Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chicken Byproduct Hydrolysate
2.2. Dead-End Membrane Filtration
2.2.1. Stirred Cell Membrane Filtration Unit
2.2.2. Membranes
- Pall® MF membrane (FluoroTrans W PVDF, Pall, Chardon, OH, USA) with a nominal pore size of 0.2 µm;
- TriSep polyethersulfone UF membrane with a MWCO of ~5000 Da (TriSep flat sheet membrane, UF5, PES, 47 mm, Sterlitech, Auburn, WA, USA);
- TriSep poly piperazine-amide NF membrane with MWCO ~200 Da (TriSep flat sheet membrane, TS80, PA, 47 mm, Sterlitech, Auburn, USA);
- TriSep polyamide-TFC RO-membrane (MWCO not available) (TriSep flat sheet membrane, ACM4, PA, 47 mm, Sterlitech, Auburn, USA).
2.2.3. Reference Membrane Flux Using Deionized Water
2.2.4. Filtration Operating Performance
2.2.5. Pasteurization of Permeates
2.2.6. Calculation of Permeability
2.3. Analytical Methods
2.3.1. Turbidity, Conductivity, pH
2.3.2. Particle Size Distribution
2.3.3. DPP-IV Inhibition Assay
2.3.4. Size-Exclusion Chromatography
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Characterization of Hydrolysate
3.2. Particle Size Distribution
3.3. Effect of Membrane Filtration on Concentrations of Organic Matter Fractions
3.4. Membrane Permeabilities
3.5. Effect of Applied Downstream Processing on the DPP-IV Inhibitory Activity of the Chicken Byproduct Hydrolysate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szopa, D.; Skrzypzak, D.; Izydorczyk, G.; Ch, K.; Moustakas, K.; Witek-Krowiak, A. Waste Valorization towards Industrial Products through Chemo- and Enzymatic-Hydrolysis. Bioengineered 2023, 14, 2184480. [Google Scholar] [CrossRef] [PubMed]
- Aspevik, T.; Oterhals, Å.; Rønning, S.B.; Altintzoglou, T.; Wubshet, S.G.; Gildberg, A.; Afseth, N.K.; Whitaker, R.D.; Lindberg, D. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry. Top. Curr. Chem. 2017, 375, 53. [Google Scholar] [CrossRef] [PubMed]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Nath, A.; Zin, M.M.; Molnár, M.A.; Bánvölgyi, S.; Gáspár, I.; Vatai, G.; Koris, A. Membrane chromatography and fractionation of proteins from whey—A review. Processes 2022, 10, 1025. [Google Scholar] [CrossRef]
- Liu, Z.; Wickramasinghe, S.R.; Qian, X. Membrane chromatography for protein purifications from ligand design to functionalization. Sep. Sci. Technol. 2016, 52, 299–319. [Google Scholar] [CrossRef]
- Marson, G.V.; Belleville, M.P.; Lacour, S.; Hubinger, M.D. Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes 2021, 11, 23. [Google Scholar] [CrossRef]
- Nazir, A.; Khan, K.; Maan, A.; Zia, R.; Giorno, L.; Schroen, K. Membrane separation technology for the recovery of nutreceuticals from food industrial streams. Trends Food Sci. Technol. 2019, 86, 426–434. [Google Scholar] [CrossRef]
- Sorokina, L.; Matic, J.; Rieder, A.; Koga, S.; Afseth, N.K.; Wilson, S.R.; Wubshet, S. Low molecular weight peptides from poultry by-product hydrolysate feature dual ACE-1 and DPP4 inhibition. ACS Food Sci. Technol. 2023, 3, 2219–2228. [Google Scholar] [CrossRef]
- Ahn, C.B.; Lee, K.H.; Je, J.Y. Enzymatic production of bioactive protein hydrolysates from tuna liver: Effects of enzymes and molecular weight on bioactivity. Food Sci. Technol. 2010, 45, 562–568. [Google Scholar] [CrossRef]
- Lima, R.L.; Stenberg-Berg, R.; Rønning, S.B.; Afseth, N.K.; Knutsen, S.H.; Staerk, D.; Wubshet, S.G. Peptides from chicken processing by-product inhibit DPP-IV and promote cellular glucose uptake: Potential ingredients for T2D management. Food Funct. 2019, 10, 1619–1628. [Google Scholar] [CrossRef]
- Pouliot, Y.; Wijers, M.C.; Gautheir, S.F.; Nadeau, L. Fractionation of whey protein hydrolysates using charged UF/NF membranes. J. Membr. Sci. 1999, 158, 105–114. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Vecino, X.; Cortina, J.L. Use of membrane technologies in dairy industry: An Overview. Foods 2021, 10, 2768. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Conidi, C.; Cassano, A. Membrane-Based Technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit. Rev. Food Sci. Nutr. 2019, 59, 2927–2948. [Google Scholar] [CrossRef] [PubMed]
