Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digestate and WWTP
2.2. Reagents and Hydrophobic Gas-Permeable Membrane
2.3. Experimental Setup
2.4. Analytical Methods
2.5. Data Analysis
3. Results and Discussion
3.1. Feed Water Characterization
3.2. Performance Comparison between Citric Acid and Sulfuric Acid
3.2.1. NH3 Mass Transfer and NaOH Consumption
3.2.2. Removal, Recovery, and Losses of NH3
3.2.3. Water Vapor Transport
- The higher operational pH, where Vecino et al. operated their system at pH 12 and Ulbricht et al. [25] at pH 11;
- The difference in the water flow rate, where Vecino et al. operated at 450 mL∙min−1;
- The temperature differences between the feed and acid tanks, as none of the cited authors included a heating system for the acid tank;
- Or the different characteristics of the capturing solutions.
3.3. Economic Estimations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228, 251. [Google Scholar] [CrossRef]
- United Nations. World Population to Reach 8 Billion on 15 November 2022. Available online: https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022 (accessed on 20 October 2022).
- FAO. The State of Food Security and Nutrition in the World 2020; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2020; ISBN 978-92-5-132901-6.
- United Nations. Goal 2|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal2 (accessed on 20 October 2022).
- Bernhard, A. The Nitrogen Cycle: Processes, Players, and Human Impact. Nat. Educ. Knowl. 2010, 3, 25. [Google Scholar]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT: Cambridge, MA, USA; London, UK, 2004; ISBN 9780262693134. [Google Scholar]
- Desloover, J.; Vlaeminck, S.E.; Clauwaert, P.; Verstraete, W.; Boon, N. Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr. Opin. Biotechnol. 2012, 23, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.; Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Energy Institute Statistical Review of World Energy. Statistical Review of World Energy. Available online: https://ourworldindata.org/energy-production-consumption (accessed on 13 December 2023).
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Hevia, G.; Serralta, J.; Seco, A.; Ferrer, J. Economic analysis of the scale-up and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant. Sep. Purif. Technol. 2021, 275, 119128. [Google Scholar] [CrossRef]
- Campos, J.C.; Moura, D.; Costa, A.P.; Yokoyama, L.; Araujo, F.V.d.F.; Cammarota, M.C.; Cardillo, L. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Gujer, W. Siedlungswasserwirtschaft, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 3-540-43404-6. [Google Scholar]
- Mucha, Z.; Mikosz, J. Technological characteristics of reject waters from aerobic sludge stabilization in small and medium-sized wastewater treatment plants with biological nutrient removal. Int. J. Energy Environ. Eng. 2021, 12, 69–76. [Google Scholar] [CrossRef]
- PONDUS Verfahrenstechnik GmbH. Stickstoffrückgewinnung aus Schlämmen und Abwässern: Das Ammonium-Ammoniak-Gleichgewicht. Available online: https://www.pondus-verfahren.de/ (accessed on 11 January 2024).
- Gonzalez-Salgado, I.; Guigui, C.; Sperandio, M. Transmembrane chemical absorption technology for ammonia recovery from wastewater: A critical review. Chem. Eng. J. 2022, 444, 136491. [Google Scholar] [CrossRef]
- Davey, J.; Schmieder-Gaite, T.; Hermassi, M.; McAdam, J. Integrating crystallisation into transmembrane chemical absorption: Process intensification for ammonia separation from anaerobic digestate. J. Membr. Sci. 2020, 611, 118236. [Google Scholar] [CrossRef]
- Wäeger-Baumann, F.; Fuchs, W. The Application of Membrane Contactors for the Removal of Ammonium from Anaerobic Digester Effluent. Sep. Sci. Technol. 2012, 47, 1436–1442. [Google Scholar] [CrossRef]
