Membrane Separation Technology in Direct Air Capture
Abstract
:1. Introduction
2. Feasibility of m-DAC
3. Considerations for m-DAC
3.1. Permeance
3.2. Selectivity
3.3. Pressure Ratio
3.4. Stage Cut
4. Potential Membrane Materials
4.1. Copolymers
4.2. MMMs
4.3. Facilitated Transport Membranes
5. M-DAC Application
6. Perspective
- (1)
- Membrane materials
- (2)
- Membrane fabrication
- (3)
- System and process
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Minx, J.C.; Lamb, W.F.; Callghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; De Oliveira Garcia, W.; Hartmann, J. Negative emissions-Part1: Research landscape and synthesis. Environ. Res. Lett. 2018, 13, 063001. [Google Scholar] [CrossRef]
- IPCC. 2023: Summary for Policymakers. In Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 36p, in press. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, S.; Selyanchyn, R. Direct air capture by membranes. MRS Bull. 2022, 47, 416–423. [Google Scholar] [CrossRef]
- Chiwaye, N.; Majozi, T.; Daramola, M.O. On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants. J. Membr. Sci. 2021, 638, 119691. [Google Scholar] [CrossRef]
- Lackner, K.S.; Brennan, S.; Matter, J.M.; van der Zwaan, B. The urgency of the development of CO2 capture from ambient air. Proc. Natl. Acad. Sci. USA 2012, 109, 13156–13162. [Google Scholar] [CrossRef] [PubMed]
- Shayegh, S.; Bosetti, V.; Tavoni, M. Future Prospects of Direct Air Capture Technologies: Insights from an Expert Elicitation Survey. Front. Clim. 2021, 3, 630893. [Google Scholar] [CrossRef]
- Ozkan, M. Direct air capture of CO2: A response to meet the global climate targets. MRS. Energy Sustain. 2021, 8, 51–56. [Google Scholar] [CrossRef]
- Beuttler, C.; Charles, L.; Wurzbacher, J. The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions. Front. Clim. 2019, 1, 10. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef]
- Fujikawa, S.; Selyanchyn, R.; Kunitake, T. A new strategy for membrane-based direct air capture. Polym. J. 2021, 53, 111–119. [Google Scholar] [CrossRef]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K.; et al. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs; American Physical Society: College Park, MD, USA, 2011. [Google Scholar]
- McQueen, N.; Gomes, K.V.; McCormick, C.; Blumanthal, K.; Pisciotta, M.; Wilcox, J. A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Prog. Energy 2021, 3, 032001. [Google Scholar] [CrossRef]
- Kikkawa, S.; Anamoto, K.; Fujiki, Y.; Hirayama, J.; Kato, G.; Miura, H.; Shishido, T.; Yamazoe, S. Direct Air Capture of CO2 Using a Liquid Amine-Solid Carbamic Acid Phase-Separation System Using Diamine Bearing an Aminocyclohexyl Group. ACS Environ. Au 2022, 2, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Erans, M.; Sanz-Pérez, E.S.; Hanak, D.P.; Clulow, Z.; Reiner, D.M.; Mutch, G.A. Direct air capture: Process technology, Techno-economic and socio political challanges. Energy Environ. Sci. 2022, 15, 1360–1405. [Google Scholar] [CrossRef]
- Wiegner, J.F.; Grimm, A.; Weimann, L.; Gazzani, M. Optimal Design and Operation of Solid Sorbent Direct Air Capture Processes at Varying Ambient Conditions. Ind. Eng. Res. 2022, 61, 12649–12667. [Google Scholar] [CrossRef]
- Lackner, K.S. A Guide to CO2 Sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef] [PubMed]
- Osterloh, F.E. The Low Concentration of CO2 in the Atmosphere Is an Obstacle to a Sustainable Artificial Photosynthesis Fuel Cycle Based on Carbon. ACS Energy Lett. 2016, 1, 1060–1061. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Keith, D.W.; Heidel, K.; Cherry, R. Geoengineering Climate Change. Environment Necessity or Pandora’s Box? Capturing CO2 from Atmosphere: Rationale and Process Design Considerations; Brian, L., Ed.; Cambridge University Press: Cambridge, UK, 2010; Chapter 6; pp. 107–126. [Google Scholar]
- Selyanchyn, R.; Fujikawa, S. Membrane thinning for efficient CO2 capture. Sci. Technol. Adv. Mater. 2017, 18, 816–827. [Google Scholar] [CrossRef]
- Xie, K.; Fu, Q.; Qiao, G.G.; Webley, P.A. Recent progress on fabrication of polymeric thin film gas separation membranes for CO2 capture. J. Membr. Sci. 2019, 572, 38–60. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Wang, B.; Dutta, P.; Ho, W.S.W. Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. J. Membr. Sci. 2016, 497, 21–28. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Klumpp, M.; Kant, P.; Ozin, G. Crowd oil not crude oil. Nat. Commun. 2019, 10, 1818. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, S.; Ariyoshi, M.; Selyanchyn, R.; Kunitake, T. Ultra-fast, Selective CO2 Permeation by Free-standing Siloxane Nanomembranes. Chem. Lett. 2019, 48, 1351–1354. [Google Scholar] [CrossRef]
- Setiawan, W.K.; Chiang, K. Amine-functionalized biogenic silica incorporation effect on poly (ether-block-amide) membrane CO2/N2 separation performance. J. Membr. Sci. 2023, 680, 121732. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Ahmad, M.Z.; Malankowska, M.; Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). J. Chem. Eng. 2022, 446, 137047. [Google Scholar] [CrossRef]