- Roslan, J.; Kamal, S.M.M.; Yunos, K.F.M.; Abdullah, N. Evaluation on performance of dead-end ultratiltration membrane in fractionating tilapia by-product protein hydrolysate. Sep. Purif. Technol. 2018, 195, 21–29. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. Membrane filtration for enhanced purification of biologically active compounds from goji berries extracts. Sep. Purif. Technol. 2022, 282, 119991. [Google Scholar] [CrossRef]
- Conidi, C.; Drioli, E.; Cassano, A. Membrane-based agro-food production processes for polyphenol separation, purification, and concentration. Curr. Opin. Food Sci. 2018, 23, 149–164. [Google Scholar] [CrossRef]
- Saidi, S.; Deratani, A.; Amar, R.B.; Belleville, M.P. Fractionation of tuna dark muscle hydrolysate by a two-step membrane process. Sep. Purif. Technol. 2013, 108, 28–36. [Google Scholar] [CrossRef]
- Yang, F.; Yang, P. Protein-based separation membranes: State of the art and future trends. Adv. Energy Sustain. Res. 2021, 2, 2100008. [Google Scholar] [CrossRef]
- Bourseau, P.; Vandanjon, L.; Jaouen, P.; Chaplain-Derouiniot, M.; Massé, A.; Guérard, F.; Chabeaud, A.; Fouchereau-Péron, M.; Le Gal, Y.; Ravallec-Plé, R.; et al. Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: Impact on peptidic populations. Desalination 2009, 244, 303–320. [Google Scholar] [CrossRef]
- Tessier, B.; Harscoat-Schiavo, C.; Marc, I. Contribution of electrostatic interactions during fractionation of small peptides complex mixtures by UF/NF membranes. Desalination 2006, 200, 333–334. [Google Scholar] [CrossRef]
- Fenton-May, R.I.; Hill, C.G.; Amundson, C.H. Use of ultrafiltration and reverse osmosis systems for the concentration and fractionation of whey. J. Food Sci. 2006, 36, 14–21. [Google Scholar] [CrossRef]
- Kolakowski, E.; Sikorski, Z.E. Endogenous enzymes in Atlantic krill: Control of activity during storage and utilization. In Seafood Enzymes; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 505–529. [Google Scholar]
- Bergvik, M.; Overrein, I.; Bantle, M.; Evjemo, J.O.; Rustad, T. Properties of Calanus finmarchicus biomass during frozen storage after heat inactivation of autolytic enzymes. Food Chem. 2012, 132, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Slipko, K.; Reif, D.; Kreuzinger, N. Evaluation of technical membrane filtration for the removal of antibiotic resistance genes in free extracellular DNA. In Proceedings of the Xenowac II Conference, Limassol, Cyprus, 10–12 October 2018. [Google Scholar]
- Ray, K.K.; Seshasai, S.R.K.; Wijesuriya, S.; Sivakumaran, R.; Nethercott, S.; Preiss, D.; Erqou, S.; Sattar, N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomised controlled trials. Lancet 2009, 373, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Makrilakis, K. The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect. J. Environ. Res. Public Health 2019, 16, 2720. [Google Scholar] [CrossRef]
- Daliri, E.B.M.; Oh, D.H.; Lee, B.H. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Sgarbieri, V.C. Food Proteins and Bioactive Peptides, Functional Diets. J. Food Sci. Nutr. 2017, 3, 023. [Google Scholar] [CrossRef]
- Rutherfurd-Markwick, K.J. Food proteins as a source of bioactive peptides with diverse functions. Br. J. Nutr. 2012, 108, 149–157. [Google Scholar] [CrossRef]
- Erdmann, K.; Cheung, B.W.; Schröder, H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 2008, 19, 643–654. [Google Scholar] [CrossRef]
- Cooksey, K.; Marsh, K.; Doar, L.H. Predicting Permeability & Transmission Rate for Multilayer Materials. Food Technol. 1999, 53, 60–63. [Google Scholar]
- Huber, S.A.; Balz, A.; Albert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography—Organic carbon detection—Organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Slavik, I.; Müller, S.; Mokosch, R.; Azongbilla, J.A.; Uhl, W. Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM). Water Res. 2012, 46, 6543–6553. [Google Scholar] [CrossRef]
- Wubshet, S.G.; Måge, I.; Böcker, U.; Lindberg, D.; Knutsen, S.H.; Rieder, A.; Rodriguez, D.A.; Afseth, N.K. FTIR as a rapid tool for monitoring molecular weight distribution during enzymatic protein hydrolysis of food processing by-products. Anal. Methods 2017, 9, 4247–4254. [Google Scholar] [CrossRef]
- Måge, I.; Matić, J.; Dankel, K.R. SEC2MWD: A MATLAB Toolbox for Derivation of Molecular Weight Distributions from Size Exclusion Chromatography. Available online: https://ssrn.com/abstract=4575966 (accessed on 15 April 2023).
