] (PTMSP): Free volume determination and time dependence of permeability. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 357–367. [Google Scholar] [CrossRef]
- Satyanarayana, S.V.; Subrahmanyam, V.S.; Verma, H.C.; Sharma, A.; Bhattacharya, P.K. Application of positron annihilation: Study of pervaporation dense membranes. Polymer 2006, 47, 1300–1307. [Google Scholar] [CrossRef]
- Shimazu, A.; Ikeda, K.; Miyazaki, T.; Ito, Y. Application of positron annihilation technique to reverse osmosis membrane materials. Radiat. Phys. Chem. 2000, 58, 555–561. [Google Scholar] [CrossRef]
- Li, X.; Chung, T.-S.; Chung, T.-S. Effects of free volume in thin-film composite membranes on osmotic power generation. AIChE J. 2013, 59, 4749–4761. [Google Scholar] [CrossRef]
- Nyström, M.; Kaipia, L.; Luque, S. Fouling and retention of nanofiltration membranes. J. Membr. Sci. 1995, 98, 249–262. [Google Scholar] [CrossRef]
- Saenz de Jubera, A.M.; Gao, Y.; Moore, J.S.; Cahill, D.G.; Marinas, B.J. Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers. Environ. Sci. Technol. 2012, 46, 9592–9599. [Google Scholar] [CrossRef]
- Garcia, A.; Iriarte, M.; Uriarte, C.; Iruin, J.J.; Etxeberria, A.; Rio, J.d. Antiplasticization of a polyamide: A positron annihilation lifetime spectroscopy study. Polymer 2004, 45, 2949–2957. [Google Scholar] [CrossRef]
- Koo, J.-Y.; Hong, S. Composite Polyamide Reverse Osmosis Membrane Showing High Boron Rejection and Method of Producing the Same. U.S. Patent Application Publication No. US20070227966A1, 4 October 2007. [Google Scholar]
- Obara, T.; Hirose, M. Reverse Osmotic Membrane Module and Treatment of Sea Water. Japanese Unexamined Patent Application Publication No. JPH1119493A, 26 January 1999. [Google Scholar]
- Fujioka, T.; Ishida, K.P.; Shintani, T.; Kodamatani, H. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors. Water Res. 2018, 131, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Nghiem, L.D. Modification of a polyamide reverse osmosis membrane by heat treatment for enhanced fouling resistance. Water Supply 2013, 13, 1553–1559. [Google Scholar] [CrossRef]
- Fujioka, T.; Osako, M.; Tanabe, S.; Kodamatani, H.; Shintani, T. Plugging nonporous polyamide membranes for enhanced rejection of small contaminants during advanced wastewater treatment. Sep. Purif. Technol. 2020, 253, 117490. [Google Scholar] [CrossRef]
- Fujioka, T.; Nghiem, L.D. Positron annihilation lifetime spectroscopy as a tool for further insights into the transport of water and solutes during reverse osmosis. Positron Sci. 2015, 43–48. [Google Scholar]
- Suzuki, T.; Tanaka, R.; Nakase, K.; Niinae, M. Physico-chemical properties of active layers controlling boric acid rejection by polyamide composite reverse osmosis and nanofiltration membranes. Bull. Soc. Sea Water Sci. Jpn. 2018, 72, 316–324. (In Japanese) [Google Scholar] [CrossRef]
- Jiang, J.; Mingji, S.; Minling, F.; Jiayan, C. Study on the interaction between membranes and organic solutes by the HPLC method. Desalination 1989, 71, 107–126. [Google Scholar] [CrossRef]
