Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid–Fe3+ Selective Layer
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Membrane Selective Layer Synthesis
2.3. Membrane Characterization
2.4. Evaluation of Membrane Performance
3. Results and Discussion
3.1. Influence of Assembly Time on the Membrane’s Physicochemical and Morphological Properties
3.2. Filtration Performance of the Membranes
3.2.1. Water Contact Angle and Pure Water Permeance of the Fabricated Membranes
3.2.2. Organic Solute Retention Performance
3.2.3. Mixed-Solute Retention
3.2.4. Evaluation of Membrane Antifouling Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, L.S.; Gutierrez, L.; Verbeke, R.; D’Haese, A.; Waqas, M.; Dickmann, M.; Helm, R.; Vankelecom, I.; Verliefde, A.; Cornelissen, E. Transport of organic solutes in ion-exchange membranes: Mechanisms and influence of solvent ionic composition. Water Res. 2021, 190, 116756. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, I.; Kaner, P.; Asatekin, A. Controlling and Expanding the Selectivity of Filtration Membranes. Chem. Mater. 2018, 30, 7328–7354. [Google Scholar] [CrossRef]
- Sadeghi, I.; Kronenberg, J.; Asatekin, A. Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles. ACS Nano 2018, 12, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Bengani, P.; Kou, Y.M.; Asatekin, A. Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity. J. Membr. Sci. 2015, 493, 755–765. [Google Scholar] [CrossRef]
- Chen, M.; Yang, H.; Xu, Z.L.; Cheng, C. Separation of single and mixed anionic dyes in saline solutions using uncharged polyacrylonitrile-tris(hydroxymethyl)aminomethane (PAN-Tris) ultrafiltration membrane: Performance and mechanism. J. Clean. Prod. 2022, 336, 130471. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Rahman, M.M.; Abetz, C.; Hohme, A.L.; Sperling, E.; Abetz, V. Chemically Tailored Multifunctional Asymmetric Isoporous Triblock Terpolymer Membranes for Selective Transport. Adv. Mater. 2020, 32, e1907014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rahman, M.M.; Abetz, C.; Abetz, V. High-performance asymmetric isoporous nanocomposite membranes with chemically-tailored amphiphilic nanochannels. J. Mater. Chem. A 2020, 8, 9554–9566. [Google Scholar] [CrossRef]
- Zhang, Z.; Rahman, M.M.; Abetz, C.; Bajer, B.; Wang, J.; Abetz, V. Quaternization of a Polystyrene-block-poly(4-vinylpyridine) Isoporous Membrane: An Approach to Tune the Pore Size and the Charge Density. Macromol. Rapid Commun. 2019, 40, 1800729. [Google Scholar] [CrossRef]
- Chen, L.Y.; Jiang, M.Y.; Zou, Q.; Xiong, S.W.; Wang, Z.G.; Cui, L.S.; Guo, H.; Zhou, T.; Gai, J.G. Highly permeable carbon nanotubes/polyamide layered membranes for molecular sieving. Chem. Eng. J. 2021, 425, 130684. [Google Scholar] [CrossRef]
- Kim, E.S.; Hwang, G.; El-Din, M.G.; Liu, Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 2012, 394, 37–48. [Google Scholar] [CrossRef]
- Wang, D.; Tian, M.; Han, S.; Ding, K.; Yin, L.; Zhu, J.; Zhang, Y.; Han, L. Enhanced performance of thin-film nanocomposite membranes achieved by hierarchical zeolites for nanofiltration. J. Membr. Sci. 2023, 671, 121405. [Google Scholar] [CrossRef]
- Wei, X.X.; Liu, Y.L.; Zheng, J.F.; Wang, X.M.; Xia, S.J.; Van der Bruggen, B. A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J. Membr. Sci. 2022, 661, 120952. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Meng, W.Q.; Xue, Q.; Zhang, K.S. Two dimensional sulfonated molybdenum disulfide (S-MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination. J. Membr. Sci. 2023, 676, 121574. [Google Scholar] [CrossRef]