- Castel, C.; Bounaceur, R.; Favre, E. Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations. Front. Chem. Eng. 2021, 3, 668867. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Gurkan, B. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation. J. Membr. Sci. 2021, 638, 119652. [Google Scholar] [CrossRef]
- Yave, W.; Car, A.; Wind, J.; Peinemann, K. Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture. Nanotechnology 2010, 21, 395301. [Google Scholar] [CrossRef]
- Selyanchyn, C.; Selyanchyn, R.; Fujikawa, S. Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO2/N2 Gas Separation. ACS Appl. Mater. Interfaces 2020, 12, 33196–33209. [Google Scholar] [CrossRef]
- Yoo, M.J.; Kim, K.H.; Lee, J.H.; Kim, T.W.; Chung, C.W.; Cho, Y.H.; Park, H.B. Ultrathin gutter layer for high-performance thin-film composite membranes for CO2 separation. J. Membr. Sci. 2018, 566, 336–345. [Google Scholar] [CrossRef]
- Seppänen, O.A.; Fisk, W.J.; Mendell, W.J. Association of Ventilation Rates and CO2 Concentrations with Health and Other Responses in Commercial and Institutional Buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Mohsenpour, S.; Guo, Z.; Almansour, F.; Holmes, S.M.; Budd, P.M.; Gorgojo, P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J. Membr. Sci. 2022, 661, 120889. [Google Scholar] [CrossRef]
- Vendamme, R.; Onoue, S.; Nakao, A.; Kunitake, T. Robust free-standing membranes of organic/inorganic interpenetrating networks. Nat. Mater. 2006, 5, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Wanatabe, H.; Kunitake, T. A Large, Freestanding, 20 nm Thick Nanomembrane Based on an Epoxy Resin. Adv. Mater. 2007, 19, 909–912. [Google Scholar] [CrossRef]
- He, S.; Zhu, B.; Li, S.; Zhang, Y.; Jiang, X.; Lau, C.H.; Shao, L. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Sep. Purif. Technol. 2022, 284, 120277. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Swaidan, R.; Al-Saeedi, M.; Ghanem, B.; Litwiller, E.; Pinnau, I. Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes. Macromolecules 2014, 47, 5104–5114. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, B.G.; Carta, M.; Rose, I.; Ferrari, M.; Esposito, E.; Fuoco, A.; Jansen, J.C.; Mckeown, N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef]
- Shrimant, B.; Kharul, U.K.; Wadgaonkar, P.P. Spiro[fluorene-9,9′-xanthene]-containing copolymers of intrinsic microporosity: Synthesis, characterization and gas permeation properties. React. Funct. Polym. 2018, 133, 153–160. [Google Scholar] [CrossRef]
- Sun, W.; Yin, M.; Zhang, W.; Li, S.; Wang, N.; An, Q. Green Techniques for Rapid Fabrication of Unprecedentedly High-Performance PEO Membranes for CO2 Capture. ACS Sustain. Chem. Eng. 2021, 9, 10167–10175. [Google Scholar] [CrossRef]
- Nazarov, I.V.; Khrychikova, A.P.; Medentseva, E.I.; Bermesheva, E.V.; Borisov, I.L.; Yushkin, A.A.; Volkov, A.V.; Wozniak, A.I.; Petukhov, D.I.; Topchiy, M.A.; et al. CO2-selective vinyl-addition polymers from nadimides: Synthesis and performance for membrane gas separation. J. Membr. Sci. 2023, 677, 121624. [Google Scholar] [CrossRef]
- Alentiev, D.A.; Egorova, E.S.; Bermeshev, M.V.; Starannikova, L.E.; Topchiy, M.A.; Asachenko, A.F.; Gribanov, P.S.; Nechaev, M.S.; Yampolskii, Y.P.; Finkelshtein, E.S. Janus tricyclononene polymers bearing tri(n-alkoxy)silyl side groups for membrane gas separation. J. Mater. Chem. A 2018, 6, 19393–19408. [Google Scholar] [CrossRef]
- White, L.S.; Amo, K.D.; Wu, T.; Markel, T.C. Extended field trials of Polaris sweep modules for carbon capture. J. Membr. Sci. 2017, 542, 217–225. [Google Scholar] [CrossRef]
- Brinkmann, T.; Lillepärg, J.; Notzke, H.; Pohlmann, J.; Shishatskiy, S.; Wind, J.; Wolff, T. Development of CO2 selective poly(ethylene oxide)-based membranes: From laboratory to pilot plant scale. Engineering 2017, 3, 485–493. [Google Scholar] [CrossRef]
- Du, N.; Park, H.B.; Robertson, G.P.; Dal-Cin, M.M.; Visser, T.; Scoles, L.; Guiver, M.D. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 2011, 10, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Swaidan, R.; Ghanem, B.S.; Litwiller, E.; Pinnau, I. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. J. Membr. Sci. 2014, 457, 95–102. [Google Scholar] [CrossRef]
- Du, N.; Robertson, G.P.; Dal-Cin, M.M.; Scoles, L.; Guiver, M.D. Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer 2012, 53, 4367–4372. [Google Scholar] [CrossRef]
- Manson, C.R.; Maynard-Atem, L.; Al-Harbi, N.M.; Budd, P.M.; Bernardo, P.; Bazzarelli, F.; Clarizia, G.; Jansen, J.C. Polymer of intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. Macromolecules 2011, 44, 6471–6479. [Google Scholar] [CrossRef]