- Hermens, J.L.M.; de Bruijn, J.H.M.; Brooke, D.N. The octanol-water partition coefficient: Strengths and limitations. Environ. Toxicol. Chem. 2013, 32, 732–733. [Google Scholar] [CrossRef]
- Amézqueta, S.; Subirats, X.; Fuguet, E.; Rosés, M.; Ràfols, C. Chapter 6—Octanol-Water Partition Constant. In Liquid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–208. [Google Scholar]
- Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 2001, 192, 1–10. [Google Scholar] [CrossRef]
- Miller, M.M.; Wasik, S.P.; Huang, G.L.; Shiu, W.Y.; Mackay, D. Relationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol. 1985, 19, 522–529. [Google Scholar] [CrossRef]
Membrane Process | Terminology for Membrane Processes | Pores | TMP |
---|---|---|---|
Microfiltration (MF) | Particles and dissolved macromolecules larger than 0.1 µm are rejected | 0.1–5 µm | 100–500 kPa |
Ultrafiltration (UF) | Particles and dissolved macromolecules smaller than 0.1 µm and larger than about 2 nm are rejected | 1–100 nm | 100–800 kPa |
Nanofiltration (NF) | Particles and dissolved molecules smaller than about 2 nm are rejected | 0.5–10 nm | 0.3–3 MPa |
Reverse osmosis RO) | Applied transmembrane pressure causes selective movement of solvent against its osmotic pressure difference | <0.5 nm | 1–10 MPa |
Factor | Description |
---|---|
Locations | External surfaces, pore openings, or within pores |
Mechanism | Adsorption, sorption, deposition, accumulation |
Foulants | Suspended or dissolved substances (retained particles, colloids, macromolecules, salts, etc.) |
Time course | Immediate or quick response, change with time |
Issues or effects | Loss of performance (flux, product quality, membrane life) |
Foulants | Description |
---|---|
Particulates | Suspended particles, flocs, yeast, pulp, silicon particles from wafer shaping processes [65], etc. |
Colloids | Inorganic colloids: Silica, aluminosilicate, iron oxide, etc. Organic colloids: Transparent exopolymer particles (TEP) |
Organics | Macromolecules: Humic and fulvic acids, polyphenols, Biopolymers, proteins, polysaccharides (pectin, cellulose, hemicellulose, and starch [66]), etc. LMWOCs: Antifoam agents such as propylene glycol [67], oil and grease, fats, fatty acids, etc. |
Inorganics | Scaling, sparingly soluble salts: CaCO3, CaSO4, Ca3(PO4)2, etc., silica |
Biological | Microorganisms, bacteria, EPS, etc. |
Types of Fouling | Surface | Internal | Foulant Examples | |
---|---|---|---|---|
Particulate/colloidal | ✓ | Clay, Silt, Colloidal silica and sulfur, activated carbon fines, etc. Metal hydroxides/oxides: Al3+, Fe3+, Mn2+ Organic colloids: Particulate humic substances, colloidal TEP | ||
Scaling (Sparingly soluble compounds) | ✓ | Carbonate: CaCO3 Sulfates: CaSO4, SrSO4, BaSO4 Phosphates: Ca3 (PO4) 2 Metal hydroxides: γ-FeOOH, Al(OH)3 Others: CaF2, silica, alumino/iron silicates, FeS, calcium citrate, etc. | ||