- Vecino, X.; Reig, M.; Gibert, O.; Valderrama, C.; Cortina, J. Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer. Chemosphere 2020, 245, 125606. [Google Scholar] [CrossRef]
- García-González, M.C.; Vanotti, M.B.; Szogi, A.A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration. J. Environ. Manag. 2015, 152, 19–26. [Google Scholar] [CrossRef]
- Zarebska, A.; Karring, H.; Christensen, M.L.; Hjorth, M.; Christensen, K.V.; Norddahl, B. Ammonia Recovery from Pig Slurry Using a Membrane Contactor—Influence of Slurry Pretreatment. Water Air Soil Pollut. 2017, 228, 150. [Google Scholar] [CrossRef]
- Darestani, M.; Haigh, V.; Couperthwaite, S.J.; Millar, G.J.; Nghiem, L.D. Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. J. Environ. Chem. Eng. 2017, 5, 1349–1359. [Google Scholar] [CrossRef]
- Imai, M.; Furusaki, S.; Miyauchi, T. Separation of volatile materials by gas membranes. Ind. Eng. Chem. Process. Des. Dev. 1982, 21, 421–426. [Google Scholar] [CrossRef]
- Ulbricht, M.; Schneider, J.; Stasiak, M.; Sengupta, A. Ammonia Recovery from Industrial Wastewater by TransMembraneChemiSorption. Chem. Ing. Tech. 2013, 85, 1259–1262. [Google Scholar] [CrossRef]
- Richter, L.; Paulsen, S.; Wichern, M.; Grömping, M.; Robecke, U.; Haberkamp, J. Hollow-fibre Membrane Contactors for Nitrogen Recovery from Municipal Wastewater. Chem. Ing. Tech. 2021, 93, 1440–1444. [Google Scholar] [CrossRef]
- Böhler, M.; Hernandez, A.; Fleiner, J.; Gruber, W.; Seyfried, A. WP 4 Nitrogen Management in Side Stream: D 4.3: Operation and Optimization of Membrane Ammonia Stripping. 2018. Available online: www.powerstep.eu (accessed on 5 December 2023).
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Evaluation of Different Capture Solutions for Ammonia Recovery in Suspended Gas Permeable Membrane Systems. Membranes 2022, 12, 572. [Google Scholar] [CrossRef]
- CHEMANALYST. Ammonium Sulphate Price Trend and Forecast: Europe. Available online: https://www.chemanalyst.com/Pricing-data/ammonium-sulphate-64#:~:text=In%20Q1%202023%2C%20the%20Ammonium,and%20a%20bearish%20demand%20outlook (accessed on 24 January 2024).
- Hasanoğlu, A.; Romero, J.; Pérez, B.; Plaza, A. Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chem. Eng. J. 2010, 160, 530–537. [Google Scholar] [CrossRef]
- Ashrafizadeh, S.N.; Khorasani, Z. Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chem. Eng. J. 2010, 162, 242–249. [Google Scholar] [CrossRef]
- Reig, M.; Vecino, X.; Gibert, O.; Valderrama, C.; Cortina, J.L. Study of the operational parameters in the hollow fibre liquid-liquid membrane contactors process for ammonia valorisation as liquid fertiliser. Sep. Purif. Technol. 2021, 255, 117768. [Google Scholar] [CrossRef]
- Sheikh, M.; Reig, M.; Vecino, X.; Lopez, J.; Rezakazemi, M.; Valderrama, C.A.; Cortina, J.L. Liquid–Liquid membrane contactors incorporating surface skin asymmetric hollow fibres of poly(4-methyl-1-pentene) for ammonium recovery as liquid fertilisers. Sep. Purif. Technol. 2022, 283, 120212. [Google Scholar] [CrossRef]
- Damtie, M.M.; Volpin, F.; Yao, M.; Tijing, L.D.; Hailemariam, R.H.; Bao, T.; Park, K.-D.; Shon, H.K.; Choi, J.-S. Ammonia recovery from human urine as liquid fertilizers in hollow fiber membrane contactor: Effects of permeate chemistry. Environ. Eng. Res. 2021, 26, 190523. [Google Scholar] [CrossRef]
- Vanotti, M.B.; Szogi, A.A. Use of Gas-Permeable Membranes for the Removal and Recovery of Ammonia from High Strength Livestock Wastewater. Proc. Water Environ. Fed. 2011, 2011, 659–667. [Google Scholar] [CrossRef]
- Hossain, M.; Chaalal, O. Liquid–liquid separation of aqueous ammonia using a hollow-fibre membrane contactor. Desalination Water Treat. 2016, 57, 21770–21780. [Google Scholar] [CrossRef]