- Han, W.; Zhang, C.; Zhao, M.; Yang, F.; Yang, Y.; Weng, Y. Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J. Membr. Sci. 2021, 636, 119544. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M. Development of Nanocomposite Membranes Containing Modified Si Nanoparticles in PEBAX-2533 as a Block Co-polymer and 6FDA-Durene Diamine as a Glassy Polymer. ACS Appl. Mater. Interfaces 2014, 6, 15643–15652. [Google Scholar] [CrossRef]
- Mason, C.R.; Buonomenna, M.G.; Golemme, G.; Budd, P.M.; Galiano, F.; Figoli, A.; Friess, K.; Hynek, V. New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer 2013, 54, 2222–2230. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Xin, Q.; Liu, T.; Li, Z.; Wang, S.; Li, Y.; Li, Z.; Ouyang, J.; Jiang, Z.; Wu, H. Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. J. Membr. Sci. 2015, 488, 67–78. [Google Scholar] [CrossRef]
- Yu, G.; Zou, X.; Sun, L.; Liu, B.; Wang, Z.; Zhang, P.; Zhu, G. Constructing Connected Paths between UiO-66 and PIM-1 to improve Membrane CO2 Separation with Crystal-Like Gas Selectivity. Adv. Mater. 2019, 31, e1806853. [Google Scholar] [CrossRef] [PubMed]
- Haider, B.; Dilshad, M.R.; Akram, M.S.; Islam, A.; Kaspereit, M. Novel Polydimethylsiloxane membranes impregnated with SAPO-34 zeolite particles for gas separation. Chem. Pap. 2021, 75, 6417–6431. [Google Scholar] [CrossRef]
- Chen, M.; Soyekwo, F.; Zhang, Q.; Hu, C.; Zhu, A.; Liu, Q. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J. Ind. Eng. Chem. 2018, 63, 296–302. [Google Scholar] [CrossRef]
- Ashtiani, S.; Sofer, Z.; Průša, F.; Friess, K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021, 274, 119003. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, H.; Zhang, S.; Zhang, F.; Jin, J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J. Mater. Chem. A 2017, 5, 10968–10977. [Google Scholar] [CrossRef]
- Ding, X.; Tan, F.; Zhao, H.; Hua, M.; Wang, M.; Xin, Q.; Zhang, Y. Enhancing gas permeation and separation performance of polymeric membrane by incorporating hollow polyamide nanoparticles with dense shell. J. Membr. Sci. 2019, 570–571, 53–60. [Google Scholar] [CrossRef]
- Li, X.; Ding, S.; Zhang, J.; Wei, Z. Optimizing microstructure of polymer composite membranes by tailoring different ionic liquids to accelerate CO2 transport. Int. J. Greenh. Gas Control 2020, 101, 103136. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Wu, H.; Li, Y.; Wang, S.; Tian, Z.; Jiang, Z. High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. J. Membr. Sci. 2014, 469, 198–208. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Li, Y.; Wang, S.; Guo, R.; Jiang, Z.; Wu, C.; Xin, Q.; Lu, X. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Membr. Sci. 2014, 465, 78–90. [Google Scholar] [CrossRef]
- Mashhadikhan, S.; Moghadassi, A.; Amooghin, A.E.; Sanaeepur, H. Interlocking a synthesized polymer and bifunctional filler containing the same polymer’s monomer for conformable hybrid membrane systems. J. Mater. Chem. A 2020, 8, 3942–3955. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, J.; Wang, Y.; Qiu, Y.; Li, H.; Hua, K.; Li, X.; Ji, J.; Deng, M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J. Membr. Sci. 2017, 521, 104–113. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, H.; Zhang, J.; Guo, R.; Li, X. Facilitated transport membranes with an amino acid salt for highly efficient CO2 separation. Int. J. Greenh. Gas Control 2018, 78, 85–93. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Shockravi, A.; Vatanpour, V. High performance compatible thiazole-based polymeric blend cellulose acetate membrane as selective CO2 absorbent and molecular sieve. Carbohydr. Polym. 2021, 252, 117215. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, F.; Li, H.; Xu, J.; Hu, J.; Liu, H.; Wang, M. A porous ionic polymer bionic carrier in a mixed matrix membrane for facilitating selective CO2 permeability. J. Membr. Sci. 2020, 598, 117215. [Google Scholar] [CrossRef]
- Yu, M.; Foster, A.B.; Alshurafa, M.; Luque-Alled, J.M.; Gorgojo, P.; Kentish, S.E.; Scholes, C.A.; Budd, P.M. CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1. J. Membr. Sci. 2023, 679, 121697. [Google Scholar] [CrossRef]
- Swaidan, R.; Ghanem, B.; Litwiller, E.; Pinnau, I. Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity. Macromolecules 2015, 48, 6553–6561. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Castro-Muñoz, R.; Budd, P.M. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale 2020, 12, 23333–23370. [Google Scholar] [CrossRef]
- Norahim, N.; Yaisanga, P.; Faungnawakij, K.; Charinpanitkul, T.; Klaysom, C. Recent Membrane Developments for CO2 Separation and Capture. Chem. Eng. Technol. 2018, 41, 211–223. [Google Scholar] [CrossRef]
- Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; Mckeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Ghanem, B.S.; Alghunaimi, F.; Pinnau, I.; Han, Y. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 2018, 3, 69–95. [Google Scholar] [CrossRef]
- Han, X.; Zhang, J.; Yue, C.; Pang, J.; Zhang, H.; Jiang, Z. Novel copolymers with intrinsic microporosity containing tetraphenyl-bipyrimidine for enhanced gas separation. J. Ind. Eng. Chem. 2020, 91, 102–109. [Google Scholar] [CrossRef]