Biofouling | ✓ | Microorganisms, biofilms, EPS | ||
Organic | Macromolecules | ✓ | NOM (biopolymers, HA, and fulvic acids), EfOM (soluble microbial products, SMP) Proteins, polysaccharides, polyphenols, Polyethylene glycol (PEG), etc. Organics added during pretreatment: Flocculants, antiscalant | |
LMWOCs | ✓ | ✓ | SOCs: Nonionic surfactants, plasticizers, phenolic derivatives, quaternary ammonium biocides, leachables from anion exchange resin, etc. LMW portion of NOM and EfOM Others: Long chain fatty acids, oil and grease, etc. |
Feed Type | Organic/ Biological | Colloid/ Particulates | Scale | Metal | Organics | Others | Year | Reference |
---|---|---|---|---|---|---|---|---|
Overall (n = 150) | 50.2 | 18.2 | 9.9 | 7.6 | - | 13.5 | 2001 | [105] |
Overall | 23.9 | 38 | 5.4 | 3.3 | 29.3 | - | 2005 | [106] |
Overall | 37.6 | 31.2 | 31.2 *1 | - | - | - | 2007 | [107] |
Seawater (n = 57) | 47.4 | 17.5 | 14 | 21.1 | - | - | 2011 | [108] |
Overall (n = 500) | 31.3 | 29 | 22.1 | 10 | 7.7 *2 | - | 2013 | [69] |
Seawater | 40.5 | 38 | 1.3 | 20.3 | 15.2 *2 | - | 2013 | [69] |
Brackish Water | 26.3 | 24.8 | 21.4 | 5.6 | 4.1 *2 | - | 2013 | [69] |
Seawater (n = 500) | 54.1 | 23.9 | 4.8 | 6.2 | - | - | 2021 | [72] |
Wastewater (n = 50) *3 | 44.1 | 7.5 | 30 | 18.3 | - | - | 2022 | [109] |
SF | GW | SW | IW | MW | Organics | MM | LM | Examples | |
---|---|---|---|---|---|---|---|---|---|
NOM | Biopolymers | ✓ | Polysaccharides, protein | ||||||
Humic substances | ✓ | HA, fulvic acid | |||||||
Building blocks | ✓ | Hydrolysates of humic substances | |||||||
Organic acids | ✓ | Monoprotic acids, fatty acids, etc. | |||||||
LMW neutrals | ✓ | Alcohols, aldehydes, ketones, amino acids | |||||||
SOC | Flocculants | ✓ | Polyacrylamides, cationic flocculants | ||||||
Antiscalant | ✓ | ✓ | Polyacrylates, phosphonates, etc. | ||||||
Fatty acids | ✓ | Higher fatty acids (octanoic, stearic acid, etc.) | |||||||
Oil and grease | ✓ | Long-chain hydrocarbons, BTEX, etc. | |||||||
Micropollutants | ✓ | Pesticides, PPCPs, PFAS, etc. | |||||||
Others | ✓ | Surfactants, plasticizers, dyes, phenolics, quaternary ammonium compounds, DBPs, etc. | |||||||
SMP AOM | Biopolymers | ✓ | Polysaccharides, proteins | ||||||
Key components | Minor components |
Material | CA | APA | APA | APA | PVA Derivative | Aromatic Polyurea | PPA | Sulfonated PES |
---|---|---|---|---|---|---|---|---|
Membrane RO/NF | SC-3000 RO | FT-30 RO | 759HR RO | UTC-73 RO | 729HF RO | 719HF RO | NF270 NF | NTR7450 NF |
Anionic | ⚪ SO | ⚪ SDS | ⚪ | ⚪ SO | ⚪ | ✕ | ⚪ SDBS | ⚪ SDBS |
Nonionic | ⚪ TW20 | ✕ TX | ✕ | ✕ TW20 | △ | ⚪ | ⚪ Neo | ✕ Neo, TX |
Cationic | ⚪ CTAB | ✕ Hyamine | ✕ | ✕ CTAB | ⚪ | ⚪ | ✕ Cetrimide | ✕ Cetrimide |
Zwitterionic | – | – | ✕ | – | ⚪ | ⚪ | – | – |
PEI | – | – | ⚪ | – | – | – | – | – |
References | [181] | [38] | [195,196] | [181] | [195,196] | [195,196] | [197] | [197] |
Membrane | Material | Contact Angle (°) | Surfactant | Concentration (ppm) | Relative Flux (%) | Reference |
---|---|---|---|---|---|---|
