Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection and Preprocessing of Digital Cell Shape Data from a Public Dataset
2.2. Shape Descriptors for a 3D Object
Categorization | Shape Descriptor | Mathematical Definition | 3D Cell Regions with Relatively Large (Top) and Small (Bottom) Values | Remarks | Relevant Research |
---|---|---|---|---|---|
Sphericity | General Sphericity | This formula was given in [28] and is the most generally used mathematical definition for describing the sphericity of a 3D object [25]. Thus, we call it “general sphericity” in this paper, while it is also called “true sphericity” in [28]. | [23,25,28,29,30,31,32,33,34,35] | ||
Diameter Sphericity | This formula was given in [36] and later termed by the authors of [31]. | [23,25,26,31,35,37,38] | |||
Intercept Sphericity | This formula was given in [26].
| [22,23,25,26,31,32,38] | |||
Maximum Projection Sphericity | This formula was given in [38].
| [23,25,32,38] | |||
Roundness | Hayakawa Roundness | This formula was given in [23].
| [23,25] | ||
Convex Hull | Spreading Index | This formula was derived from the concept of the spreading index for a 2D object [21].
| [21,33,39] | ||
Shape Factor | Elongation Ratio | This formula was given in [40]. | [22,23,25,26,30,32,40,41] | ||
Pivotability Index | This formula was given in [40] and was also called the “rollability index” in [41]. | [22,23,25,26,30,32,40,41] | |||
Wilson Flatness Index | This formula was given in [22]. | [22,25,41] | |||
Hayakawa Flatness Ratio | This formula was given in [23]. | [23] | |||
Huang Shape Factor | This formula was given in [22]. | [22,32] | |||
Corey Shape Factor | This formula was given in [22]. | [22,23,32,41] |
3. Results
3.1. Measurement Precision
3.2. Characterization of Cytokinesis with the Elongation Ratio
3.3. Negative Correlation between Cell Migration Speed and Sphericity
3.4. Lineage-Dependent Differentiation of Cell Shape
3.5. Simultaneous Differentiation of Cell Shape and Gene Expression
3.6. User-Friendly Software for Calculating 3D Cell Shape Descriptors Automatically
4. Discussion
- Regarding the specification of cell lineage and cell fate coupled with cell shape, systematic analysis of all cells and all stages throughout embryogenesis can be carried out beyond the representative studies of the MS and D lineages mentioned above (Figure 6 and Figure 7, respectively). Meanwhile, more public datasets, such as datasets on gene expression (measured by a fluorescence reporter and RNA sequencing) and chromatin accessibility, can be included [54,55,63] to systematically delineate how the developmental dynamics at the molecular scale affect those at the cellular scale which are depicted by different aspects of the cell shape, as well as those at higher scales such as tissue-, organ-, and embryo-scale morphogenesis.
- As the shape descriptors reported in this paper have explicit geometric significance and have been validated by specific physiological phenomena, they can be applied to the datasets of other organisms, such as ascidians, fruit flies, and zebrafish [9,10,64]. Moreover, they exhibit the potential to be applied to clinical data for fast disease diagnosis, for example, to identify cancerous cells that probably have low sphericity and high motility [6,7,62,65,66]. Such applications might also be employed at other biological scales, such as at the levels of cell nuclear shape and tissue or organ shape, for both fundamental research and disease diagnosis [67,68].
- Cell shape has been demonstrated to be an output of intracellular and intercellular mechanics [69]. Thus, with a focus on deciphering the underlying mechanical activities and interactions from cell shapes, the quantitative approaches and data provided in this paper can be utilized in future studies [70,71,72,73,74,75]. For instance, the stereotypical dumbbell shape before cell division could be utilized for analyzing the curvature and tension of the cell membrane [76,77]. Such inversely inferred mechanical properties or distributions can be further used for simulating real systems more comprehensively, thereby clearing the deck for model construction, virtual experimentation, and mechanism identification [78,79].