- Bezzu, C.G.; Carta, M.; Ferrari, M.; Jansen, J.C.; Monteleone, M.; Elisa, E.; Fuoco, A.; Hart, K.; Liyana-Arachchi, T.P.; Colina, C.M.; et al. The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. J. Mater. Chem A 2018, 6, 10507–10514. [Google Scholar] [CrossRef]
- Zhu, B.; Jiang, X.; He, S.; Xiaobin, Y.; Long, J.; Zhang, Y.; Shao, L. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture. J. Mater. Chem. A 2020, 8, 24233–24252. [Google Scholar] [CrossRef]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Hosseini, S.M.; Matsuura, T.; Joudaki, E. Advances in high carbon dioxide separation performance of poly (ethylene oxide)-based membranes. J. Energy Chem. 2020, 46, 30–52. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 2018, 26, 2238–2254. [Google Scholar] [CrossRef]
- Rogan, Y.; Starannikova, L.; Ryzhikh, V.; Yampolskii, V.; Yampolskii, Y.; Bernardo, P.; Bazzarelli, F.; Jansen, J.C.; McKeown, N.B. Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polym. Chem. 2013, 4, 1820–3813. [Google Scholar] [CrossRef]
- Ghanem, B.S.; McKeown, N.B.; Budd, P.M.; Al-Harbi, N.M.; Fritsch, D.; Heinrich, K.; Starannikova, L.; Tokarev, A.; Yampolskii, Y. Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. Macromolecules 2009, 42, 7881–7888. [Google Scholar] [CrossRef]
- Song, Q.; Cao, S.; Zavala-Rivera, P.; Lu, L.P.; Li, W.; Ji, Y.; Al-Muhtaseb, S.A.; Cheetham, A.K.; Sivaniah, E. Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat. Commun. 2013, 4, 1918. [Google Scholar] [CrossRef]
- Song, Q.; Cao, S.; Pritchard, R.H.; Ghalei, B.; Al-Muhtaseb, S.A.; Terentjev, E.M.; Cheetham, A.K.; Sivaniah, E. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 2014, 5, 4813. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Xiao, Y.; Chung, T.; Kawi, S. High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules 2012, 45, 1427–1437. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Q.; Zhu, L.; Lin, H.; Kazanowska, B.A.; Doherty, C.M.; Hill, A.J.; Gao, P.; Guo, R. Highly Selective and Permeable Microporous Polymer Membranes for Hydrogen Purification and CO2 Removal from Natural Gas. Chem. Matter. 2018, 30, 5322–5332. [Google Scholar] [CrossRef]
- Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I. Pristine and thermally-rearranged gas separation membranes for novel o-hydroxyl-functionalized spirobifluorene-based polyimides. Polym. Chem. 2014, 5, 6913–6922. [Google Scholar] [CrossRef]
- Bandehali, S.; Amooghin, A.E.; Sanaeepur, H.; Ahmadi, R.; Fuoco, A.; Jansen, J.C.; Shirazian, S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep. Purif. Technol. 2021, 278, 119513. [Google Scholar] [CrossRef]
- Janakiram, S.; Ahmadi, M.; Dai, Z.; Ansaloni, L.; Deng, L. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes 2018, 8, 24. [Google Scholar] [CrossRef]
- Liu, M.; Nothling, M.D.; Webly, P.A.; Jin, J.; Fu, Q.; Qiao, G.G. High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. J. Chem. Eng. 2020, 396, 125328. [Google Scholar] [CrossRef]
- Muldoon, P.F.; Venna, S.R.; Gidley, D.W.; Baker, J.S.; Zhu, L.; Tong, Z.; Xiang, F.; Hopkinson, D.P.; Yi, S.; Sekizkardes, A.K.; et al. Mixed Matrix Membranes from a Microporous Polymer Blend and Nanosized Metal-Organic Frameworks with Exceptional CO2/N2 Separation Performance. ACS Mater. Lett. 2020, 2, 821–828. [Google Scholar] [CrossRef]
- Fan, S.; Wang, J.; Liao, L.; Feng, J.; Li, B.; Zhang, S. Enhanced selectivity in thin film composite membrane for CO2 capture through improvement to support layer. J. Chem. Eng. 2023, 468, 143645. [Google Scholar] [CrossRef]
- Lin, Z.; Yuan, Z.; Wang, K.; He, X. Synergistic tuning mixed matrix membranes by Ag+-doping in UiO-66-NH2/polymers of intrinsic microporosity for remarkable CO2/N2 separation. J. Membr. Sci. 2023, 681, 121775. [Google Scholar] [CrossRef]
- Messaoud, S.B.; Takagaki, A.; Sugawara, T.; Kikuchi, R.; Oyama, S.T. Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation. Sep. Purif. Technol. 2015, 148, 38–48. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Zhang, H.; Wang, S.; Jiang, Z.; Guo, R.; Wu, H.; Cao, X.; Yang, J.; Wang, B. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. J. Membr. Sci. 2015, 479, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Seong, M.K.; Yu, H.J.; Ha, S.Y.; Chang, W.S.; Kim, H.; Lee, J.S. Poly(poly(ethylene glycol) methyl ether acrylate) micelles for highly CO2 permeable membranes. J. Membr. Sci. 2022, 662, 120917. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; Shao, L. Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ. Sci. 2017, 10, 1339–1344. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Feng, Y.; Liu, H.; Li, S.; Qiu, Y.; Ren, J. The preparation and characterization of gel-mixed matrix membranes (g-MMMs) with high CO2 permeability and stability performance. J. Membr. Sci. 2022, 652, 120471. [Google Scholar] [CrossRef]
