A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane
Abstract
:1. Introduction
2. Experiment
2.1. Cell Fabrication
2.2. Electrochemical Performance and Characterization
3. Results and Discussion
3.1. Flexural Strength of the 3YSZ Support Membrane
3.2. Electrochemical Performance
3.3. Microstructure Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Leung, D.Y.C.; Xuan, J.; Wang, H. A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 775–795. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Zappa, D.; Comini, E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy 2021, 46, 27643–27674. [Google Scholar] [CrossRef]
- Yu, J.; Luo, L.; Cheng, L.; Wang, L.; Xia, C.; Xu, X.; Yu, Y. Progress in the Development of Materials of Solid Oxide Fuel Cells. J. Ceram. 2020, 41, 613–626. [Google Scholar]
- Mahmud, L.S.; Muchtar, A.; Somalu, M.R. Challenges in fabricating planar solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 2017, 72, 105–116. [Google Scholar] [CrossRef]
- Sun, C. Anodes for Solid Oxide Fuel Cell. In Solid Oxide Fuel Cells; Wiley-VCH: Hoboken, NJ, USA, 2020; pp. 113–144. [Google Scholar]
- Ilbas, M.; Kumuk, B. Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model. J. Energy Inst. 2019, 92, 682–692. [Google Scholar] [CrossRef]
- Huang, K.; Singhal, S.C. Cathode-supported tubular solid oxide fuel cell technology: A critical review. J. Power Sources 2013, 237, 84–97. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, J.; Liu, T.; Xia, C.; Chen, C. Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces. Solid State Ion. 2018, 323, 130–135. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, X.; Zhan, Z. High-performance cathode-supported solid oxide fuel cells with copper cermet anodes. J. Power Sources 2011, 196, 6201–6204. [Google Scholar] [CrossRef]
- Huang, K.; Zampieri, A.; Ise, M. Cathode Polarizations of a Cathode-Supported Solid Oxide Fuel Cell. J. Electrochem. Soc. 2010, 157, B1471. [Google Scholar] [CrossRef]
- Chen, X.; Yu, N.; Bello, I.T.; Zhang, D.; Zhou, J.; Wang, Y.; Ni, M.; Liu, T. Understanding the oxygen reduction reaction in the hierarchically oriented composite cathode with open, straight pores. Sep. Purif. Technol. 2023, 325, 124713. [Google Scholar] [CrossRef]
- Shi, N.; Su, F.; Huan, D.; Xie, Y.; Lin, J.; Tan, W.; Peng, R.; Xia, C.; Chen, C.; Lu, Y. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. J. Mater. Chem. A 2017, 5, 19664–19671. [Google Scholar] [CrossRef]
- Jin, C.; Yang, C.; Chen, F. Effects on microstructure of NiO–YSZ anode support fabricated by phase-inversion method. J. Membr. Sci. 2010, 363, 250–255. [Google Scholar] [CrossRef]
- Liu, T.; Lin, J.; Liu, T.; Wu, H.; Xia, C.; Chen, C.; Zhan, Z. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells. J. Electroceram. 2018, 40, 138–143. [Google Scholar] [CrossRef]
- Wang, Z.; Miao, X.; Ye, X.; Wen, Z. Highly Stable Protonic Ceramic Electrolysis Cells Based on Air Electrodes with Finger-Like Pores Current Collection Layers Running in High-Steam-Content Air. ACS Appl. Mater. Interfaces 2023, 15, 45035–45044. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zheng, G.; Liu, K.; Zhang, G.; Huang, Z.; Liu, M.; Zhou, J.; Wang, S. Application of CuNi–CeO2 fuel electrode in oxygen electrode supported reversible solid oxide cell. Int. J. Hydrogen Energy 2023, 48, 9565–9573. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Huang, Z.; Hu, G.; Zhou, J.; Wang, S. A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method. Int. J. Hydrogen Energy 2022, 47, 18810–18819. [Google Scholar] [CrossRef]
- Meng, X.; Gong, X.; Yang, N.; Tan, X.; Yin, Y.; Ma, Z.-F. Fabrication of Y2O3-stabilized-ZrO2(YSZ)/La0.8Sr0.2MnO3−α–YSZ dual-layer hollow fibers for the cathode-supported micro-tubular solid oxide fuel cells by a co-spinning/co-sintering technique. J. Power Sources 2013, 237, 277–284. [Google Scholar] [CrossRef]