- Aside from the shape descriptors explored in this paper, other descriptors with explicit geometrical significance should be investigated in the future, such as the cell–cell interface curvature [73,80] and the numbers of vertexes, edges, and faces [81,82]. In addition, some shape descriptors with global information that enable consequent high-fidelity quantitative feature extraction with less information loss, such as shape entropy [35,41], the shape spectrum descriptor [83,84], spherical harmonics decomposition [16], and the voxel-based 3D Fourier transform descriptor [85], could be explored using data analysis methodologies such as principal component analysis and deep learning or artificial intelligence [16,85,86,87].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, M.; Morita, H.; Ueno, N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev. Growth Differ. 2012, 54, 266–276. [Google Scholar] [CrossRef]
- Chan, C.J.; Heisenberg, C.-P.; Hiiragi, T. Coordination of morphogenesis and cell-fate specification in development. Curr. Biol. 2017, 27, R1024–R1035. [Google Scholar] [CrossRef]
- Izquierdo, E.; Quinkler, T.; De Renzis, S. Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis. Nat. Commun. 2018, 9, 2366. [Google Scholar] [CrossRef]
- Walker, F.R.; Beynon, S.B.; Jones, K.A.; Zhao, Z.; Kongsui, R.; Cairns, M.; Nilsson, M. Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms. Brain Behav. Immun. 2014, 37, 1–14. [Google Scholar] [CrossRef]
- Leyh, J.; Paeschke, S.; Mages, B.; Michalski, D.; Nowicki, M.; Bechmann, I.; Winter, K. Classification of microglial morphological phenotypes using machine learning. Front. Cell Neurosci. 2021, 15, 701673. [Google Scholar] [CrossRef]
- Dey, P. Cancer nucleus: Morphology and beyond. Diagn. Cytopathol. 2010, 38, 382–390. [Google Scholar] [CrossRef]
- Fischer, E.G. Nuclear morphology and the biology of cancer cells. Acta Cytol. 2020, 64, 511–519. [Google Scholar] [CrossRef]
- Thiels, W.; Smeets, B.; Cuvelier, M.; Caroti, F.; Jelier, R. spheresDT/Mpacts-PiCS: Cell tracking and shape retrieval in membrane-labeled embryos. Bioinformatics 2021, 37, 4851–4856. [Google Scholar] [CrossRef]
- Guignard, L.; Fiúza, U.-M.; Leggio, B.; Laussu, J.; Faure, E.; Michelin, G.; Biasuz, K.; Hufnagel, L.; Malandain, G.; Godin, C.; et al. Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science 2020, 369, eaar5663. [Google Scholar] [CrossRef]
- Stegmaier, J.; Amat, F.; Lemon, W.C.; McDole, K.; Wan, Y.; Teodoro, F.; Mikut, R.; Keller, P.J. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 2016, 36, 225–240. [Google Scholar] [CrossRef]
- Sulston, J.E. Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 275, 287–297. [Google Scholar]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977, 56, 110–156. [Google Scholar] [CrossRef]
- Deppe, U.; Schierenberg, E.; Cole, T.; Krieg, C.; Schmitt, D.; Yoder, B.; von Ehrenstein, G. Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1978, 75, 376–380. [Google Scholar] [CrossRef]
- Kimble, J.; Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 1979, 70, 396–417. [Google Scholar] [CrossRef]
- Sulston, J.E.; Schierenberg, E.; White, J.G.; Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 1983, 100, 64–119. [Google Scholar] [CrossRef]
- van Bavel, C.; Thiels, W.; Jelier, R. Cell shape characterization, alignment, and comparison using FlowShape. Bioinformatics 2023, 39, btad383. [Google Scholar] [CrossRef]
- Azuma, Y.; Okada, H.; Onami, S. Systematic analysis of cell morphodynamics in C. elegans early embryogenesis. Front. Bioinform. 2023, 3, 1082531. [Google Scholar] [CrossRef]
- Cao, J.; Guan, G.; Ho, V.W.S.; Wong, M.-K.; Chan, L.-Y.; Tang, C.; Zhao, Z.; Yan, H. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nat. Commun. 2020, 11, 6254. [Google Scholar] [CrossRef]