- Guo, H.; Wei, J.; Deng, J.; Yi, S.; Wang, B.; Deng, L.; Jiang, X.; Dai, Z. Facilitated transport membranes for CO2/CH4 separation—State of the art. Adv. Membr. 2022, 2, 100040. [Google Scholar] [CrossRef]
- Hong, C.; Leo, C.P.; Ahmad, N.N.R.; Ahmad, A.L.; Mohammad, A.W. Polyvinyl alcohol membrane incorporated with amine-modified silica nanoparticles and ionic liquid for facilitated transport of CO2. Int. J. Greenh. Gas Control 2022, 120, 103774. [Google Scholar] [CrossRef]
- Costa, S.P.F.; Azevedo, A.M.O.; Pinto, P.C.A.G.; Saraiva, M.L.M.F.S. Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability. Eur. J. Chem. 2017, 10, 2321–2347. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Recent advances in polymeric facilitated transport membranes for carbon dioxide separation and hydrogen purification. J. Polym. Sci. 2020, 58, 2435–2449. [Google Scholar] [CrossRef]
- IEAGHG. Effecs of Impurities on Geological Storage of CO2; IEAGHG: Cheltenham, UK, 2011. [Google Scholar]
- Anantharaman, R.; Berstad, D.; Roussanaly, S. Techno-economic Performance of a Hybrid Membrane—Liquefaction Process for Post-combustion CO2 Capture. Energy Procedia 2014, 61, 1244–1247. [Google Scholar] [CrossRef]
- Sreenath, S.; Sam, A.A. Hybrid membrane-cryogenic CO2 capture technologies: A mini-review. Front. Energy Res. 2023, 11, 1167024. [Google Scholar] [CrossRef]
- Belaissaoul, B.; Le Moullec, Y.; Willson, D.; Favre, E. Hybrid membrane cryogenic process for post-combustion CO2 capture. J. Membr. Sci. 2012, 415–416, 424–434. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev. 2020, 25, 109799. [Google Scholar] [CrossRef]
- Kim, B.; Ma, S.; Jhong, H.M.; Kenis, P.J. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim. Acta 2015, 166, 271–276. [Google Scholar] [CrossRef]
- Tsuji, T.; Sorai, M.; Shiga, M.; Fujikawa, S.; Kunitake, T. Geological storage of CO2-N2-O2 mixtures produced by membrane-based direct air capture (DAC). Greenh. Gases Sci. Technol. 2021, 11, 610–618. [Google Scholar] [CrossRef]
- Longo, M.; De Santo, M.P.; Esposito, E.; Fuoco, A.; Monteleone, M.; Giorno, L.; Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; et al. Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Ind. Eng. Chem. Res. 2020, 12, 5381–5391. [Google Scholar] [CrossRef]
- Carta, M.; Bernardo, P.; Clarizia, G.; Jansen, J.C.; McKeown, N.B. Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. Macromol. 2014, 47, 8320–8327. [Google Scholar] [CrossRef]
- Santiago-Garcia, J.L.; Álvarez, C.; Sánchez, F.; de la Campa, J.G. Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride. J. Membr. Sci. 2015, 476, 442–448. [Google Scholar] [CrossRef]
- Ma, X.; Pinnau, I. A novel intrinsically microporous ladder polymer and copolymers derived from 1,1′,2,2′-tetrahydroxytetraphenylethylene for membrane-based gas separation. Polym. Chem. 2016, 7, 1244–1248. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Jin, J. Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Macromol. 2014, 47, 7477–7483. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, Z.; Shi, W.; Ji, W.; Li, J.; Wang, Y.; Pinnau, I. Unprecedented gas separation performance of difluoro-functionalized triptycene-based ladd PIM membrane at low temperature. J. Mater. Chem. A 2021, 9, 5404–5414. [Google Scholar] [CrossRef]
- Ghanem, B.S.; Swaidan, R.; Ma, X.; Litwiller, E.; Pinnau, I. Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves. Adv. Mater. 2014, 26, 6696–6700. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, B.S.; Alghunaimi, F.; Wang, Y.; Genduso, G.; Pinnau, I. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene. ACS Omega 2018, 3, 11874–11882. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lee, W.H.; Bae, J.Y.; Zhao, J.; Kim, J.S.; Wang, Z.; Yan, J.; Lee, Y.M. Highly permeable polyimides incorporating Tröger’s base (TB) units for gas separation membranes. J. Membr. Sci. 2020, 615, 118533. [Google Scholar] [CrossRef]
- Ma, X.; Ghanem, B.; Salines, O.; Litwiller, E.; Pinnau, I. Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. ACS Macro Lett. 2015, 4, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Abdulhamid, M.A.; Pinnau, I. Design and Synthesis of Polyimides Based on Carbocylic Pseudo-Tröger’s Base-Derived Dianhydrides for Membrane Gas Separation Applications. Macromolecules 2017, 50, 5850–5857. [Google Scholar] [CrossRef]
- Esposito, E.; Mazzei, I.; Monteleone, M.; Fuoco, A.; Carta, M.; McKeown, N.B.; Mapass-Evans, R.; Jansen, J.C. Highly Permeable Matrimid®/PIM-EA(H2)-TB Blend Membrane for Gas Separation. Polymers 2019, 11, 46. [Google Scholar] [CrossRef]
- Carta, M.; Croad, M.; Malpass-Evans, R.; Jansen, J.C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanč, M.; McKeown, N.B. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger’s Base Polymers. Adv. Mater. 2014, 26, 3526–3531. [Google Scholar] [CrossRef]
- Fritsch, D.; Bengtson, G.; Carta, M.; McKeown, N.B. Synthesis and Gas Permeation Properties of Spirobischromane-based Polymers of Intrinsic Microporosity. Macromol. Chem. Phys. 2011, 212, 1137–1146. [Google Scholar] [CrossRef]