- Zhang, M.; Zhu, L.; Wu, G.; Liu, T.; Qi, X.; Zhang, H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Food Sci. Nutr. 2022, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, P.G.; Sahni, A.; Pei, D. Understanding cell penetration of cyclic peptides. Chem. Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef]
- March, D.R.; Abbenante, G.; Bergman, D.A.; Brinkworth, R.I.; Wickramasinghe, W.; Begun, J. Substrate-based cyclic peptidomimetics of phe-ile-val that inhibit hiv-1 protease using a novel enzyme-binding mode. J. Am. Chem. Soc. 1996, 118, 3375–33799. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.; Lee, N. Need for accurate and standardized determination of amino acids and bioactive peptides for evaluating protein quality and potential health effects of foods and dietary supplements. J. AOAC Int. 2008, 91, 894–900. [Google Scholar] [CrossRef]
Sample | DPP-IV Inhibition (%) | St. Deviation (%) | N (Samples) |
---|---|---|---|
RCH * | 59.78 | 6.43 | 4 |
MF | 60.05 | 6.01 | 4 |
UF(1) | 59.46 | 0.64 | 4 |
UF(2) | 59.85 | 7.51 | 3 |
NF(1) | 21.80 | 5.52 | 3 |
NF(2) | 15.93 | 1.05 | 4 |
NF(3) | 9.49 | 1.42 | 4 |
Sample | pH Mean (SD) | Turbidity (NTU) Mean (SD) | Conductivity (µS cm−1) at 20 °C Mean (SD) |
---|---|---|---|
Raw (unfiltered) chicken byproduct hydrolysate | 7.2 (0.08) | 33.6 (0.39) | 618.0 (0.69) |
Raw (unfiltered) chicken byproduct hydrolysate—pasteurized | 6.9 (0.12) | 33.7 (0.21) | 719.0 (1.81) |
Filtered (MF) chicken byproduct hydrolysate | 7.1 (0.12) | 5.8 (0.57) | 621.5 (1.76) |
Filtered (MF) chicken byproduct hydrolysate—pasteurized | 7.0 (0.08) | 4.1 (0.45) | 838.3 (1.36) |
Organic Matter | Filtration | |||||
---|---|---|---|---|---|---|
Microfiltration (MF-2.) Mean (SD) | Ultrafiltration (UF-4.) Mean (SD) | Nanofiltration (NF-11.) Mean (SD) | Reverse Osmosis (RO-11.) Mean (SD) | |||
DOC [ppm-C] | DOC * [ppm-C] | 2134 | 1674 | 387 | 182 | |
HOC * [ppm-C] | 852 (0.23) | 819 (0.19) | 70 (0.16) | 81 (0.21) | ||
CDOC * [ppm-C] | 1282 (1.05) | 855 (0.96) | 317 (1.32) | 101 (1.00) | ||
NOM | A > 20 kDa | DOC * [ppm-C] | 114 (1.69) | <2 | <2 | <2 |
DON * [ppm-N] | 16 (0.56) | 4 (0.74) | 4 (0.61) | 4 (0.62) | ||
N/C * [µg/µg] | 0.14 (0.22) | - | - | - | ||
Proteins [%] | 43 (1.31) | - | - | - | ||
B~1 kDa | DOC * [ppm-C] | 325 (1.04) | 76 (1.12) | 7 (0.84) | 8 (0.78) | |
DON * [ppm-N] | 98 (0.32) | 20 (0.76) | <2 | <2 | ||
N/C * [µg/µg] | 0.30 (1.54) | 0.26 (0.84) | 0.12 (0.96) | 0.07 (0.92) | ||
Proteins [%] | 91 (0.21) | 78 (0.33) | - | - | ||
C~500 Da | DOC * [ppm-C] | 178 (0.15) | 132 (0.17) | 6 (0.09) | 7 (0.06) | |
DON * [ppm-N] | 38 (0.15) | 33 (0.21) | 0 (0.00) | 0 (0.00) | ||
N/C * [µg/µg] | 0.21 (0.23) | 0.25 (0.32) | 0.00 (0.00) | 0.00 (0.00) | ||
Proteins [%] | 64 (0.46) | 75 (0.30) | - | - | ||
D < 500 Da | DOC * [ppm-C] | 35 (0.83) | 29 (0.52) | <2 | <2 | |
DON * [ppm-N] | 44 (0.66) | 38 (0.51) | 24 | 26 | ||
N/C * [µg/µg] | 1.26 (0.07) | 1.33 (0.08) | - | - | ||
Proteins [%] | - | - | - | - | ||