NF40 | PPA | – | Triton X-100 | 1% (immerse) | 113 | [192] |
NF270 | PPA | 27 | Fasavin CA 73 | 200 | 80 | [210] |
Neodol | 40 | 88 | [197] | |||
Desal 5DL | PA | 44 | Fasavin CA 73 | 200 | 111 | [210] |
Desal 51HL | PA | 47 | Neodol | 40 | 86 | [197] |
UTC-20 | PPA | 36 | Fasavin CA 73 | 200 | 167 | [210] |
XN-45 | PPA | – | NPE | 50 | 80 | [211] |
NTR-7450 | Sulfonated PES | 70 | Fasavin CA 73 | 200 | 5.7 | [210] |
Neodol | 40 | 30 | [197] | |||
N30F | PES | 88 | Fasavin CA 73 | 200 | 1.5 | [210] |
NPE | 50 | 16 | [211] | |||
NF PES10 | PES | 72 | NPE | 50 | 34 | [211] |
Neodol | 40 | 55 | [197] |
Additives | Concentration (mg/L) | Stabilized Flow (m3/m2/day) |
---|---|---|
None | - | 1.0 |
AE (C12+EO7) | 0.1 | 0.80 |
AE (C12+EO7) | 1 | 0.55 |
AE (C12+EO7) | 10 | 0.23 |
AE (C12+EO20) | 1 | 0.42 |
Faty acid (C12) | 1 | 0.85 |
PEG (EO20) | 1 | 0.67 |
PEG 106 | 1 | 0.9–0.95 |
PEG 106 | 10 | 0.9–0.95 |
PEG 1470 | 0.1 | 0.9 |
PEG 1470 | 1 | 0.55 |
PEG 7100 | 0.1 | 0.55 |
PEG 7100 | 1 | 0.3 |
Surface Modification | Cationic | Nonionic | Anionic | Reference |
---|---|---|---|---|
Polyvinyl alcohol (PVA) | ✓ | [229] | ||
Cross-linked hydrophilic compounds | NCW-601A | [230] | ||
Proprietary surface modification (neutrally charged) | ✓ | ✓ | ✓ | [231] |
Cross-linked hydrophilic polymer | POE | [209] | ||
Hydrophilic coating | DTAB | [232] | ||
PEG Graft | DTAB | [233] | ||
PVA coating | DTAB | [234] | ||
A brush-like polymer containing PEG chains | DTAB | [235] | ||
Polyelectrolytes layer-by-layer assembly | DTAB | [227] | ||
Commercial low-fouling RO membranes | DTAB | Triton X | [236] | |
Proprietary hydrophilic monomers and cross-linking polymerization | DTAB | Triton X-100 | [237] | |
Commercial low-fouling RO membranes | Triton X-100 | [238] | ||
Commercial low-fouling RO membranes | BAC | NCW-1002 | SDS | [239] |
Cross-linked PEG-based hydrogels | DTAB | SDS | [240] | |
PVA grafting | DTAB | SDS | [241] | |
Polyvinylamine grafting | DTAB | [242] | ||
PVA—a pressurizing method | BAC | [228] | ||
PEG derivatives | DTAB | [243] | ||
PEG diglycidyl ether | DTAB | SDS | [244] | |
Cross-linked PEG | DTAB | [245] | ||
PEI by self-assembly | DTAB | [246] | ||
PEI-PEG dendrimer | DTAB | [247] | ||
PEG-modified APA RO membrane | DTAB | SDS | [248] | |
In situ modification with amidosulfonic acid, diethanolamine, and piperazine | DTAB | [249] | ||
Zwitterionic polymer coating | DTAB | SDS | [250] | |
Grafting of dialdehyde carboxymethyl cellulose | DTAB | POE | SDS | [251] |
Fluorinated polyethyleneimine | DTAB | [252] |
Industry/Applications | Constituents Other Than Surfactants | References |
---|---|---|
Textile | Various dyes (Reactive, direct, etc.), waterglass, builders, etc. | [253,254,255,256] |
Laundry | Oil-in-water emulsion, builders, fat, COD/TOC | [193,257,258] |
Car wash | Oil-in-water emulsion, TDS, hardness, SS | [259,260] |
CIP (Aqueous cleaners) | Oil-in-water emulsion, oil and grease, builders, additives, etc. | [261,262,263,264] |
