Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO, PEI/GO, and PEI/GO/SC6 Membranes
2.3. Characterization
2.4. Pervaporation Experiment
3. Results and Discussion
3.1. Morphologies of GO Nanosheet and GO-Based Membranes
3.2. Chemical Compositions of GO-Based Membranes
3.3. Pervaporation Performance of Membranes
3.3.1. Effect of Substrate
3.3.2. Effect of Incorporating SC6 Molecules
3.3.3. Effect of PEI Molecular Weight
3.3.4. Effect of Operation Temperature and Water Content in Feed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Rangaiah, G.P. Review of Technological Advances in Bioethanol Recovery and Dehydration. Ind. Eng. Chem. Res. 2017, 56, 5147–5163. [Google Scholar] [CrossRef]
- Kostas, E.T.; Beneroso, D.; Robinson, J.P. The Application of Microwave Heating in Bioenergy: A Review on the Microwave Pre-Treatment and Upgrading Technologies for Biomass. Renew. Sust. Energ. Rev. 2017, 77, 12–27. [Google Scholar] [CrossRef]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent Membrane Development for Pervaporation Processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef]
- Suhas, D.P.; Raghu, A.V.; Jeong, H.M.; Aminabhavi, T.M. Graphene-Loaded Sodium Alginate Nanocomposite Membranes with Enhanced Isopropanol Dehydration Performance Via a Pervaporation Technique. RSC Adv. 2013, 3, 17120–17130. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, H.-m.; Tan, W.l.; Qiao, X.-Y.; Kulprathipanja, S. Pervaporation Study of Aqueous Ethanol Solution through Zeolite-Incorporated Multilayer Poly(Vinyl Alcohol) Membranes: Effect of Zeolites. J. Membr. Sci. 2006, 276, 260–271. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Matira, A.R.; Tayo, L.L.; Hung, W.-S.; Hu, C.-C.; Tsai, H.-A.; Lee, K.-R.; Lai, J.-Y. Homostructured Graphene Oxide-Graphene Quantum Dots Nanocomposite-Based Membranes with Tunable Interlayer Spacing for the Purification of Butanol. Sep. Purif. Technol. 2022, 283, 120166. [Google Scholar] [CrossRef]
- Yong, W.F.; Zhang, H. Recent Advances in Polymer Blend Membranes for Gas Separation and Pervaporation. Prog. Mater. Sci. 2021, 116, 100713. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Li, S.; Wang, L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew. Chem. Int. Edit. 2023, 62, e202218321. [Google Scholar] [CrossRef]
- Perreault, F.; de Faria, A.F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015, 9, 7226–7236. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W.; Xu, N. Graphene-Based Membranes. Chem. Soc. Rev. 2015, 44, 5016–5030. [Google Scholar] [CrossRef]
- Dai, L.; Huang, K.; Xia, Y.; Xu, Z. Two-Dimensional Material Separation Membranes for Renewable Energy Purification, Storage, and Conversion. Green Energy Environ. 2021, 6, 193–211. [Google Scholar] [CrossRef]
- Dong, S.; Wang, B.; Liu, D.; He, M.; Chen, M.; Zhao, J.; Jin, W. Tailoring the Interlayer Channel Structure of Graphene Oxide Membrane with Conjugated Cationic Dyes for Butanol Dehydration. Sep. Purif. Technol. 2023, 325, 124728. [Google Scholar] [CrossRef]
- Yang, Q.; Su, Y.; Chi, C.; Cherian, C.T.; Huang, K.; Kravets, V.G.; Wang, F.C.; Zhang, J.C.; Pratt, A.; Grigorenko, A.N.; et al. Ultrathin Graphene-Based Membrane with Precise molecular Sieving and Ultrafast Solvent permeation. Nat. Mater. 2017, 16, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Liu, D.; Dong, S.; Zhao, J.; Cao, X.; Jin, W. Facile Construction of Polyzwitterion Membrane Via Assembly of Graphene Oxide-Based Core-Brush Nanosheet for High-Efficiency Water Permeation. J. Membr. Sci. 2022, 644, 120150. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W.; Xu, N. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. Angew. Chem. Int. Edit. 2016, 55, 13384–13397. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Xu, F.; Huang, K.; Xia, Y.; Wang, Y.; Qu, K.; Xin, L.; Zhang, D.; Xiong, Z.; Wu, Y.; et al. Ultrafast Water Transport in Two-Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angew. Chem. Int. Edit. 2021, 60, 19933–19941. [Google Scholar] [CrossRef]
- Dong, S.; Chen, Y.; Wang, H.; Ji, Y.; Zhao, J.; Jin, W. Synergistically Tailoring the Hierarchical Channel Structure of Graphene Oxide Membrane through Co-Assembly Strategy for High-Performance Butanol Dehydration. J. Membr. Sci. 2023, 678, 121693. [Google Scholar] [CrossRef]