- Cao, J.; Hu, L.; Guan, G.; Li, Z.; Zhao, Z.; Tang, C.; Yan, H. CShaperApp: Segmenting and analyzing cellular morphologies of the developing Caenorhabditis elegans embryo. Quant. Biol. 2024, 1–6. [Google Scholar] [CrossRef]
- Maduro, M.F. Cell fate specification in the C. elegans embryo. Dev. Dyn. 2010, 239, 1315–1329. [Google Scholar] [CrossRef]
- Yu, H.; Lim, K.P.; Xiong, S.; Tan, L.P.; Shim, W. Functional morphometric analysis in cellular behaviors: Shape and size matter. Adv. Healthc. Mater. 2013, 2, 1188–1197. [Google Scholar] [CrossRef]
- Wilson, L.; Huang, T.C. The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet. Sci. Lett. 1979, 44, 311–324. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Oguchi, T. Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci. 2005, 31, 735–741. [Google Scholar] [CrossRef]
- Zhao, M.; An, J.; Li, H.; Zhang, J.; Li, S.-T.; Li, X.-M.; Dong, M.-Q.; Mao, H.; Tao, L. Segmentation and classification of two-channel C. elegans nucleus-labeled fluorescence images. BMC Bioinform. 2017, 18, 412. [Google Scholar] [CrossRef]
- Cruz-Matías, I.; Ayala, D.; Hiller, D.; Gutsch, S.; Zacharias, M.; Estradé, S.; Peiró, F. Sphericity and roundness computation for particles using the extreme vertices model. J. Comput. Sci. 2019, 30, 28–40. [Google Scholar] [CrossRef]
- Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72. [Google Scholar] [CrossRef]
- Dimitrov, D.; Knauer, C.; Kriegel, K.; Rote, G. Bounds on the quality of the PCA bounding boxes. Comput. Geom. 2009, 42, 772–789. [Google Scholar] [CrossRef]
- Wadell, H. Volume, shape, and roundness of rock particles. J. Geol. 1932, 40, 443–451. [Google Scholar] [CrossRef]
- Choi, H.-J.; Choi, H.-K. Grading of renal cell carcinoma by 3D morphological analysis of cell nuclei. Comput. Biol. Med. 2007, 37, 1334–1341. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 2016, 291, 262–275. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Q.; Zheng, H.; Wei, D.; Li, Z.; Gao, L. Three-dimensional particle shape characterizations from half particle geometries. Powder Technol. 2020, 367, 122–132. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Yang, S.; Klein, B.; Wang, Z.; Liu, F. Estimate of three-dimensional Wadell roundness of irregular particles using image processing and topographic analysis. Constr. Build. Mater. 2023, 396, 132273. [Google Scholar] [CrossRef]
- Lobo, J.; See, E.Y.-S.; Biggs, M.; Pandit, A. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J. Tissue Eng. Regen. Med. 2016, 10, 539–553. [Google Scholar] [CrossRef]
- Nandakumar, V.; Kelbauskas, L.; Johnson, R.; Meldrum, D. Quantitative characterization of preneoplastic progression using single-cell computed tomography and three-dimensional karyometry. Cytom. A 2011, 79, 25–34. [Google Scholar] [CrossRef]
- Bullard, J.W.; Garboczi, E.J. Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions. Powder Technol. 2013, 249, 241–252. [Google Scholar] [CrossRef]
- Wadell, H. Sphericity and roundness of rock particles. J. Geol. 1933, 41, 310–331. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Druckrey, A.M.; AI-Raoush, R.I.; Weiskittel, T.; Lavrik, N.V. Quantifying morphology of sands using 3D imaging. J. Mater. Civ. Eng. 2014, 27, 04014275. [Google Scholar] [CrossRef]
- Sneed, E.D.; Folk, R.L. Pebbles in the lower Colorado river, Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Kawa, A.; Stahlhut, M.; Berezin, A.; Bock, E.; Berezin, V. A simple procedure for morphometric analysis of processes and growth cones of neurons in culture using parameters derived from the contour and convex hull of the object. J. Neurosci. Methods 1988, 79, 53–64. [Google Scholar] [CrossRef]
- Zingg, T. Beitrag zur Schotteranalyse. Schweiz. Mineral. Petrogr. Mitt. 1935, 15, 52–56. [Google Scholar]