Oil and gas (Produced water) | Hydrocarbon, additives for enhanced oil recovery, etc. | [265,266] |
Evaluated Phenol Derivatives | Membranes | Reference |
---|---|---|
Phenol (PHE), Alkyl phenols (4-Methylphenol, 4-Ethylphenol, 2,6-Dimethylphenol, 4-n-Propylphenol, 4-Isopropylphenol) | FT-30 | [131] |
PHE, 2-Chlorophenol (2CP), 4-Chlorophenol (4CP), 2,4-Dichlorophenol (DCP), Chlorocresol, 2-Nitrophenol (2NP), 4-Nitrophenol (4NP), DNP, TCP | FT30-BW | [132] |
2CP, DNP, TCP | NF40, FT30 | [271] |
TCP | NF40, ROM378, DRA4020 | [272] |
PHE, 2-Aminophenol (2AP), 2-Flourophenol (2FP), 2CP, DCP, TCP, 2NP, DNP | FT30-BW | [178] |
PHE | NF70, UTC-20 | [121] |
Phloroglucinol, Resorcinol, 3- Hydroxybenzoic acid | NF70 | [273] |
PHE, Catechol, Resorcinol, Hydroquinone | TFC-HR, NF90 | [274] |
PHE, Catechol, Resorcinol, Hydroquinone, Pyrogallol, Phloroglucinol, 2CP, 3-Clorophenol (3CP), 4CP, 2NP, 3-Nitrophenol (3NP), 4NP | NF90 | [275] |
PHE, Catechol, Resorcinol, Hydroquinone, Pyrogallol, Phloroglucinol, 2CP, 3CP, 4CP, 2NP, 3NP, 4NP | TFC-HR, BW30, NF90 | [276] |
2NP, 2CP | NF90, BW30 | [277] |
BPA | NFD, NF90, NF270, ESNA1-LF2, CK | [278] |
4NP | RO90 | [279] |
2CP | TW30 | [280] |
PHE, Hydroquinone, 2CP, 4CP, 2NP, 3NP, 4NP, DNP | CPA2 | [281] |
PHE, 2CP and 2NP | CPA2 | [282] |
Phenolic Compounds | Phenol (PHE) | 4-Nitrophenol (4NP) | 2,4,6-Trichlorophenol (TCP) | 2,4-Dinitrophenol (DNP) |
---|---|---|---|---|
pKa | 9.99 | 7.15 | 6.23 | 4.09 |
Membrane Type | Typical Flow (m3/d) | Membrane Area (ft2) | Testing Conditions |
---|---|---|---|
LP RO | 44–48 | 440 | 225 psi (1.55 MPa), 2000 ppm NaCl |
ULP RO | 44–50 | 440 | 150 psi (1.0 MPa), 2000 NaCl |
Super ULP (SULP) RO | 46–50 | 440 | 100 psi (0.7 MPa), 500 ppm NaCl |
APA NF | 30–45 | 400 | 70–75 psi (0.48 MPa) |
Fouling by Certain LMWOCs | Surface Fouling (NOM, Colloids, Polysaccharides, Proteins, etc.) |
---|---|
Flow rate drops sharply after a short time of contact | Generally, fouling progresses slowly |
Salt, boron, and LMWOC rejections increase. | Rejection improvements of LMWOC are not observed. |
Foulant concentration is low, i.e., <a few ppm | High concentration causes rapid fouling symptoms |
No visible foulants are found, which are difficult to detect by standard surface analysis. | Detectable by FT-IR, ESCA, SEM, etc. |
Flow loss is sometimes irreversible and difficult to clean | Cleaning generally restores performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. Membranes 2024, 14, 221. https://doi.org/10.3390/membranes14100221
Maeda Y. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. Membranes. 2024; 14(10):221. https://doi.org/10.3390/membranes14100221
Chicago/Turabian StyleMaeda, Yasushi. 2024. "Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism" Membranes 14, no. 10: 221. https://doi.org/10.3390/membranes14100221
APA StyleMaeda, Y. (2024). Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. Membranes, 14(10), 221. https://doi.org/10.3390/membranes14100221