Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Preparation
2.2. NH3 Poisoning Tests and Characterization
3. Results and Discussion
3.1. Hydrogen Permeation Experiments
3.2. Effect of NH3 on Hydrogen Permeation through Pd-Ru Membrane
3.2.1. Effect of NH3 Exposure Concentration
3.2.2. Effect of NH3 Exposure Temperature
3.3. Post-Process Characterization
4. Conclusions
- (1)
- The hydrogen flux of the Pd-Ru membrane remains 67–85% under exposure to 1–10% NH3 for 6 h at 723 K. A higher NH3 concentration leads to greater inhibition of hydrogen flux, which can be fully recovered after the removal of NH3.
- (2)
- The inhibition effect of NH3 increases with the temperature increasing. The hydrogen flux of Pd-Ru membranes rapidly decreases by 27–50% after 10% NH3 exposure at 673–773 K.
- (3)
- A difference in relative hydrogen flux of 5.9% is observed at 773 K between 10% NH3 and 10% N2 exposure, while a difference of 13.3% is observed at 673 K. The poisoning effect of NH3 on Pd-Ru membranes is attributed to both competitive adsorption and concentration polarization. With increasing temperature, the competitive adsorption effect of NH3 decreases and the concentration polarization effect increases.
- (4)
- The XPS analysis of the membranes after exposure to NH3 showed that the reduction in hydrogen flux is attributed to the decrease in effective area due to the adsorption of the nitrogenous species on the surfaces during the dissociation process of hydrogen molecules. The poisoning effect of NH3 on Pd-Ru membranes is completely reversible.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dehghanimadvar, M.; Shirmohammadi, R.; Sadeghzadeh, M.; Aslani, A.; Ghasempour, R. Hydrogen Production Technologies: Attractiveness and Future Perspective. Int. J. Energy Res. 2020, 44, 8233–8254. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of High Pressure Gaseous Hydrogen Storage Technologies. Int. J. Hydrog. Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Züttel, A. Hydrogen Storage Methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef]
- Aziz, M.; Wijayanta, A.T.; Nandiyanto, A.B.D. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
- Kothandaraman, J.; Kar, S.; Sen, R.; Goeppert, A.; Olah, G.A.; Prakash, G.K.S. Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol. J. Am. Chem. Soc. 2017, 139, 2549–2552. [Google Scholar] [CrossRef]
- Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic Acid as a Hydrogen Storage Material—Development of Homogeneous Catalysts for Selective Hydrogen Release. Chem. Soc. Rev. 2016, 45, 3954–3988. [Google Scholar] [CrossRef] [PubMed]
- Giddey, S.; Badwal, S.P.S.; Munnings, C.; Dolan, M. Ammonia as a Renewable Energy Transportation Media. ACS Sustain. Chem. Eng. 2017, 5, 10231–10239. [Google Scholar] [CrossRef]
- Peters, T.A.; Stange, M.; Bredesen, R. Flux-Reducing Tendency of Pd-Based Membranes Employed in Butane Dehydrogenation Processes. Membranes 2020, 10, 291. [Google Scholar] [CrossRef]
- Pushankina, P.; Andreev, G.; Petriev, I. Hydrogen Permeability of Composite Pd–Au/Pd–Cu Membranes and Methods for Their Preparation. Membranes 2023, 13, 649. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Miura, T.; Shizuya, K.; Wakazono, S.; Tokunaga, K.; Kambara, S. Hydrogen Production System Combined with a Catalytic Reactor and a Plasma Membrane Reactor from Ammonia. Int. J. Hydrog. Energy 2019, 44, 9987–9993. [Google Scholar] [CrossRef]