- Hofmann, H.J. Grain-shaped indices and isometric graphs. J. Sediment. Res. 1994, 64, 916–920. [Google Scholar] [CrossRef]
- Taneja, N.; Bersi, M.R.; Baillargeon, S.M.; Fenix, A.M.; Cooper, J.A.; Ohi, R.; Gama, V.; Merryman, W.D.; Burnette, D.T. Precise tuning of cortical contractility regulates cell shape during cytokinesis. Cell Rep. 2020, 31, 107477. [Google Scholar] [CrossRef]
- Shah, J.V. Cells in tight spaces: The role of cell shape in cell function. J. Cell Biol. 2010, 191, 233–236. [Google Scholar] [CrossRef]
- Miyazaki, M.; Chiba, M.; Eguchi, H.; Ohki, T.; Ishiwata, S. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 2015, 17, 480–489. [Google Scholar] [CrossRef]
- Kurosaka, S.; Kashina, A. Cell biology of embryonic migration. Birth Defects Res. C Embryo Today 2008, 84, 102–122. [Google Scholar] [CrossRef]
- Stueltem, C.H.; Parent, C.A.; Montell, D.J. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nat. Rev. Cancer 2018, 18, 296–312. [Google Scholar] [CrossRef]
- Lämmermann, T.; Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 2009, 21, 636–644. [Google Scholar] [CrossRef]
- Ruprecht, V.; Wieser, S.; Callan-Jones, A.; Smutny, M.; Morita, H.; Sako, K.; Barone, V.; Ritsch-Marte, M.; Sixt, M.; Voituriez, R.; et al. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 2015, 160, 673–685. [Google Scholar] [CrossRef]
- Pohl, C.; Bao, Z. Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. Dev. Cell 2010, 19, 402–412. [Google Scholar] [CrossRef]
- Guan, G.; Wong, M.-K.; Ho, V.W.S.; An, X.; Chan, L.-Y.; Tian, B.; Li, Z.; Tang, L.; Zhao, Z.; Tang, C. System-level quantification and phenotyping of early embryonic morphogenesis of Caenorhabditis elegans. bioRxiv 2019. [Google Scholar] [CrossRef]
- Fujii, Y.; Koizumi, W.C.; Imai, T.; Yokobori, M.; Matsuo, T.; Oka, K.; Hotta, K.; Okajima, T. Spatiotemporal dynamics of single cell stiffness in the early developing ascidian chordate embryo. Commun. Biol. 2021, 4, 341. [Google Scholar] [CrossRef]
- Guan, G.; Wong, M.-K.; Zhao, Z.; Tang, L.-H.; Tang, C. Volume segregation programming in a nematode’s early embryogenesis. Phys. Rev. E 2021, 104, 054409. [Google Scholar] [CrossRef]
- Guan, G.; Luo, C.; Tang, L.-H.; Tang, C. Modulating cell proliferation by asymmetric division: A conserved pattern in the early embryogenesis of nematode species. MicroPubl. Biol. 2024. [Google Scholar] [CrossRef]
- Murray, J.I.; Boyle, T.J.; Preston, E.; Vafeados, D.; Mericle, B.; Weisdepp, P.; Zhao, Z.; Bao, Z.; Boeck, M.E.; Waterston, R. Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res. 2012, 22, 1282–1294. [Google Scholar] [CrossRef]
- Packer, J.S.; Zhu, Q.; Huynh, C.; Sivaramakrishnan, P.; Preston, E.; Dueck, H.; Stefanik, D.; Tan, K.; Trapnell, C.; Kim, J.; et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 2019, 365, eaax1971. [Google Scholar] [CrossRef]
- Liu, J.; Murray, J.I. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023, 225, iyad174. [Google Scholar]
- Guan, G.; Fang, M.; Wong, M.-K.; Ho, V.W.S.; An, X.; Tang, C.; Huang, X.; Zhao, Z. Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis. Dev. Genes Evol. 2020, 230, 265–278. [Google Scholar] [CrossRef]
- Andachi, Y. Caenorhabditis elegans T-box genes tbx-9 and tbx-8 are required for formation of hypodermis and body-wall muscle in embryogenesis. Genes Cells 2004, 9, 331–344. [Google Scholar] [CrossRef]
- Fardghassemi, Y.; Parker, J.A. Overexpression of FKH-2/FOXG1 is neuroprotective in a C. elegans model of Machado-Joseph disease. Exp. Neurol. 2021, 337, 113544. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Z.; Xiao, L.; Xu, W.; Kou, Y.; Zhang, Y.; Wu, G.; Wang, Y.; Du, Z. A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during embryogenesis. Nat. Methods 2021, 18, 893–902. [Google Scholar] [CrossRef]
- MATLAB; Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022.