- Jamaludin, Z.; Rollings-Scattergood, S.; Lutes, K.; Vaneeckhaute, C. Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate. Bioresour. Technol. 2018, 270, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo-Salces, B.; Riaño, B.; Vanotti, M.B.; Hernández-González, D.; García-González, M.C. Pilot-Scale Demonstration of Membrane-Based Nitrogen Recovery from Swine Manure. Membranes 2020, 10, 270. [Google Scholar] [CrossRef]
- Podstawczyk, D.; Witek-Krowiak, A.; Dawiec-Liśniewska, A.; Chrobot, P.; Skrzypczak, D. Removal of ammonium and orthophosphates from reject water generated during dewatering of digested sewage sludge in municipal wastewater treatment plant using adsorption and membrane contactor system. J. Clean. Prod. 2017, 161, 277–287. [Google Scholar] [CrossRef]
- Xu, B.; He, Z. Ammonia recovery from simulated anaerobic digestate using a two-stage direct contact membrane distillation process. Water Environ. Res. 2021, 93, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Alpha Analytical, Inc. Alkalinity, Titration Method; Alpha Analytical, Inc.: Westborough, MA, USA, 2012. [Google Scholar]
- Stadt Erbach. Jahresbericht_PLS_2018-2021_Zusammenstellung; Excel-Datei; Wastewater Treatment Plant Erbach: Erbach, Germany, 2021. [Google Scholar]
- Daguerre-Martini, S.; Vanotti, M.B.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef]
- 3M. 3M™ Liqui-Cel™ EXF Series Membrane Contactors: Cleaning and Storage Guidelines 3M. Available online: https://www.3m.com/3M/en_US/liquicel-us/resources/operating-and-technical-guides/ (accessed on 28 November 2023).
- 3M. User Guide: 3M™ Liqui-Cel™ Membrane Contactors for TransMembrane ChemiSorption Operation. Available online: https://www.3m.com/3M/en_US/liquicel-us/resources/operating-and-technical-guides/ (accessed on 28 November 2023).
- Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.B.; García-González, M.C. Effect of Operational Conditions on Ammonia Recovery from Simulated Livestock Wastewater Using Gas-Permeable Membrane Technology. Environments 2022, 9, 70. [Google Scholar] [CrossRef]
- Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.B.; García-González, M.C. Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study. Environments 2021, 8, 133. [Google Scholar] [CrossRef]
- Richter, L.; Wichern, M.; Grömping, M.; Robecke, U.; Haberkamp, J. Ammonium recovery from process water of digested sludge dewatering by membrane contactors. Water Pract. Technol. 2020, 15, 84–91. [Google Scholar] [CrossRef]
- Purdue University. Diprotic and Triprotic Acids and Bases: Diprotic Acids. Available online: https://chemed.chem.purdue.edu/genchem/topicreview/bp/ch17/diprotic.php (accessed on 12 April 2024).
- Kiradjiev, K.B.; Nikolakis, V.; Griffiths, I.M.; Beuscher, U.; Venkateshwaran, V.; Breward, C.J.W. A Simple Model for the Hygroscopy of Sulfuric Acid. Ind. Eng. Chem. Res. 2020, 59, 4802–4808. [Google Scholar] [CrossRef]
- Destatis. Strompreise für Nicht-Haushalte: Deutschland, Halbjahre, Jahresverbrauchsklassen, Preisarten. Available online: https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=61243-0005&language=de#abreadcrumb (accessed on 15 January 2024).
- CHEMIE SHOP 24. Natronlauge 30% EN896 (1200kg Container). Available online: https://www.chemieshop24.de/natronlauge-30-en896-1200kg-container/1002796701000 (accessed on 20 January 2024).
- CHEMIE SHOP 24. Schwefelsäure 50% EN899 (1300kg Container). Available online: https://www.chemieshop24.de/schwefelsaeure-50-en899-1300kg-container/1000419201004 (accessed on 20 January 2024).
- EPA. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:text=Nitrous%20Oxide%20(N2O,Sinks%20uses%20a%20different%20value.) (accessed on 25 January 2024).