- Yuan, K.; Liu, C.; Zhang, S.; Jiang, L.; Liu, C.; Yu, G.; Wang, J.; Jian, X. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. J. Membr. Sci. 2017, 541, 403–412. [Google Scholar] [CrossRef]
- Jiang, X.; Goh, K.; Wang, R. Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture. J. Membr. Sci. 2022, 658, 120741. [Google Scholar] [CrossRef]
- Zhang, G.; Tran, N.T.; Huang, L.; Deng, E.; Blevins, A.; Guo, W.; Ding, Y.; Lin, H. Thin-film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation. J. Membr. Sci. 2022, 644, 120184. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Zhang, C.; Wang, M.; Yuan, F.; Wang, J.; Wang, S. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. J. Membr. Sci. 2013, 436, 121–131. [Google Scholar] [CrossRef]
- Chua, M.L.; Xiao, Y.C.; Chung, T. Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes. J. Membr. Sci. 2012, 415-416, 375–382. [Google Scholar] [CrossRef]
- Do, Y.S.; Lee, W.H.; Seong, J.G.; Kim, J.S.; Wang, H.H.; Doherty, C.M.; Hill, A.J.; Lee, Y.M. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chem. Commun. 2016, 52, 13556–13559. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jo, H.J.; Lee, Y.M. Sorption and transport of small gas molecules in thermally rearranged (TR) polybenzoxazole membranes based on 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (bisAPAF) and 4,4′-hexafluoroisopropylidene diphthalic anhydride (6FDA). J. Membr. Sci. 2013, 441, 1–8. [Google Scholar] [CrossRef]
- Han, S.H.; Lee, J.E.; Lee, K.; Park, H.B.; Lee, Y.M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 2010, 357, 143–151. [Google Scholar] [CrossRef]
- Choi, J.I.; Jung, C.H.; Han, S.H.; Park, H.B.; Lee, Y.M. Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J. Membr. Sci. 2010, 349, 358–368. [Google Scholar] [CrossRef]
- Du, N.; Dal-Cin, M.M.; Robertson, G.P.; Guiver, M.D. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules 2012, 45, 5134–5139. [Google Scholar] [CrossRef]
- Li, F.Y.; Xiao, Y.; Ong, Y.K.; Chung, T. UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Adv. Energy Mater. 2012, 2, 1456–1466. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Li, H.; Fan, F.; Zhao, Q.; He, G.; Ma, C. Ester-crosslinked polymers of intrinsic microporosity membranes with enhanced plasticization resistance for CO2 separation. Sep. Purif. Technol. 2023, 314, 123623. [Google Scholar] [CrossRef]
- Hazazi, K.; Ma, X.; Wang, Y.; Ogieglo, W.; Alhazmi, A.; Han, Y.; Pinnau, I. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. J. Membr. Sci. 2019, 585, 1–9. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Bao, Y.; Song, J.; Bae, T. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. J. Membr. Sci. 2021, 622, 119031. [Google Scholar] [CrossRef]
- Chi, W.S.; Kim, S.J.; Lee, S.; Bae, Y.; Kim, J.H. Enhanced Performance of Mixed-Matrix Membranes through a Graft Copolymer-Directed Interface and Interaction Tuning Approach. ChemSusChem 2014, 8, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Min, H.J.; Kang, M.; Bae, Y.; Blom, R.; Grande, C.A.; Kim, J.H. Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance. J. Membr. Sci. 2023, 669, 121295. [Google Scholar] [CrossRef]
- Luo, W.; Niu, Z.; Mu, P.; Li, J. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4. Colloids Surf. A Physico. Chem. Eng. Asp. 2022, 640, 128481. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, Z.; Wee, V.; Wu, Z.; Jiang, Z.; Zhao, D. Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. J. Membr. Sci. 2022, 641, 119912. [Google Scholar] [CrossRef]
- Khdhayyer, M.R.; Esposito, E.; Fuoco, A.; Monteleone, M.; Giorno, L.; Jansen, J.C.; Attfield, M.P.; Budd, P.M. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 2017, 173, 304–313. [Google Scholar] [CrossRef]
- Lee, C.S.; Kang, M.; Kim, K.C.; Kim, J.H. In-situ formation of asymmetric thin-film, mixed-matrix membranes with ZIF-8 in dual-functional imidazole-based comb copolymer for high-performance CO2 capture. J. Membr. Sci. 2022, 642, 119913. [Google Scholar] [CrossRef]
- Wu, X.; Tian, Z.; Wang, S.; Peng, D.; Yang, L.; Wu, Y.; Xin, Q.; Wi, H.; Jiang, Z. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 2017, 528, 273–283. [Google Scholar] [CrossRef]
- Hao, L.; Liao, K.; Chung, T. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. J. Mater. Chem. A 2015, 3, 17273–17281. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Wakimoto, K.; Gibbons, A.H.; Isfahani, A.P.; Kusuda, H.; Sivaniah, E.; Ghalei, B. Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci. 2017, 539, 178–186. [Google Scholar] [CrossRef]
- Husna, A.; Hossain, I.; Choi, O.; Lee, S.; Kim, T. Efficient CO2 Separation Using a PIM-PI-Functionalized UiO-66 MOF Incorporated Mixed Membrane in a PIM-PI-1 Polymer. Macromol. Mater. Eng. 2021, 306, 2100298. [Google Scholar] [CrossRef]