LMW | Neutrals [ppm-C] | 630 (0.12) | 617 (0.10) | 302 (0.14) | 84 (0.22) |
Sample | DPP-IV Inhibition (%) | St. Deviation (%) | N (Samples) |
---|---|---|---|
RCH * | 31.31 | 5.68 | 4 |
MF | 34.22 | 2.65 | 4 |
UF(1) | 40.68 | 5.48 | 4 |
UF(2) | 34.40 | 8.00 | 3 |
NF(1) | 12.09 | 0.87 | 2 |
NF(2) | 8.82 | 1.78 | 4 |
NF(3) | 3.65 | 2.00 | 4 |
Sample | AMW (g/mol) | Fraction 1 (%) | Fraction 2 (%) | Fraction 3 (%) | Fraction 4 (%) |
---|---|---|---|---|---|
RCH * | 1417.19 | 24.67 | 30.76 | 33.34 | 11.24 |
MF | 1437.44 | 24.71 | 30.78 | 33.58 | 10.94 |
UF(1) | 883.35 | 10.58 | 28.09 | 39.67 | 21.66 |
UF(1)-R | 1759.08 | 33.23 | 28.20 | 28.12 | 10.46 |
UF(2) | 1069.66 | 10.45 | 30.28 | 40.02 | 19.24 |
NF(1) | 479.20 | 2.47 | 6.94 | 27.76 | 62.83 |
NF(2) | 659.48 | 1.81 | 5.13 | 23.32 | 69.75 |
NF(3) | 185.73 | 0.33 | 3.14 | 24.62 | 71.91 |
Molecules | MW (g/mol) a | RT (i) | RT (j) | RT (k) | Mean RT | SD | LogM W | |
---|---|---|---|---|---|---|---|---|
1 | Bovine serum albumin | 66,000 | 5.933 | 5.933 | 5.933 | 5.933 | 0.000 | 4.820 |
2 | Albumin from chicken egg white | 44,287 | 5.967 | 5.967 | 5.967 | 5.967 | 0.000 | 4.646 |
3 | Carbonic anhydrase | 29,000 | 5.975 | 5.975 | 5.975 | 5.975 | 0.000 | 4.462 |
4 | Lysozyme | 14,300 | 6.158 | 6.158 | 6.150 | 6.155 | 0.005 | 4.155 |
5 | Cytochrome c from bovine heart | 12,327 | 6.058 | 6.050 | 6.050 | 6.053 | 0.005 | 4.091 |
6 | Insulin chain B oxidized from bovine pancreas | 3496 | 7.408 | 7.417 | 7.417 | 7.414 | 0.005 | 3.544 |
7 | Angiotensin II human | 1046 | 7.600 | 7.608 | 7.608 | 7.605 | 0.005 | 3.020 |
8 | Bradykinin Fragment 1–7 | 757 | 8.158 | 8.158 | 8.150 | 8.155 | 0.005 | 2.879 |
9 | [D-Ala2]-Leucine enkephalin | 570 | 9.817 | 9.825 | 9.833 | 9.825 | 0.008 | 2.756 |
10 | Val–Tyr–Val | 379 | 9.592 | 9.600 | 9.600 | 9.597 | 0.005 | 2.579 |
11 | L-Tryptophan | 204 | 10.433 | 10.442 | 10.442 | 10.439 | 0.005 | 2.310 |
Sample | 95% Confidence Interval of IC50 |
---|---|
MF | 0.8963 to 1.186 |
UF(1) | 0.6639 to 0.8410 |
UF(1)—R | 1.429 to 1.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dibdiakova, J.; Matic, J.; Wubshet, S.G.; Uhl, W.; Manamperuma, L.D.; Rusten, B.; Vik, E.A. Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides. Membranes 2024, 14, 28. https://doi.org/10.3390/membranes14020028
Dibdiakova J, Matic J, Wubshet SG, Uhl W, Manamperuma LD, Rusten B, Vik EA. Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides. Membranes. 2024; 14(2):28. https://doi.org/10.3390/membranes14020028
Chicago/Turabian StyleDibdiakova, Janka, Josipa Matic, Sileshi Gizachew Wubshet, Wolfgang Uhl, Lelum Duminda Manamperuma, Bjørn Rusten, and Eilen Arctander Vik. 2024. "Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides" Membranes 14, no. 2: 28. https://doi.org/10.3390/membranes14020028
APA StyleDibdiakova, J., Matic, J., Wubshet, S. G., Uhl, W., Manamperuma, L. D., Rusten, B., & Vik, E. A. (2024). Membrane Separation of Chicken Byproduct Hydrolysate for Up-Concentration of Bioactive Peptides. Membranes, 14(2), 28. https://doi.org/10.3390/membranes14020028