- Zhang, N.; Song, X.J.; Jiang, H.; Tang, C.Y.Y. Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Sep. Purif. Technol. 2021, 269, 118719. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.L.; Ee, L.Y.; Chung, T.-S.; Chen, S.B. In-situ coating of Fe-TA complex on thin-film composite membranes for improved water permeance in reverse osmosis desalination. Desalination 2023, 554, 116515. [Google Scholar] [CrossRef]
- Jiang, X.N.; Yong, W.F.; Gao, J.; Shao, D.D.; Sun, S.P. Understanding the role of substrates on thin film composite membranes: A green solvent approach with TamiSolve (R) NxG. J. Membr. Sci. 2021, 635, 119530. [Google Scholar] [CrossRef]
- Ong, C.; Falca, G.; Huang, T.F.; Liu, J.T.; Manchanda, P.; Chisca, S.; Nunes, S.P. Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. Acs Sustain. Chem. Eng. 2020, 8, 11541–11548. [Google Scholar] [CrossRef]
- Zhang, R.N.; He, M.R.; Gao, D.H.; Liu, Y.N.; Wu, M.Y.; Jiao, Z.W.; Su, Y.L.; Jiang, Z.Y. Polyphenol-assisted in-situ assembly for antifouling thin-film composite nanofiltration membranes. J. Membr. Sci. 2018, 566, 258–267. [Google Scholar] [CrossRef]
- Yang, C.; Topuz, F.; Park, S.H.; Szekely, G. Biobased thin-film composite membranes comprising priamine-genipin selective layer on nanofibrous biodegradable polylactic acid support for oil and solvent-resistant nanofiltration. Green Chem. 2022, 24, 5291–5303. [Google Scholar] [CrossRef]
- Park, S.H.; Yang, C.; Ayaril, N.; Szekely, G. Solvent-Resistant Thin-Film Composite Membranes from Biomass-Derived Building Blocks: Chitosan and 2,5-Furandicarboxaldehyde. ACS Sustain. Chem. Eng. 2022, 10, 998–1007. [Google Scholar] [CrossRef]
- Park, S.H.; Alammar, A.; Fulop, Z.; Pulido, B.A.; Nunes, S.P.; Szekely, G. Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources. Green Chem. 2021, 23, 1175–1184. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef] [PubMed]
- Kinfu, H.H.; Rahman, M.M. Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. Membranes 2023, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Lin, G.; Tomanin, P.P.; Ju, Y.; Barlow, A.; Björnmalm, M.; Caruso, F. Self-Assembly of a Metal-Phenolic Sorbent for Broad-Spectrum Metal Sequestration. ACS Appl. Mater. Interfaces 2020, 12, 3746–3754. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Shi, M.; Dong, C.; Liu, L.; Gao, C. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci. 2020, 284, 102267. [Google Scholar] [CrossRef] [PubMed]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; Van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-Step Assembly of Coordination Complexes. Science 2013, 341, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Ma, Y.; Su, Y.; Zhang, R.; Liu, Y.; Zhang, Q.; Jiang, Z. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv. 2015, 5, 107777–107784. [Google Scholar] [CrossRef]
- Guo, H.; Peng, L.E.; Yao, Z.; Yang, Z.; Ma, X.; Tang, C.Y. Non-Polyamide Based Nanofiltration Membranes Using Green Metal-Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants. Environ. Sci. Technol. 2019, 53, 2688–2694. [Google Scholar] [CrossRef]
- Song, Y.Z.; Kong, X.; Yin, X.; Zhang, Y.; Sun, C.C.; Yuan, J.J.; Zhu, B.; Zhu, L.P. Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 585–592. [Google Scholar] [CrossRef]
- Guo, H.; Yao, Z.; Yang, Z.; Ma, X.; Wang, J.; Tang, C.Y. A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. Environ. Sci. Technol. 2017, 51, 12638–12643. [Google Scholar] [CrossRef]