- Sun, H.; Gao, W.; Zhang, Y.; Cao, X.; Bao, S.; Li, P.; Kang, Z.; Niu, J. Bis(phenyl)fluorene-based polymer of intrinsic microporosity/functionalized multi-walled carbon nanotubes mixed matrix membranes for enhanced CO2 separation performance. React. Funct. Polym. 2020, 147, 104465. [Google Scholar] [CrossRef]
- Sánchez-Laínez, J.; Pardillos-Ruiz, A.; Carta, M.; Malpass-Evans, R.; McKeown, N.B.; Téllez, C.; Coronas, J. Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. Sep. Purif. Technol. 2019, 224, 456–462. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, M.; Guan, K.; Zhao, J.; Liu, G.; Jin, W. High-Performance CO2 Capture through Polymer-Based Ultrathin Membranes. Adv. Funct. Mater. 2019, 29, 1900735. [Google Scholar] [CrossRef]
- Khdhayyer, M.; Bushell, A.F.; Budd, P.M.; Attfield, M.P.; Jiang, D.; Burrows, A.D.; Esposito, E.; Bernardo, P.; Monteleone, M.; Fuoco, A.; et al. Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 2019, 212, 545–554. [Google Scholar] [CrossRef]
- Kim, N.U.; Park, B.J.; Lee, J.H.; Kim, J.H. High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO2 capture. J. Mater. Chem. A 2019, 7, 14723–14731. [Google Scholar] [CrossRef]
- Deng, G.; Wang, Y.; Luo, J.; Zong, X.; Zhang, C.; Song, X. Synthesis and gas transport properties of hyperbranched network polyimides derived from Tris(4-aminophenyl) benzene. Polymer 2020, 203, 122776. [Google Scholar] [CrossRef]
- Scofield, J.M.P.; Gurr, P.A.; Kim, J.; Fu, Q.; Kentish, S.E.; Qiao, G.G. Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. J. Membr. Sci. 2016, 499, 191–200. [Google Scholar] [CrossRef]
- Hao, L.; Li, P.; Chung, T. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. J. Membr. Sci. 2014, 453, 614–623. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Xiao, Y.C.; Li, P.; Pramoda, K.P.; Tong, Y.W.; Chung, T.S. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 2012, 407-408, 47–57. [Google Scholar] [CrossRef]
- Yechan, L.; Chuah, C.Y.; Lee, J.; Bae, T. Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes. J. Membr. Sci. 2022, 647, 120309. [Google Scholar] [CrossRef]
- Park, C.; Kong, C.; Kim, E.; Lee, C.; Kim, K.; Lee, J.; Moon, S. High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment. J. Chem. Eng. 2023, 455, 140883. [Google Scholar] [CrossRef]
- Jeong, I.; Hossain, I.; Husna, A.; Kim, T. Development of CO2-Philic Blended Membranes Using PIM-PI and PIM-PEG/PPG. Macromol. Mater. Eng. 2022, 308, 2200596. [Google Scholar] [CrossRef]
- Sekizkardes, A.K.; Budhathoki, S.; Zhu, L.; Kusuma, V.; Tong, Z.; McNally, J.S.; Steckel, J.A.; Yi, S.; Hopkinson, D. Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation. J. Membr. Sci. 2021, 640, 119764. [Google Scholar] [CrossRef]
- Yong, W.F.; Li, F.Y.; Chung, T.S.; Tong, Y.W. Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. J. Membr. Sci. 2014, 462, 119–130. [Google Scholar] [CrossRef]
- Liu, J.; Pan, Y.; Xu, J.; Wang, Z.; Zhu, H.; Liu, G.; Zhong, J.; Jin, W. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. J. Membr. Sci. 2023, 667, 121183. [Google Scholar] [CrossRef]
- Han, H.; Scofield, J.M.P.; Gurr, P.A.; Webley, P.A.; Qiao, G.G. Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. J. Chem. Eng. 2023, 462, 142087. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Yu, X.; Wang, J.; Wang, S. High-Performance Membranes with Multi-permselectivity for CO2 Separation. Adv. Mater. 2012, 24, 3196–3200. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Qiao, Z.; Xu, J.; Wang, J.; Zhao, S.; Cao, X.; Wang, Z.; Guiver, M.D. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. J. Membr. Sci. 2021, 620, 118923. [Google Scholar] [CrossRef]
- Gao, Y.; Quiao, Z.; Zhao, S.; Wang, Z.; Wang, J. In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation. J. Mater. Chem. A 2018, 6, 3151–3161. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Wang, J. Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation. J. Membr. Sci. 2023, 668, 121211. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Wang, J. Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. J. Membr. Sci. 2022, 642, 119946. [Google Scholar] [CrossRef]
- Shen, Q.; Cong, S.; Zhu, J.; Zhang, Y.; He, R.; Yi, S.; Zhang, Y. Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J. Membr. Sci. 2022, 664, 121107. [Google Scholar] [CrossRef]
- Blunt, M.; Fayers, F.J.; Orr, F.M., Jr. Carbon dioxide in enhanced oil recovery. Energy Convers. Manag. 1993, 34, 1197–1204. [Google Scholar] [CrossRef]
- Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J.C. Simultaneous production of biomethane and food grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2019, 12, 281–289. [Google Scholar] [CrossRef]
- Carbon Dioxide (CO2) Purity Grade Chart|CO2Meter.com. Available online: https://www.co2meter.com/en-jp/blogs/news/tagged/carbon-dioxide-co2?page=3 (accessed on 20 September 2022).
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Greenhouse Carbon Dioxide Supplementation. Available online: https://extension.okstate.edu/fact-sheets/greenhouse-carbon-dioxide-supplementation.html (accessed on 30 September 2023).
