A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Mill Wastewaters and Pre-Treatment
2.2. Straw Filtration Experiments
2.3. Nanofiltration Experiments
2.4. Analytical Determinations
2.4.1. Total Soluble Solids, pH and Electrical Conductivity
2.4.2. Total Polyphenols
2.4.3. Total Antioxidant Activity
2.4.4. Flavanols and Hydroxycinnamic Acid Derivatives
2.4.5. Chemical Oxygen Demand
2.4.6. Statistical Analysis
3. Results and Discussion
3.1. Straw Filtration
3.2. Nanofiltration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. Ecotox. Environ. Saf. 2023, 259, 114997. [Google Scholar] [CrossRef]
- De Luca, P.; Sicilia, V.; Candamano, S.; Macario, A. Olive vegetation waters (OVWs): Characteristics, treatments and environmental problems. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1251, 012011. [Google Scholar] [CrossRef]
- Hodaifa, G.; Eugenia-Sánchez, M.; Sánchez, S. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 2008, 99, 1111–1117. [Google Scholar] [CrossRef]
- Paraskeva, P.; Diamadopoulos, E. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. [Google Scholar] [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F. Antioxidant and other biological activities of olive mill wastewater. J. Agric. Food Chem. 1999, 47, 3397–3401. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Ochando-Pulido, J.M.; Fragoso, R.; Macedo, A.; Duarte, E.; Ferez, A.M. A brief review on recent processes for the treatment of olive mill effluents. In Products from Olive Tree; Boskou, D., Clodoveo, M.L., Eds.; IntechOpen: London, UK, 2016; pp. 283–300. [Google Scholar]
- Chidichimo, F.; De Biase, M.; Tursi, A.; Maiolo, M.; Straface, S.; Baratta, M.; Olivito, F.; De Filpo, G. A model for the adsorption process of water dissolved elements flowing into reactive porous media: Characterization and sizing of water mining/filtering systems. J. Hazard. Mater. 2023, 445, 130554. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, L.; De Biase, M.; Chidichimo, F.; Heckrath, G.J.; Iversen, B.V.; Kjærgaard, C.; Straface, S. Modelling phosphorus removal efficiency of a reactive filter treating agricultural tile drainage water. Ecol. Eng. 2020, 156, 105968. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current role of membrane technology: From the treatment of agro-industrial by-products up to the valorization of valuable compounds. Waste Biomass Valor. 2018, 9, 513–529. [Google Scholar] [CrossRef]
- Santoro, S.; Timpano, P.; Halil Avci, A.; Argurio, P.; Chidichimo, F.; De Biase, M.; Straface, S.; Curcio, E. An integrated membrane distillation, photocatalysis and polyelectrolyte-enhanced ultrafiltration process for arsenic remediation at point-of-use. Desalination 2021, 520, 115378. [Google Scholar] [CrossRef]
- Paraskeva, C.A.; Papadakis, V.G.; Kanellopoulou, D.G.; Koutsoukos, P.G.; Angelopoulos, K.C. Membrane filtration of olive mill wastewater (OMW) and OMW fractions exploitation. Water Environ. Res. 2007, 79, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Paraskeva, C.A.; Papadakis, V.G.; Tsarouchi, E.; Kanellopoulou, D.G.; Koutsoukos, P.G. Membrane processing for olive mill wastewater fractionation. Desalination 2007, 213, 218–229. [Google Scholar] [CrossRef]
- Villanova, L.; Villanova, L.; Fasiello, G.; Merendino, A. Process for the Recovery of Tyrosol and Hydroxytyrosol from Oil Mill Wastewaters and Catalytic Oxidation Method in Order to Convert Tyrosol in Hydroxytyrosol. U.S. Patent US-7427358-B2, 23 September 2008. [Google Scholar]
- Cassano, A.; Conidi, C.; Giorno, L.; Drioli, E. Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 2013, 248–249, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ochando-Pulido, J.M.; Martinez-Ferez, A. On the recent use of membrane technology for olive mill wastewater purification. Membranes 2015, 5, 513–531. [Google Scholar] [CrossRef]