- Khodeir, E.; Namvar-Mahboub, M. The effect of tannic acid-based coating on performance of Ro membrane for metronidazole removal from aqueous solution. Surf. Interfaces 2021, 26, 101363. [Google Scholar] [CrossRef]
- You, F.; Xu, Y.; Yang, X.; Zhang, Y.; Shao, L. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chem. Commun. 2017, 53, 6128–6131. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Guo, D.; Li, T.; Zhou, Q.; Shen, L.; Li, R.; Xu, Y.; Lin, H. Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation. Appl. Surf. Sci. 2020, 515, 146063. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.G.; Yoon, H.; Choi, Y.S.; Yoon, J.; Lee, J.C. Polyphenol/FeIII Complex Coated Membranes Having Multifunctional Properties Prepared by a One-Step Fast Assembly. Adv. Mater. Interfaces 2015, 2, 1500298. [Google Scholar] [CrossRef]
- Liu, J.; Yu, X.; Yang, E.; Li, T.; Yu, H.; Wang, Z.; Dong, B.; Fane, A.G. A combined tannic acid-copper-iron coating of ultrafiltration membrane for enhanced anti-bacterial and algal-inhibition performance. J. Water Process Eng. 2022, 50, 103250. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Y.; Tran, T.T.; Zhang, G. Facile and rapid assembly of high-performance tannic acid thin-film nanofiltration membranes via Fe3+ intermediated regulation and coordination. Sep. Purif. Technol. 2021, 260, 118228. [Google Scholar] [CrossRef]
- Lin, C.E.; Zhou, M.Y.; Hung, W.S.; Zhu, B.K.; Lee, K.R.; Zhu, L.P.; Fang, L.F. Ultrathin nanofilm with tailored pore size fabricated by metal-phenolic network for precise and rapid molecular separation. Sep. Purif. Technol. 2018, 207, 435–442. [Google Scholar] [CrossRef]
- Kinfu, H.H.; Rahman, M.M.; Schneider, E.S.; Cevallos-Cueva, N.; Abetz, V. Charge and size selective thin film composite membranes having tannic acid—Ferric ion network as selective layer. J. Membr. Sci. 2023, 679, 121709. [Google Scholar] [CrossRef]
- Wang, R.Y.; Zhang, J.W.; Tang, C.Y.Y.; Lin, S.H. Understanding Selectivity in Solute-Solute Separation: Definitions, Measurements, and Comparability. Environ. Sci. Technol. 2022, 56, 2605–2616. [Google Scholar] [CrossRef]
- Plakas, K.V.; Karabelas, A.J.; Wintgens, T.; Melin, T. A study of selected herbicides retention by nanofiltration membranes—The role of organic fouling. J. Membr. Sci. 2006, 284, 291–300. [Google Scholar] [CrossRef]
- Acarer, S.; Pir, I.; Tufekci, M.; Erkoc, T.; Oztekin, V.; Dikicioglu, C.; Demirkol, G.T.; Durak, S.G.; Ozcoban, M.S.; Coban, T.Y.T.; et al. Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles. Nanomaterials 2022, 12, 3721. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Han, S.; Lee, K.B.; Choi, I.S. Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation. Adv. Mater. 2017, 29, 1700784. [Google Scholar] [CrossRef] [PubMed]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Ejima, H.; Cho, K.L.; Kempe, K.; Müllner, M.; Best, J.P.; Caruso, F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater. 2014, 26, 1645–1653. [Google Scholar] [CrossRef]