- Shi, N.; Xie, Y.; Yang, Y.; Huan, D.; Pan, Y.; Peng, R.; Xia, C.; Chen, C.; Zhan, Z.; Lu, Y. Infiltrated Ni0.08Co0.02CeO2-x@Ni0.8Co0.2 Catalysts for a Finger-Like Anode in Direct Methane-Fueled Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2021, 13, 4943–4954. [Google Scholar] [CrossRef]
- Yang, G.; Su, C.; Shi, H.; Zhu, Y.; Song, Y.; Zhou, W.; Shao, Z. Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy Fuels 2020, 34, 15169–15194. [Google Scholar] [CrossRef]
- Bian, W.; Wu, W.; Wang, B.; Tang, W.; Zhou, M.; Jin, C.; Ding, H.; Fan, W.; Dong, Y.; Li, J.; et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature 2022, 604, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Meng, X.; Liu, X.; Pan, X.; Li, J.; Ye, X.; Nie, H.; Xia, C.; Wang, S.; Zhan, Z. Novel architectured metal-supported solid oxide fuel cells with Mo-doped SrFeO3−δ electrocatalysts. J. Power Sources 2014, 267, 148–154. [Google Scholar] [CrossRef]
- Connor, P.A.; Yue, X.; Savaniu, C.D.; Price, R.; Triantafyllou, G.; Cassidy, M.; Kerherve, G.; Payne, D.J.; Maher, R.C.; Cohen, L.F.; et al. Tailoring SOFC Electrode Microstructures for Improved Performance. Adv. Energy Mater. 2018, 8, 1800120. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Han, M. Infiltration of La0·6Sr0·4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell. J. Alloys Compd. 2017, 723, 620–626. [Google Scholar] [CrossRef]
- Wan, T.H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Electrochim. Acta 2015, 184, 483–499. [Google Scholar] [CrossRef]
- Cui, C. Dual-Phase Ceramic Scaffolds Based Solid Oxide Cells for Electrolysis of CO2 and H2O. Ph.D. Thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China, 2022. [Google Scholar]
- Zheng, Q.; Li, C.; Ban, X.; Zhan, Z.; Chen, C. Preparation and Property of GDC-LSF Dual-phase Composite Membrane with Straight Pores and Sandwich Structure. J. Inorg. Mater. 2021, 36, 497–501. [Google Scholar] [CrossRef]
- Hedayat, N.; Panthi, D.; Du, Y. Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps. Electrochim. Acta 2017, 258, 694–702. [Google Scholar] [CrossRef]
- Chen, S.; Gu, D.; Zheng, Y.; Chen, H.; Guo, L. Enhanced performance of NiO–3YSZ planar anode-supported SOFC with an anode functional layer. J. Mater. Sci. 2019, 55, 88–98. [Google Scholar] [CrossRef]
- Chen, J.; Liang, F.; Liu, L.; Jiang, S.; Chi, B.; Pu, J.; Li, J. Nano-structured (La, Sr)(Co, Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 2008, 183, 586–589. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Lee, M.-C.; Kao, W.-X.; Wang, C.-H.; Lin, T.-N.; Chang, J.-C. Fabrication and evaluation of electrochemical characteristics of the composite cathode layers for the anode-supported solid-oxide fuel cells. J. Taiwan Inst. Chem. Eng. 2011, 42, 775–782. [Google Scholar] [CrossRef]
- Xia, J.; Wang, C.; Wang, X.; Bi, L.; Zhang, Y. A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochim. Acta 2020, 349, 136328. [Google Scholar] [CrossRef]
- Serra, J.M.; Vert, V.B.; Büchler, O.; Meulenberg, W.A.; Buchkremer, H.P. IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chem. Mater. 2008, 20, 3867–3875. [Google Scholar] [CrossRef]
- Kishimoto, M.; Higuchi, K.; Seo, H.; Masuyama, A.; Iwai, H.; Yoshida, H. Enhanced Gas Diffusion in Reversible Solid Oxide Cell Fabricated by Phase-Inversion Tape Casting. ECS Trans. 2021, 103, 653. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Z.; Zhang, T.; Kang, J.; Ou, X.; Feng, P.; Wang, S.; Zhou, F.; Ling, Y. Charge-Transfer Modeling and Polarization DRT Analysis of Proton Ceramics Fuel Cells Based on Mixed Conductive Electrolyte with the Modified Anode-Electrolyte Interface. ACS Appl. Mater. Interfaces 2018, 10, 35047–35059. [Google Scholar] [CrossRef]
- Sumi, H.; Shimada, H.; Yamaguchi, Y.; Yamaguchi, T.; Fujishiro, Y. Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells. Electrochim. Acta 2020, 339, 135913. [Google Scholar] [CrossRef]
- Yang, T.; Kollasch, S.L.; Grimes, J.; Xue, A.; Barnett, S.A. (La0.8Sr0.2)0.98MnO3-δ-Zr0.92Y0.16O2-δ:PrOx for oxygen electrode supported solid oxide cells. Appl. Catal. B Environ. 2022, 306, 121114. [Google Scholar] [CrossRef]