- Rizzuto, E.; Palange, P.; Del Prete, Z. Characterization of an Ammonia Decomposition Process by Means of a Multifunctional Catalytic Membrane Reactor. Int. J. Hydrog. Energy 2014, 39, 11403–11410. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Gutierrez Martinez, R.; Arratibel Plazaola, A.; Gallucci, F. Ultra-Pure Hydrogen Production via Ammonia Decomposition in a Catalytic Membrane Reactor. Int. J. Hydrog. Energy 2022, 47, 21220–21230. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Medrano, J.A.; Makhloufi, C.; Zuniga, J.; Gallucci, F. H2 Production via Ammonia Decomposition in a Catalytic Membrane Reactor. Fuel Process. Technol. 2021, 216, 106772. [Google Scholar] [CrossRef]
- Lee, E.-H.; Kim, T.-W.; Byun, S.; Seo, D.-W.; Hwang, H.-J.; Yoon, H.-C.; Kim, H.; Ryi, S.-K. Effect of Air Bubbling on Electroless Pd Plating for the Practical Application of Hydrogen Selective Membranes. RSC Adv. 2023, 13, 14281–14290. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Lee, E.-H.; Byun, S.; Seo, D.-W.; Hwang, H.-J.; Yoon, H.-C.; Kim, H.; Ryi, S.-K. Highly Selective Pd Composite Membrane on Porous Metal Support for High-Purity Hydrogen Production through Effective Ammonia Decomposition. Energy 2022, 260, 125209. [Google Scholar] [CrossRef]
- Liu, J.; Ju, X.; Tang, C.; Liu, L.; Li, H.; Chen, P. High Performance Stainless-Steel Supported Pd Membranes with a Finger-like and Gap Structure and Its Application in NH3 Decomposition Membrane Reactor. Chem. Eng. J. 2020, 388, 124245. [Google Scholar] [CrossRef]
- Cerrillo, J.L.; Morlanés, N.; Kulkarni, S.R.; Realpe, N.; Ramírez, A.; Katikaneni, S.P.; Paglieri, S.N.; Lee, K.; Harale, A.; Solami, B.; et al. High Purity, Self-Sustained, Pressurized Hydrogen Production from Ammonia in a Catalytic Membrane Reactor. Chem. Eng. J. 2022, 431, 134310. [Google Scholar] [CrossRef]
- Abu El Hawa, H.W.; Paglieri, S.N.; Morris, C.C.; Harale, A.; Douglas Way, J. Application of a Pd–Ru Composite Membrane to Hydrogen Production in a High Temperature Membrane Reactor. Sep. Purif. Technol. 2015, 147, 388–397. [Google Scholar] [CrossRef]
- Kim, C.-H.; Han, J.-Y.; Lim, H.; Kim, D.-W.; Ryi, S.-K. Methane Steam Reforming in a Membrane Reactor Using High-Permeable and Low-Selective Pd-Ru Membrane. Korean J. Chem. Eng. 2017, 34, 1260–1265. [Google Scholar] [CrossRef]
- Albano, M.; Madeira, L.M.; Miguel, C.V. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas—A Simulation Study. Membranes 2023, 13, 630. [Google Scholar] [CrossRef]
- Sakamoto, F.; Kinari, Y.; Chen, F.L.; Sakamoto, Y. Hydrogen permeation through palladium alloy membranes in mixture gases of 10% nitrogen and ammonia in the hydrogen. Hydrog. Energy 1997, 22, 369–375. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Li, W. High-Purity COx-Free H2 Generation from NH3 via the Ultra Permeable and Highly Selective Pd Membranes. J. Membr. Sci. 2006, 277, 85–93. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Yamaguchi, T.; Wolden, C.A.; Oyama, S.T.; Way, J.D. The Role (or Lack Thereof) of Nitrogen or Ammonia Adsorption-Induced Hydrogen Flux Inhibition on Palladium Membrane Performance. J. Membr. Sci. 2016, 514, 65–72. [Google Scholar] [CrossRef]