- Glass, S.; Mantel, T.; Appold, M.; Sen, S.; Usman, M.; Ernst, M.; Filiz, V. Amine-Terminated PAN Membranes as Anion-Adsorber Materials. Chem. Ing. Tech. 2021, 93, 1396–1400. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Li, X.; Pan, S.; Sun, X.; Shen, J.; Han, W.; Wang, L.; Van der Bruggen, B. Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. J. Colloid Interface Sci. 2017, 505, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Amin, D.; Messersmith, P.B.; Anthony, J.E.; Prud’homme, R.K. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles. Langmuir 2015, 31, 3612–3620. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, S.S.; Zhu, J.Y.; Van der Bruggen, B. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO/Ag modification for dye removal. Chem. Eng. J. 2019, 373, 275–284. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, J.Y.; Tsehaye, M.T.; Li, J.; Dong, G.Y.; Yuan, S.S.; Li, X.; Zhang, Y.T.; Liu, J.D.; Van der Bruggen, B. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine. J. Mater. Chem. A 2017, 5, 14847–14857. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Rahman, M.M.; Bajer, B.; Scharnagl, N.; Abetz, V. Highly selective isoporous block copolymer membranes with tunable polyelectrolyte brushes in soft nanochannels. J. Membr. Sci. 2022, 646, 120266. [Google Scholar] [CrossRef]
- Park, M.H.; Subramani, C.; Rana, S.; Rotello, V.M. Chemoselective Nanoporous Membranes via Chemically Directed Assembly of Nanoparticles and Dendrimers. Adv. Mater. 2012, 24, 5862–5866. [Google Scholar] [CrossRef] [PubMed]
- Savariar, E.N.; Krishnamoorthy, K.; Thayumanavan, S. Molecular discrimination inside polymer nanotubules. Nat. Nanotechnol. 2008, 3, 112–117. [Google Scholar] [CrossRef]
- Savariar, E.N.; Sochat, M.M.; Klaikherd, A.; Thayumanavan, S. Functional Group Density and Recognition in Polymer Nanotubes. Angew. Chem. Int. Ed. 2009, 48, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, S.Q.; Zhang, X.; Shi, Z.Q.; Wei, Z.W.; Bao, J.X.; Zhao, W.F.; Zhao, C.S. Engineering of Tannic Acid Inspired Antifouling and Antibacterial Membranes through Co-deposition of Zwitterionic Polymers and Ag Nanoparticles. Ind. Eng. Chem. Res. 2019, 58, 11689–11697. [Google Scholar] [CrossRef]
- Wu, H.; Sun, H.; Hong, W.; Mao, L.; Liu, Y. Improvement of Polyamide Thin Film Nanocomposite Membrane Assisted by Tannic Acid-Fe(III) Functionalized Multiwall Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 32255–32263. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, Y.Q.; Zhang, J.M.; Tian, B.; Lin, O.K.; Liu, Y.W.; Zhang, C.H. Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment. RSC Adv. 2019, 9, 17766–17777. [Google Scholar] [CrossRef]
- Zhao, L.F.; Zhang, M.; Liu, G.H.; Zhao, A.; Gong, X.S.; Shi, S.; Zheng, X.B.; Gao, J.; Jiang, Y.J. Tuning the Microstructure of a Zwitterion-Functionalized Polyethylenimine Loose NF Membrane for Dye Desalination. Ind. Eng. Chem. Res. 2022, 61, 2245–2256. [Google Scholar] [CrossRef]
Membrane Name | Casting Solution Concentration [Weight %] | Casting Solution Concentration [mM] | Assembly Time [min] | TA Solution pH | Number of TA-Fe3+ Layers Deposited | ||
---|---|---|---|---|---|---|---|
TA | FeCl3.6H2O | TA | FeCl3.6H2O | ||||
MPN-1 | 0.02 | 0.09 | 0.1176 | 3.330 | 1 | 5.8 | 2 |
MPN-2.5 | 0.02 | 0.09 | 0.1176 | 3.330 | 2.5 | 5.8 | 2 |
MPN-4 | 0.02 | 0.09 | 0.1176 | 3.330 | 4 | 5.8 | 2 |
MPN-6 | 0.02 | 0.09 | 0.1176 | 3.330 | 6 | 5.8 | 2 |
Membrane Type | Small Molecules | Molecular Weight (g.mol−1) | Molecular Charge | Selectivity Diffusion (a) | Selectivity Filtration | Water Permeance (L·m−2·h−1· bar−1) | Reference | |
---|---|---|---|---|---|---|---|---|
Single Solutes | Mixed Solutes | |||||||
MPN-1 | RB0 | 376.36 | 0 | -- | 5.3 | 6.5 | 86.1 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-2.5 | RB0 | 376.36 | 0 | -- | 8.3 | 9.3 | 39.8 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-4 | RB0 | 376.36 | 0 | -- | 23.4 | 18.4 | 13.6 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-6 | RB0 | 376.36 | 0 | -- | 26.7 | 18.4 | 5.6 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-1 | RB0 | 376.36 | 0 | -- | 2.0 | -- | 86.1 | This work |