- Sanchez-Arevalo, C.M.; Jimeno-Jimenez, A.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Alvarez-Blanco, S. Effect of the operating conditions on a nanofiltration process to separate low-molecular-weight phenolic compounds from the sugars present in olive mill wastewaters. Process Saf. Environ. Prot. 2021, 148, 428–436. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Raiti, J.; Hafidi, A. Application of ultrafiltration for olive processing wastewaters treatment. J. Clean. Prod. 2014, 65, 432–438. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M. A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Sci. Total Environ. 2016, 563–564, 664–675. [Google Scholar] [CrossRef]
- Russo, C. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 2007, 288, 239–246. [Google Scholar] [CrossRef]
- Turano, E.; Curcio, S.; De Paola, M.G.; Calabrò, V.; Iorio, G. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J. Membr. Sci. 2002, 209, 519–531. [Google Scholar] [CrossRef]
- Stoller, M.; Chianese, A. Influence of the adopted pretreatment process on the critical flux value of batch membrane processes. Ind. Eng. Chem. Res. 2007, 46, 2249–2253. [Google Scholar] [CrossRef]
- Chidichimo, G.; Manfredi, F.; Gullo, G.; Basile, M.R.; Lania, I.; Chidichimo, F.; De Biase, M.; De Filpo, G.; Ferraro, P.L. Filtro per la Depurazione di Acque Inquinate. Italian Patent 102,023,000,004,089, 2023. [Google Scholar]
- Córdova, A.; Astudillo, C.; Giorno, L.; Guerrero, C.; Conidi, C.; Illanes, A.; Cassano, A. Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod. Process. 2016, 98, 50–61. [Google Scholar] [CrossRef]
- Zdarta, J.; Thygesen, A.; Holm, M.S.; Meyer, A.S.; Pinelo, M. Direct separation of acetate and furfural from xylose by nanofiltration of birch pretreated liquor: Effect of process conditions and separation mechanism. Sep. Purif. Technol. 2020, 239, 116546. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.J.; Leal, A.I.; Real, F.J.; Teva, F. Membrane filtration technologies applied to municipal secondary effluents for potential reuse. J. Hazard. Mater. 2010, 177, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substratesand antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, H.S.; Bedgood, D.R.; Prenzler, P.; Robards, K. Investigation of Australian olive millwaste for recovery of biophenols. J. Agric. Food Chem. 2005, 53, 9911–9920. [Google Scholar] [CrossRef]
- Bazzarelli, F.; Poerio, T.; Mazzei, R.; D’Agostino, N.; Giorno, L. Study of OMWWs suspended solids destabilization to improve membrane processes performance. Sep. Purif. Technol. 2015, 149, 183–189. [Google Scholar] [CrossRef]
- Zirehpour, A.; Jahanshahi, M.; Rahimpour, A. Unique membrane process integration for olive oil mill wastewater purification. Sep. Purif. Technol. 2012, 96, 124–131. [Google Scholar] [CrossRef]
- Conidi, C.; Corbacho, A.E.; Cassano, A. Combination of aqueous extraction and polymeric membranes as a sustainable process for the recovery of polyphenols from olive mill solid wastes. Polymers 2019, 11, 1868. [Google Scholar] [CrossRef] [PubMed]
- Alfano, A.; Corsuto, L.; Finamore, R.; Savarese, M.; Ferrara, F.; Falco, S.; Santabarbara, G.; De Rosa, M.; Schiraldi, C. Valorization of olive mill wastewater by membrane processes to recover natural antioxidant compounds for cosmeceutical and nutraceutical applications or functional foods. Antioxidants 2018, 7, 72. [Google Scholar] [CrossRef]
- Roginsky, V.; Lissi, A.E. Review of methods to determine chain breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Galanakis, C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border to nanofiltration. Trends Food Sci. Technol. 2015, 42, 44–63. [Google Scholar] [CrossRef]
- Cassano, A.; De Luca, G.; Conidi, C.; Drioli, E. Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. Coord. Chem. Rev. 2017, 351, 45–75. [Google Scholar] [CrossRef]
- Coskun, T.; Debik, E.; Demir, N.M. Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination 2010, 259, 65–70. [Google Scholar] [CrossRef]