- D’Orazio, M.; Corsi, F.; Mencattini, A.; Di Giuseppe, D.; Colomba Comes, M.; Casti, P.; Filippi, J.; Di Natale, C.; Ghibelli, L.; Martinelli, E. Deciphering cancer cell behavior from motility and shape features: Peer prediction and dynamic selection to support cancer diagnosis and therapy. Front. Oncol. 2020, 10, 580698. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, R.; Xu, W.; Kou, Y.; Wang, Y.; Ma, X.; Du, Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol. Syst. Biol. 2021, 17, e10075. [Google Scholar] [CrossRef]
- Guan, G.; Zhao, Z.; Tang, C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput. Struct. Biotechnol. J. 2022, 20, 5500–5515. [Google Scholar] [CrossRef]
- D’Anselmi, F.; Valerio, M.; Cucina, A.; Galli, L.; Proietti, S.; Dinicola, S.; Pasqualato, A.; Manetti, C.; Ricci, G.; Giuliani, A.; et al. Metabolis and cell shape in cancer: A fractal analysis. Int. J. Biochem. Cell Biol. 2011, 43, 1052–1058. [Google Scholar] [CrossRef]
- Medlock, J.; Das, A.A.K.; Madden, L.A.; Allsup, D.J.; Paunov, V.N. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment. Chem. Soc. Rev. 2017, 46, 5110–5127. [Google Scholar] [CrossRef]
- Kalinin, A.A.; Allyn-Feuer, A.; Ade, A.; Fon, G.-V.; Meixner, W.; Dilworth, D.; Husain, S.S.; de Wet, J.R.; Higgins, G.A.; Zheng, G.; et al. 3D shape modeling for cell nuclear morphological analysis and classification. Sci. Rep. 2018, 8, 13658. [Google Scholar] [CrossRef]
- Seirin-Lee, S.; Matsubara, D.; Yanase, Y.; Kunieda, T.; Takahagi, S.; Hide, M. Mathematical-based morphological classification of skin eruptions corresponding to the pathophysiological state of chronic spontaneous urticaria. Commun. Med. 2023, 3, 171. [Google Scholar] [CrossRef]
- Paluch, E.; Heisenberg, C.-P. Biology and physics of cell shape changes in development. Curr. Biol. 2009, 19, R790–R799. [Google Scholar] [CrossRef]
- Xu, M.; Wu, Y.; Shroff, H.; Wu, M.; Mani, M. A scheme for 3-dimensional morphological reconstruction and force inference in the early C. elegans embryo. PLoS ONE 2018, 13, e0199151. [Google Scholar] [CrossRef]
- Guan, G.; Tang, L.-H.; Tang, C. Reconstructing the multicellular structure of a developing metazoan embryo with repulsion-attraction model and cell-cell connection atlas in vivo. J. Phys. Conf. Ser. 2020, 1592, 012020. [Google Scholar] [CrossRef]
- Ichbiah, S.; Delbary, F.; McDougall, A.; Dumollard, R.; Turlier, H. Embryo mechanics cartography: Inference of 3D force atlases from fluorescence microscopy. Nat. Methods 2023, 20, 1989–1999. [Google Scholar] [CrossRef]
- Guan, G.; Kuang, X.; Tang, C.; Zhang, L. Comparison between phase-field model and coarse-grained model for characterizing cell-resolved morphological and mechanical properties in a multicellular system. Commun. Nonlinear Sci. Numer. Simul. 2023, 117, 106966. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ichbiah, S.; Pinto, J.; Delbary, F.; Goehring, N.; Turlier, H.; Charras, G. Dissecting the subcellular forces sculpting early C. elegans embryos. bioRxiv 2023. [Google Scholar] [CrossRef]
- Vanslambrouck, M.; Thiels, W.; Vangheel, J.; Smeets, B.; Jelier, R. Image-based force inference by biomechanical simulation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Pavin, N.; Laan, L.; Ma, R.; Dogterom, M.; Jülicher, F. Positioning of microtubule organizing centers by cortical pushing and pulling forces. New J. Phys. 2012, 14, 105025. [Google Scholar] [CrossRef]
- Ma, R.; Laan, L.; Dogterom, M.; Pavin, N.; Jülicher, F. General theory for the mechanics of confined microtubule asters. New J. Phys. 2014, 16, 013018. [Google Scholar] [CrossRef]