OR- | 350.32 | −1 | ||||||
MPN-2.5 | RB0 | 376.36 | 0 | -- | 4.1 | -- | 39.8 | This work |
OR- | 350.32 | −1 | ||||||
MPN-4 | RB0 | 376.36 | 0 | -- | 8.5 | -- | 13.6 | This work |
OR- | 350.32 | −1 | ||||||
MPN-6 | RB0 | 376.36 | 0 | 13.2 | -- | 5.6 | This work | |
OR- | 350.32 | −1 | ||||||
MPN-1 | OR- | 350.32 | −1 | -- | 2.9 | 3.6 | 86.1 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-2.5 | OR- | 350.32 | −1 | -- | 2 | 2.5 | 39.8 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-4 | OR- | 350.32 | −1 | -- | 2.7 | 1.7 | 13.6 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN-6 | OR- | 350.32 | −1 | -- | 2 | 1.9 | 5.6 | This work |
NGB3- | 878.45 | −3 | ||||||
MPN 1TA-3Fe | RB0 | 376.36 | 0 | -- | 3.2 | -- | 62.5 | [38] |
OR- | 350.32 | −1 | ||||||
MPN 1TA-4.5Fe | RB0 | 376.36 | 0 | -- | 8.5 | -- | 13.6 | [38] |
OR- | 350.32 | −1 | ||||||
MPN 1TA-6Fe | RB0 | 376.36 | 0 | -- | 20.6 | -- | 3.8 | [38] |
OR- | 350.32 | −1 | ||||||
MPN 1TA-8Fe | RB0 | 376.36 | 0 | -- | 3.2 | -- | 0.9 | [38] |
OR- | 350.32 | −1 | ||||||
Amphiphilic random copolymer membrane | Riboflavin | 376.36 | 0 | 263 | 8.4 (b) | 19.2 (b) | 4.2 | [3] |
Acid blue 45 | 474.33 | −2 | ||||||
Positively charged triblock copolymer SNIPS membrane (quaternized P4VP block) | RB0 | 376.36 | 0 | -- | 21.3 | 28.3 | 11.0 | [6] |
Methylene blue | 319.85 | +1 | ||||||
Negatively charged triblock copolymer SNIPS membrane (sulfonated) | OR- | 350.32 | −1 | -- | 14.7 | 44.6 | 9.5 | [6] |
NGB3- | 878.45 | −3 | ||||||
Negatively charged triblock copolymer SNIPS membrane (sulfonated) | OR- | 350.32 | −1 | -- | 64.3 | - | 9.5 | [6] |
Reactive green 19 | 1418.93 | −6 | ||||||
Isoporous block copolymer membrane | RB0 | 376.36 | 0 | 35.7 | 39.9 | 3.8 | [50] | |
Methylene blue | 319.85 | +1 | ||||||
Negatively charged diblock copolymer SNIPS membrane (sulfonated) | OR- | 350.32 | −1 | -- | 5.2 | -- | 74 | [7] |
Reactive green 19 | 1418.93 | −6 | ||||||
NP-Den hybrid membrane | Rhodamine 6G | 479.02 | +1 | 11 | -- | -- | [51] | |
Calcein | 622.53 | −4 | ||||||
Self-assembled polyelectrolyte deposited PCTE | Rhodamine 6G | 479.02 | +1 | 3.5 | -- | -- | [52] | |
Calcein | 622.53 | −4 | ||||||
Cationic dendrimer deposited PCTE | Calcein | 622.53 | −4 | 10 | -- | -- | [53] | |
Rhodamine 6G | 479.02 | +1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinfu, H.H.; Rahman, M.M.; Schneider, E.S.; Cevallos-Cueva, N.; Abetz, V. Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid–Fe3+ Selective Layer. Membranes 2024, 14, 133. https://doi.org/10.3390/membranes14060133
Kinfu HH, Rahman MM, Schneider ES, Cevallos-Cueva N, Abetz V. Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid–Fe3+ Selective Layer. Membranes. 2024; 14(6):133. https://doi.org/10.3390/membranes14060133
Chicago/Turabian StyleKinfu, Hluf Hailu, Md. Mushfequr Rahman, Erik S. Schneider, Nicolás Cevallos-Cueva, and Volker Abetz. 2024. "Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid–Fe3+ Selective Layer" Membranes 14, no. 6: 133. https://doi.org/10.3390/membranes14060133
APA StyleKinfu, H. H., Rahman, M. M., Schneider, E. S., Cevallos-Cueva, N., & Abetz, V. (2024). Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid–Fe3+ Selective Layer. Membranes, 14(6), 133. https://doi.org/10.3390/membranes14060133