- Duan, Q.P.; Wang, L.J.; Wang, F.; Zhang, H.S.; Lu, K. Calix N Arene/Pillar N Arene-Functionalized Graphene Nanocomposites and Their Applications. Front. Chem. 2020, 8, 7. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Tong, X.; Zhang, S.; Liu, H. Chiral Separation of Β-Cyclodextrin Modified Graphene Oxide Membranes with a Complete Enantioseparation Performance. J. Membr. Sci. 2021, 634, 119350. [Google Scholar] [CrossRef]
- Mao, X.; Xu, M.; Wu, H.; He, X.; Shi, B.; Cao, L.; Yang, P.; Qiu, M.; Geng, H.; Jiang, Z. Supramolecular Calix[N]Arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction. ACS Appl. Mater. Interfaces 2019, 11, 42250–42260. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Ramzy, A.; Saleh, B.M.; El-Said Azzazy, H.M. Stimuli-Responsive Amphiphilic Pillar[n]arene Nanovesicles for Targeted Delivery of Cancer Drugs. ACS Omega 2021, 6, 25876–25883. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, M.; Diao, G. Calix[4,6,8]arenesulfonates Functionalized Reduced Graphene Oxide with High Supramolecular Recognition Capability: Fabrication and Application for Enhanced Host–Guest Electrochemical Recognition. ACS Appl. Mater. Interfaces 2013, 5, 828–836. [Google Scholar] [CrossRef]
- Lan, N.; Wang, K.Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Investigation of Novel Molecularly Tunable Thin-Film Nanocomposite Nanofiltration Hollow Fiber Membranes for Boron Removal. J. Membr. Sci. 2021, 620, 118887. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.W.; Pan, F.S.; He, G.W.; Fang, C.H.; Cao, K.T.; Xing, R.S.; Jiang, Z.Y. Fabricating Graphene Oxide-based Ultrathin Hybrid Membrane for Pervaporation Dehydration via Layer-by-layer Self-assembly Driven by Multiple Interactions. J. Membr. Sci. 2015, 487, 162–172. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.H.; Jiang, Z.Y.; Nie, M.C.; Liu, G.X. Facile Fabrication of Structurally Stable Hyaluronic Acid-based Composite Membranes Inspired by Bioadhesion. J. Membr. Sci. 2010, 364, 290–297. [Google Scholar] [CrossRef]
- Perret, F.; Coleman, A.W. Biochemistry of Anionic Calix[N]Arenes. Chem. Commun. 2011, 47, 7303–7319. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.; Guo, D.-S. Conformational Transition Effects of Anion Recognition by Calix[4]Arene Derivatives. Supramol. Chem. 2009, 21, 465–472. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, F.S.; Li, P.; Zhao, C.H.; Jiang, Z.Y.; Zhang, P.; Cao, X.Z. Fabrication of Ultrathin Membrane via Layer-by-Layer Self-assembly Driven by Hydrophobic Interaction Towards High Separation Performance. ACS Appl. Mater. Interfaces 2013, 5, 13275–13283. [Google Scholar] [CrossRef] [PubMed]
- Yeom, C.K.; Jegal, J.G.; Lee, K.H. Characterization of Relaxation Phenomena and Permeation Behaviors in Sodium Alginate Membrane during Pervaporation Separation of Ethanol-Water Mixture. J. Appl. Polym. Sci. 1996, 62, 1561–1576. [Google Scholar] [CrossRef]
Substrate | Permeate Flux (kg/(m2·h)) | Separation Factor |
---|---|---|
PAN | 2.01 | 265 |
hPAN | 3.15 | 1260 |
Temperature (K) | (P/l)W (GPU) | (P/l)E (GPU) | Selectivity |
---|---|---|---|
313 | 18,246 | 20.2 | 903 |
323 | 15,172 | 10.6 | 1431 |
333 | 11,814 | 9.9 | 1193 |
343 | 10,124 | 7.0 | 1446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Dong, S.; Huang, Y.; Yue, C.; Zhu, H.; Wu, D.; Zhao, J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. Membranes 2024, 14, 32. https://doi.org/10.3390/membranes14020032
Ji Y, Dong S, Huang Y, Yue C, Zhu H, Wu D, Zhao J. Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. Membranes. 2024; 14(2):32. https://doi.org/10.3390/membranes14020032
Chicago/Turabian StyleJi, Yufan, Shurui Dong, Yiping Huang, Changhai Yue, Hao Zhu, Dan Wu, and Jing Zhao. 2024. "Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes" Membranes 14, no. 2: 32. https://doi.org/10.3390/membranes14020032
APA StyleJi, Y., Dong, S., Huang, Y., Yue, C., Zhu, H., Wu, D., & Zhao, J. (2024). Facilitating Water Permeation in Graphene Oxide Membranes via Incorporating Sulfonato Calix[n]arenes. Membranes, 14(2), 32. https://doi.org/10.3390/membranes14020032