Pressure Ratio = 20 Permeate Pressure = 5 kPa | Pressure Ratio = 25 Permeate Pressure = 4 kPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Separation Stages | 1 | 2 | 3 | 4 | Total | 1 | 2 | 3 | 4 | Total |
CO2 concentration in permeate (%) | 0.6 | 2.9 | 10.8 | 29.8 | - | 0.7 | 3.9 | 15.5 | 42.4 | - |
Membrane area (m2/kg-CO2/day) | 2.57 | (0.47) | (0.12) | (0.03) | 3.19 | 2.15 | 0.35 | 0.08 | 0.02 | 2.6 |
Energy required for vacuuming (kWh-CO2/day) | 12.7 | (2.4) | (0.7) | (0.2) | 16.0 | 11.6 | 1.9 | 0.5 | 0.2 | 14.2 |
CO2 emission related to the energy production (kgCO2emitted/kgCO2captured) | 0.48 | (0.09) | (0.02) | (0.01) | 0.6 | 0.44 | 0.07 | 0.02 | 0.01 | 0.54 |
Polymeric Membranes | T (°C) | Pressure (kPa) | CO2 Permeability (Barrer) | Gas Selectivity (CO2/N2) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Type | Polymers | |||||||
Polymer membranes | Copolymers | KAUST-PI-1 | 35 | 200 | 2389 | 33 | [40] | |
PIM-BTrip (160 μm) | Aged 490 days | 25 | 100 | 6060 | 31.0 | [41] | ||
Aged 120 days | 25 | 100 | 6040 | 30.2 | [41] | |||
SFX-PIM-33 (Aged 130 days) | (Aged 130 days) | 25 | 200 | 1848 | 30.8 | [42] | ||
BPM-50 | 35 | 350 | 4883 | 43 | [43] | |||
VAP7 | 30 | 100 | 1370 | 32 | [44] | |||
PTCNSi(OMe)3 | 20–22 | 100 | 2000 | 35.7 | [45] | |||
Polaris™ gen1 | - | - | 1000 (Commercially Available) | 50 | [46] | |||
PolyActive™/85 | - | - | 1480 | 55 | [47] | |||
Copolymers with post modification | TZ-PIM-1 | 25 | 440 | ~3000 | ~30 | [48] | ||
AO-PIM-1 + Methanol | 35 | 200 | 1153 | 35 | [49] | |||
MTZ100-PIM * | 25 | 350 | 1391 | 22.2 | [50] | |||
Thioamide-PIM-1 + Ethanol | 25 | 100 | 1120 | 30.3 | [51] | |||
cPIM-1 | 25 | 200 | 3739 ± 32 | 34.9 | [52] | |||
Mixed matrix membranes | 6FDA-durene/Si-5 | 25 | 200 | 3785 | 31 | [53] | ||
PIM-MFI3 | 25 | 100 | 2530 | 30 | [54] | |||
Pebax-2533/ZIF | 35 wt% | 25 | 200 | 1287 | 32.3 | [55] | ||
SPEEK/MIL-101 (Cr) 40 wt% * | 30 | 100 | 30 | 40 | [56] | |||
SPEEK/S-MIL-101 (Cr) 40 wt% * | 30 | 100 | 35 | 41 | [56] | |||
UiO-66-CN@sPIM-1 * | 25 | 140 | 16,121.3 | 27 | [57] | |||
PDMS-SAPO-34 (PM-30 wt%) | 25 | 2000 | 5753 | 31 | [58] | |||
PIM-1/GO | 30 | 400 | 6169 | 123 | [59] | |||
CNT-ZIF-8-PDMS | 25 | 100 | 8705 | 45.6 | [60] | |||
PAO-PIM-1/NH2-UiO-66 | 7 wt% | 35 | 100 | 3825 | 30.0 | [61] | ||
PEO/HPNs | 0.5 wt% | 35 | 100 | ~1400 | ~41 | [62] | ||
1 wt% | 35 | 100 | ~1900 | ~44 | [62] | |||
Facilitated transport membranes | Pebax [C4MIM][Gly] 20 wt% | 25 | 100 | ~1100 | ~110 | [63] | ||
C(30)-P(1:1) | 25 | 200 | ~1650 | ~55 | [64] | |||
Pebax-PEI-MCM-41-20 | 25 | 100 | 1521 | 102 | [65] | |||
15 wt% ([Cu(6)]2+@13X)/6FDA-Durene | 35 | 200 | ~1034 | 38.3 | [66] | |||
Pebax 1657/MWNTs-NH2/GTA (P10CN1G25) | 35 | 700 | 1408 | ~40 | [67] | |||
Pebax 1657/SG 20 wt% | 25 | 200 | ~1200 | ~55 | [68] | |||
CA/PM-4 (1:3 wt%) | 35 | 300 | 3000 | 59 | [69] | |||
PIM-Py-Cl 15 wt% | 25 | 200 | 4959.8 | 42 | [70] | |||
PIM-Py-Ac 15 wt% | 25 | 200 | 6204.8 | 62 | [70] | |||
PIM-Py-BF4 15 wt% | 25 | 200 | 5584.3 | 46 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatusha, P.; Lin, H.; Kapuscinsky, N.; Scoles, L.; Ma, W.; Patarachao, B.; Du, N. Membrane Separation Technology in Direct Air Capture. Membranes 2024, 14, 30. https://doi.org/10.3390/membranes14020030
Ignatusha P, Lin H, Kapuscinsky N, Scoles L, Ma W, Patarachao B, Du N. Membrane Separation Technology in Direct Air Capture. Membranes. 2024; 14(2):30. https://doi.org/10.3390/membranes14020030
Chicago/Turabian StyleIgnatusha, Pavlo, Haiqing Lin, Noe Kapuscinsky, Ludmila Scoles, Weiguo Ma, Bussaraporn Patarachao, and Naiying Du. 2024. "Membrane Separation Technology in Direct Air Capture" Membranes 14, no. 2: 30. https://doi.org/10.3390/membranes14020030
APA StyleIgnatusha, P., Lin, H., Kapuscinsky, N., Scoles, L., Ma, W., Patarachao, B., & Du, N. (2024). Membrane Separation Technology in Direct Air Capture. Membranes, 14(2), 30. https://doi.org/10.3390/membranes14020030