- Kuang, X.; Guan, G.; Wong, M.-K.; Chan, L.-Y.; Zhao, Z.; Tang, C.; Zhang, L. Computable early Caenorhabditis elegans embryo with a phase field model. PLoS Comput. Biol. 2022, 18, e1009755. [Google Scholar] [CrossRef]
- Kuang, X.; Guan, G.; Tang, C.; Zhang, L. MorphoSim: An efficient and scalable phase-field framework for accurately simulating multicellular morphologies. npj Syst. Biol. Appl. 2023, 9, 6. [Google Scholar] [CrossRef]
- Fujita, I.; Tanaka, M.; Kanoh, J. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe. PLoS ONE 2012, 7, e49151. [Google Scholar] [CrossRef]
- Honda, H.; Tanemura, M.; Nagai, T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 2004, 226, 439–453. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Morishita, Y. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 90, 052711. [Google Scholar] [CrossRef]
- Dorai, C.; Jain, A.K. Shape spectrum based view grouping and matching of 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1139–1145. [Google Scholar] [CrossRef]
- Zaharia, T.; Preteux, F.J. 3D-shape-based retrieval within the MPEG-7 framework. In Nonlinear Image Processing and Pattern Analysis XII, Proceedings of the Photonics West 2001—Electronic Imaging, San Jose, CA, USA, 20–26 January 2001; Dougherty, E.R., Astola, J.T., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 2001; SPIE: Bellingham, WA, USA, 2001; Volume 4304, pp. 133–145. [Google Scholar]
- Vranić, D.V.; Saupe, D. 3D shape descriptor based on 3D Fourier transform. In Proceedings of the ECMCS- 2001, the 3rd EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services, Budapest, Hungary, 11–13 September 2001; Kálmán, F., Ed.; Scientific Assoc. of Infocommunications: Budapest, Hungary, 2001; pp. 271–274. [Google Scholar]
- Zhang, L.; Da Fonseca, M.J.; Ferreira, A.; e Recuperação, C.R.A. Survey on 3D Shape Descriptor; Technical Report, DecorAR (FCT POSC/EIA/59938/2004); Funda Agao para a Cincia ea Tecnologia: Lisboa, Portugal, 2007; p. 3. [Google Scholar]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar]
- Haftbaradaran Esfahani, P.; Knöll, R. Cell shape: Effects on gene expression and signaling. Biophys. Rev. 2020, 12, 895–901. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, S.X. Mechanics of cell-cell junctions. Biophys. J. 2023, 122, 3354–3368. [Google Scholar] [CrossRef]
- Dent, L.G.; Curry, N.; Sparks, H.; Bousgouni, V.; Maioli, V.; Kumar, S.; Munro, I.; Butera, F.; Jones, I.; Arias-Garcia, M.; et al. Environmentally dependent and independent control of 3D cell shape. Cell Rep. 2024, 43, 114016. [Google Scholar] [CrossRef]
- Bisi, S.; Disanza, A.; Malinverno, C.; Frittoli, E.; Palamidessi, A.; Scita, G. Membrane and actin dynamics interplay at lamellipodia leading edge. Curr. Opin. Cell Biol. 2013, 25, 565–573. [Google Scholar] [CrossRef]
- Yamada, K.M.; Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019, 20, 738–752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.; Chen, Y.; Wang, H.; Ouyang, Q.; Tang, C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. Membranes 2024, 14, 137. https://doi.org/10.3390/membranes14060137
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. Membranes. 2024; 14(6):137. https://doi.org/10.3390/membranes14060137
Chicago/Turabian StyleGuan, Guoye, Yixuan Chen, Hongli Wang, Qi Ouyang, and Chao Tang. 2024. "Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes" Membranes 14, no. 6: 137. https://doi.org/10.3390/membranes14060137
APA StyleGuan, G., Chen, Y., Wang, H., Ouyang, Q., & Tang, C. (2024). Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. Membranes, 14(6), 137. https://doi.org/10.3390/membranes14060137