- El-Shafey, E.I.; Correia, P.F.M.; de Carvalho, J.M.R. An integrated process of olive mill wastewater treatment. Sep. Sci. Technol. 2005, 40, 2841–2869. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.M.; Hodaifa, G.; Victor-Ortega, M.D.; Rodriguez-Vives, S.; Martinez-Ferez, A. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment. J. Hazard. Mater. 2013, 263, 158–167. [Google Scholar] [CrossRef] [PubMed]
Membrane type | NFA-12A | TS40 | DK |
Manufacturer | Parker | Microdyn-Nadir | GE Osmonics |
Membrane material | PA-TFC | PA-TFC | PA-TFC |
Configuration | flat-sheet | flat-sheet | flat-sheet |
Nominal MWCO (Da) | 500 | 200–300 | 150–300 |
pH operating range | 3–11 | 1–12 | 3–9 |
Max. operating temperature (°C) | 63 | 50 | 50 |
Max. operating pressure (bar) | 30.6 | 41 | 41 |
Contact angle (°) | 10 a | 30 b | 41 c |
Water permeability at 18 ± 1 °C (L/m2 h bar) | 9.2 d | 8.60 d | 3.64 d |
ID | Description | Filtration Rate (mL/min) | Solid Residues (mL) | COD (mg O2/L) | pH |
---|---|---|---|---|---|
US | OMW unaltered state | - | - | 70,000 ± 3500 | 4.80 ± 0.24 |
S120 | Acidified OMW filtered with 120 μm straw | 23.7 | ~100 | 22,300 ± 1115 | 3.5 ± 0.17 |
S250 | Acidified OMW filtered with 250 μm straw | 69.2 | ~100 | 24,650 ± 1232 | 3.5 ± 0.16 |
S500 | Acidified OMW filtered with 500 μm straw | 112.5 | ~100 | 18,700 ± 935 | 3.5 ± 0.17 |
S120N | OMW filtered with 120 μm straw + marble powder | - | - | 22,500 ± 1125 | 5.5 ± 0.27 |
S250N | OMW filtered with 250 μm straw + marble powder | - | - | 23,350 ± 1167 | 5.5 ± 0.27 |
S500N | OMWW filtered with 500 μm straw + marble powder | - | - | 21,200 ± 1060 | 5.5 ± 0.27 |
Parameter | Feed | Permeate | Retentate |
---|---|---|---|
TSS (°Brix) | 3.3 ± 0.1 | 1.0 ± 0.1 | 7.3 ± 0.1 |
Electrical conductivity (mS/cm) | 36.7 ± 0.7 | 18.7 ± 0.4 | 52.8 ± 0.6 |
Total polyphenols (mg GAE/L) | 1918.4 ± 30.2 | 449.0 ± 12.7 | 3785.1 ± 20.3 |
Flavanols (mg/L quercetin) | 623.53 ± 24.95 | 6.03 ± 0.22 | 1564.70 ± 66.55 |
Hydroxycinnamic acid derivatives (mg/L caffeic acid) | 445.2 ± 17.4 | 3.49 ± 0.18 | 1186.3 ± 23.24 |
TAA (mM Trolox) | 10.1 ± 0.7 | 2.7 ± 0.1 | 18.9 ± 0.7 |
Parameter | Feed | Permeate | Retentate |
---|---|---|---|
TSS (°Brix) | 3.4 ± 0.1 | 1.2 ± 0.1 | 5.6 ± 0.5 |
Electrical conductivity (mS/cm) | 38.1 ± 0.3 | 19.6 ± 0.2 | 47.8 ± 0.7 |
Total polyphenols (mg GAE/L) | 1973.3 ± 40.6 | 520.4 ± 12.7 | 3223.5 ± 71.2 |
Flavanols (mg/L quercetin) | 605.88 ± 24.95 | 6.61 ± 0.21 | 1341.17 ± 58.23 |
Hydroxycinnamic acid derivatives (mg/L caffeic acid) | 426.02 ± 23.24 | 5.96 ± 0.17 | 1006.85 ± 48.43 |
TAA (mM Trolox) | 10.1 ± 0.4 | 3.0 ± 0.1 | 17.6 ± 1.1 |
Parameter | Feed | Permeate | Retentate |
---|---|---|---|
TSS (°Brix) | 3.2 ± 0.1 | 1.1 ± 0.1 | 5.7 ± 0.1 |
Electrical conductivity (mS/cm) | 37.2 ± 0.2 | 19.4 ± 0.1 | 45.3 ± 1.2 |
Total polyphenols (mg GAE/L) | 1960.8 ± 40.0 | 559.2 ± 7.1 | 3505.9 ± 42.3 |
Flavanols (mg/L quercetin) | 611.76 ± 22.3 | 6.91 ± 0.22 | 1458.82± 58.23 |
Hydroxycinnamic acid derivatives (mg/L caffeic acid) | 436.98 ± 13.56 | 5.34 ± 0.18 | 1173.97 ± 32.93 |
TAA (mM Trolox) | 10.0 ± 0.6 | 3.1 ± 0.1 | 18.4 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidichimo, F.; Basile, M.R.; Conidi, C.; De Filpo, G.; Morelli, R.; Cassano, A. A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration. Membranes 2024, 14, 38. https://doi.org/10.3390/membranes14020038
Chidichimo F, Basile MR, Conidi C, De Filpo G, Morelli R, Cassano A. A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration. Membranes. 2024; 14(2):38. https://doi.org/10.3390/membranes14020038
Chicago/Turabian StyleChidichimo, Francesco, Maria Rita Basile, Carmela Conidi, Giovanni De Filpo, Rosanna Morelli, and Alfredo Cassano. 2024. "A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration" Membranes 14, no. 2: 38. https://doi.org/10.3390/membranes14020038
APA StyleChidichimo, F., Basile, M. R., Conidi, C., De Filpo, G., Morelli, R., & Cassano, A. (2024). A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration. Membranes, 14(2), 38. https://doi.org/10.3390/membranes14020038