- Ghamarinia, M.; Babaei, A.; Zamani, C.; Aslannejad, H. Application of the distribution of relaxation time method in electrochemical analysis of the air electrodes in the SOFC/SOEC devices: A review. Chem. Eng. J. Adv. 2023, 15, 100503. [Google Scholar] [CrossRef]
- Osinkin, D.A. Detailed analysis of electrochemical behavior of high–performance solid oxide fuel cell using DRT technique. J. Power Sources 2022, 527, 231120. [Google Scholar] [CrossRef]
- Jiang, S.P. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—A review. Int. J. Hydrogen Energy 2019, 44, 7448–7493. [Google Scholar] [CrossRef]
- Hua, B.; Zhang, W.; Li, M.; Wang, X.; Chi, B.; Pu, J.; Li, J. Improved microstructure and performance of Ni-based anode for intermediate temperature solid oxide fuel cells. J. Power Sources 2014, 247, 170–177. [Google Scholar] [CrossRef]
- Mogensen, M.B.; Chen, M.; Frandsen, H.L.; Graves, C.; Hauch, A.; Hendriksen, P.V.; Jacobsen, T.; Jensen, S.H.; Skafte, T.L.; Sun, X. Ni migration in solid oxide cell electrodes: Review and revised hypothesis. Fuel Cells 2021, 21, 415–429. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, T.; Li, J.; Yuan, C.; Xin, X.; Chen, G.; Miao, G.; Zhan, W.; Zhan, Z.; Wang, S. Long-term stability of metal-supported solid oxide fuel cells employing infiltrated electrodes. J. Power Sources 2015, 295, 67–73. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, C.; Chen, T.; Meng, X.; Ye, X.; Li, J.; Wang, S.; Zhan, Z. Evaluation of Ni and Ni–Ce0.8Sm0.2O2−δ (SDC) impregnated 430L anodes for metal-supported solid oxide fuel cells. J. Power Sources 2014, 267, 117–122. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Kane, N.; Luo, Z.; Pei, K.; Sasaki, K.; Choi, Y.; Chen, Y.; Ding, D.; Liu, M. An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Adv. Funct. Mater. 2021, 31, 2105386. [Google Scholar] [CrossRef]
- Ding, D.; Li, X.; Lai, S.Y.; Gerdes, K.; Liu, M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 2014, 7, 552–575. [Google Scholar] [CrossRef]
- Fan, L.; Zhu, B.; Su, P.-C.; He, C. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 2018, 45, 148–176. [Google Scholar] [CrossRef]
- Qian, J.; Lin, C.; Chen, Z.; Huang, J.; Ai, N.; Jiang, S.P.; Zhou, X.; Wang, X.; Shao, Y.; Chen, K. High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode. Appl. Catal. B Environ. 2024, 346, 123742. [Google Scholar] [CrossRef]
- Wang, B.; Yue, Z.; Chen, Z.; Zhang, Y.; Fang, H.; Ai, N.; Wang, R.; Yang, F.; Guan, C.; Jiang, S.P.; et al. Facile Construction of Nanostructured Cermet Anodes with Strong Metal-Oxide Interaction for Efficient and Durable Solid Oxide Fuel Cells. Small 2023, 19, e2304425. [Google Scholar] [CrossRef] [PubMed]
- Ai, N.; He, S.; Li, N.; Zhang, Q.; Rickard, W.D.A.; Chen, K.; Zhang, T.; Jiang, S.P. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells. J. Power Sources 2018, 384, 125–135. [Google Scholar] [CrossRef]
- Porotnikova, N.; Osinkin, D. Segregation and interdiffusion processes in perovskites: A review of recent advances. J. Mater. Chem. A 2024, 12, 2620–2646. [Google Scholar] [CrossRef]
- Zarabi Golkhatmi, S.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhang, H.; Zheng, G.; Xue, Q.; Huang, Z.; Zhou, Y.; Wang, S. A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane. Membranes 2024, 14, 44. https://doi.org/10.3390/membranes14020044
Chen T, Zhang H, Zheng G, Xue Q, Huang Z, Zhou Y, Wang S. A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane. Membranes. 2024; 14(2):44. https://doi.org/10.3390/membranes14020044
Chicago/Turabian StyleChen, Ting, Huilin Zhang, Guozhu Zheng, Qiang Xue, Zuzhi Huang, Yucun Zhou, and Shaorong Wang. 2024. "A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane" Membranes 14, no. 2: 44. https://doi.org/10.3390/membranes14020044
APA StyleChen, T., Zhang, H., Zheng, G., Xue, Q., Huang, Z., Zhou, Y., & Wang, S. (2024). A High-Strength Solid Oxide Fuel Cell Supported by an Ordered Porous Cathode Membrane. Membranes, 14(2), 44. https://doi.org/10.3390/membranes14020044