- Faust, V.; Gruber, W.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M. Nitrous Oxide Emissions and Carbon Footprint of Decentralized Urine Fertilizer Production by Nitrification and Distillation. ACS EST Eng. 2022, 2, 1745–1755. [Google Scholar] [CrossRef]
Feature | Unit | Value |
---|---|---|
Membrane type | - | Hollow fibers X-50 |
Material | - | Polypropylene |
Effective surface area | m2 | 1.4 |
Area density | m2∙m−3 | 1871 |
Number of fibers | - | 11,000 |
Pore size | µm | 0.04 |
Fiber outer diameter | mm | 0.3 |
Fiber inner diameter | mm | 0.2 |
Cartridge outer diameter | mm | 66.6 |
Cartridge inner diameter | mm | 6.4 |
Packing grade | - | 0.25 |
Parameter | Units | Reject Water | UF-Filtered Water | After TMCA * |
---|---|---|---|---|
pH | - | 7.8 | 7.8 | 10–10.5 |
Electrical conductivity (σ) | µS∙cm−1 | 4787.5 | 4040.0 | 4210–7910 |
Total alkalinity (TA) | mg CaCO3∙L−1 | 2343.0 | 2201.0 | 2520–4510 |
Total suspended solids (TSS) | mg∙L−1 | 103.75 | 15 | ** |
Total nitrogen (TN) | mg∙L−1 | 516 | 430–463 | *** |
Total ammoniacal nitrogen (TAN) | mg∙L−1 | 483.5 | 430–463 | <1–32.4 |
Chemical oxygen demand (COD) | mg∙L−1 | 744.0 | 403.7 | * |
Orthophosphate (PO4-P) | mg∙L−1 | 26.9 | 6.9 | 1.38–3.67 |
Feed Water | JNH3, rem. | JNH3,p. | NaOH (30%) | |||||
---|---|---|---|---|---|---|---|---|
TS | pH | Temp. | TANo * [mg] | TANf * [mg] | TANp * [mg] | Flux * [g∙m−2∙d−1] | Flux * [g∙m−2∙d−1] | Addition [mL∙L−1] |
C6H8O7 | 10 | 22 °C | 447.8 | 30.9 | 287.3 | 21.36 | 4.02 | 8.01 ± 1.34 |
40 °C | 441 | 3.7 | 334.1 | 22.48 | 4.67 | |||
H2SO4 | 10 | 22 °C | 445.4 | 11.7 | 359.4 | 21.63 | 5.02 | |
40 °C | 437 | 1.5 | 403.8 | 22.41 | 5.64 | |||
C6H8O7 | 10.5 | 22 °C | 435 | 22.2 | 351.3 | 21.74 | 4.91 | 10.19 ± 1.1 |
40 °C | 435.8 | 1.1 | 344 | 22.33 | 4.81 | |||
H2SO4 | 10.5 | 22 °C | 430.2 | 15.2 | 371.5 | 21.29 | 5.19 | |
40 °C | 435 | 1.3 | 386.3 | 22.30 | 5.4 |
H2SO4 | C6H8O7 | ||
---|---|---|---|
Parameter | Unit | Value (% of total costs) | |
WWTP Erbach | |||
TAN load in reject water [42] | kg∙d−1 | 21 | |
Pretreatment costs | |||
Energy [51] | €∙d−1∙kg N−1 | 2.5 (13%) | 2.5 (10%) |
TMCA costs | |||
Energy | €∙d−1∙kg N−1 | 0.7 (4%) | 0.7 (3%) |
NaOH [52] | €∙d−1∙kg N−1 | 14 (74%) | 14 (57%) |
Trapping solution [28,53] | €∙d−1∙kg N−1 | 1.7 (9%) | 7.6 (30%) |
Total Costs | €∙d−1∙kg N−1 | 18.9 | 24.7 |
Sales and profit | |||
Fertilizer production | kg∙d−1 | 70.5 | 195.7 |
Product price [28,29] | €∙kg−1 | 0.43 | 1.06 |
Revenue | €∙d−1∙kg N−1 | 1.4 | 9.9 |
Profit/Losses | €∙d−1∙kg N−1 | −17.4 | −14.9 |
Product price for breakeven point | €∙kg−1 | 5.6 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes Alva, R.; Mohr, M.; Zibek, S. Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. Membranes 2024, 14, 102. https://doi.org/10.3390/membranes14050102
Reyes Alva R, Mohr M, Zibek S. Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. Membranes. 2024; 14(5):102. https://doi.org/10.3390/membranes14050102
Chicago/Turabian StyleReyes Alva, Ricardo, Marius Mohr, and Susanne Zibek. 2024. "Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution" Membranes 14, no. 5: 102. https://doi.org/10.3390/membranes14050102
APA StyleReyes Alva, R., Mohr, M., & Zibek, S. (2024). Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. Membranes, 14(5), 102. https://doi.org/10.3390/membranes14050102