- Peters, T.A.; Polfus, J.M.; Stange, M.; Veenstra, P.; Nijmeijer, A.; Bredesen, R. H2 Flux Inhibition and Stability of Pd-Ag Membranes under Exposure to Trace Amounts of NH3. Fuel Process. Technol. 2016, 152, 259–265. [Google Scholar] [CrossRef]
- Xu, N.; Kim, S.S.; Li, A.; Grace, J.R.; Lim, C.J.; Boyd, T. Preparation and Characterization of Palladium-Ruthenium Composite Membrane on Alumina-Modified PSS Substrate. Can. J. Chem. Eng. 2014, 92, 1041–1047. [Google Scholar] [CrossRef]
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production. Membranes 2018, 8, 5. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, Z.; Du, M.; Mi, J.; Hao, L.; Tong, Y.; Feng, Y.; Li, S. Effect of Annealing Process on the Hydrogen Permeation through Pd–Ru Membrane. J. Membr. Sci. 2022, 654, 120572. [Google Scholar] [CrossRef]
- Abuelyamen, A.; Ben-Mansour, R.; Habib, M.A.; Manga, V.R.; Harale, A.; Paglieri, S.; Alsayoud, A. Poisonous Effect of Carbon Bearing Species on Adsorption of Hydrogen on Pd-Membrane Surfaces. Int. J. Hydrog. Energy 2024, 50, 420–432. [Google Scholar] [CrossRef]
- Jiang, Z.; Pan, Q.; Li, M.; Yan, T.; Fang, T. Density Functional Theory Study on Direct Catalytic Decomposition of Ammonia on Pd (1 1 1) Surface. Appl. Surf. Sci. 2014, 292, 494–499. [Google Scholar] [CrossRef]
- Yue, L.; Chen, C.; Li, J.; Xiao, C.; Xia, X.; Ran, G.; Fu, X.; Hou, J.; Gong, Y.; Wang, H. Inhibition Effect of CO on Hydrogen Permeation Through a Pd/Al2O3 Composite Membrane: A Comprehensive Study on Concentration Polarization and Competitive Adsorption Effect. Fusion Sci. Technol. 2020, 76, 680–689. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, Z.; Tong, Y.; Du, M.; Mi, J.; Yu, Q.; Li, S. Improved Sulfur Tolerance of Pd–Ru Membranes: Influence of H2S Concentration and Exposure Time on the Hydrogen Flux. Int. J. Hydrog. Energy 2023, 48, 38335–38343. [Google Scholar] [CrossRef]
- Ripepi, D.; Izelaar, B.; Van Noordenne, D.D.; Jungbacker, P.; Kolen, M.; Karanth, P.; Cruz, D.; Zeller, P.; Pérez-Dieste, V.; Villar-Garcia, I.J.; et al. In Situ Study of Hydrogen Permeable Electrodes for Electrolytic Ammonia Synthesis Using Near Ambient Pressure XPS. ACS Catal. 2022, 12, 13781–13791. [Google Scholar] [CrossRef] [PubMed]
Chemicals | Pd Bath | Ru Bath |
---|---|---|
PdCl2 | 4.36 g/L | / |
RuCl3 | / | 0.0178 g/L |
EDTA | 60 g/L | / |
NH3∙H2O | 600 mL/L | 150 mL/L |
N2H4 | 1 vol% | 10 vol% |
Temperature | 308 K | 333 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, S.; Yin, Z.; Yang, Z.; Chen, Z.; Han, L.; Yu, Q.; Du, M. Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3. Membranes 2024, 14, 59. https://doi.org/10.3390/membranes14030059
Chen L, Li S, Yin Z, Yang Z, Chen Z, Han L, Yu Q, Du M. Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3. Membranes. 2024; 14(3):59. https://doi.org/10.3390/membranes14030059
Chicago/Turabian StyleChen, Lingsu, Shuai Li, Zhaohui Yin, Zhanbing Yang, Zihui Chen, Li Han, Qinghe Yu, and Miao Du. 2024. "Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3" Membranes 14, no. 3: 59. https://doi.org/10.3390/membranes14030059
APA StyleChen, L., Li, S., Yin, Z., Yang, Z., Chen, Z., Han, L., Yu, Q., & Du, M. (2024). Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3. Membranes, 14(3), 59. https://doi.org/10.3390/membranes14030059