On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Assumptions
2.2. Membrane Geometry and Solving Environment
2.3. Model Equations
2.3.1. Dimensional Mass Balances and Variable Transformations
2.3.2. Dimensionless Transport Parameter and Reduced Pressure
2.3.3. Dimensionless Mass Balances
2.3.4. Performance Criteria
3. Results
3.1. Modified Pressure Ratio
3.2. Absolute Maximum Permeate Purity
3.3. The Effect of Recovery on the Maximum Purity
3.4. Estimating the Minimum Selectivity for a Desired Purity and Recovery
- Using the analytical solution (Equation (30)), solve for the Sij required to obtain the target xp,i at the specified xr,i,0, and use a ψi > 102. Consider this Sij as Sij,min;
- Use the relationship shown in Figure 5b to identify the multiplication factor for the target Ri (e.g., 2.7 at Ri = 90%, Sij of 102);
- Multiply the Sij/Sij,min factor by Sij,min to obtain the minimum selectivity required to achieve the target xp,i at the target Ri.
3.5. Limiting Pressure Ratios and Asymptotic Purity Zones
3.6. Obtention of the Limiting Selectivity
4. Conclusions
- An ideal membrane separator requires four input variables: the transport parameter, θi, which balances the flow rate with the membrane permeance, the feed mole fraction, xr,i,0, the pressure ratio, ψi, and the ideal selectivity, Sij;
- For the majority of industrial applications, xr,i,0 is a fixed parameter based on the upstream processes or source. Similarly, to reduce waste and meet a target recovery (e.g., carbon capture requiring RCO2 = 90%), θi becomes fixed. Thus, optimization of the purity is accomplished primarily with ψi and Sij;
- xp,i increases with increasing ψi until a maximum is reached at ψi = ca. 102. For ψi > 102, only Sij affects the purity. The required minimum Sij, or Sij,min, to achieve a target xp,i can be obtained by using the analytical solution for xp,i at Ri = 0 and then dividing by a factor obtained from the plot of Sij/Sij,min for Sij vs. Ri (Figure 5b). If the Sij,min is greater than the attainable technology, then the information can provide either new research objective targets or show that a multi-stage separator is the only option for the target purity;
- Because ψi > 102 causes ψ to become very large for low xr,i,0, there exist regimes in which a maximum Sij is observed due to a maximum xp,i limitation. To determine if the desired operating condition has a Sij,max value, the target Ri and xr,i,0 are input into Equation (33) to obtain ψi,lim. If operating at ψi < ψi,lim then a Sij,max exists, but if operating with ψi > ψi,lim then no maximum Sij exists. Sij,max is dependent on xr,i,0, ψi, and Ri, so data must be gathered for the specific xr,i,0 of interest. Yet, as xr,i,0 decreases, the limitation with Sij becomes more important, potentially limiting any reason for further research on increasing Sij.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Am | membrane permeable area |
Ap | cross-sectional area of the permeate |
Ar | cross-sectional area of the retentate |
cp,i | bulk concentration of species i in the permeate |
cr,i | bulk concentration of species i in the retentate |
Ji | flux of species i through the membrane |
Lm | membrane length |
ṅr,i,0 | retentate inlet molar flow rate of species i |
ṅr,i,1 | retentate outlet molar flow rate of species i |
ṅp | permeate outlet total molar flow rate |
ṅp,i | permeate outlet molar flow rate of species i |
Pm | membrane circumference |
Pp | permeate total pressure |
Pr | retentate total pressure |
P0 | standard pressure (100 kPa) |
R | universal gas constant (8.314 J mol−1 K−1) |
Ri | recovery of species i |
rm | membrane radius |
rs | shell radius |
Sij | ideal selectivity of component i vs. j |
Sij,max | maximum selectivity defined as selectivity to obtain 99% of maximum purity |
Sij,min | minimum selectivity for specified purity obtained from solution at zero recovery |
T | feed temperature |
T0 | standard temperature (273.15 K) |
ur,z | retentate axial fluid velocity |
ur,z,0 | feed inlet axial fluid velocity |
up,z | permeate axial fluid velocity |
up,z,0 | sweep inlet axial fluid velocity |
f | feed volumetric flow rate |
s | sweep volumetric flow rate |
xr,i | retentate mole fraction of species i |
xr,i,0 | feed inlet mole fraction of species i |
xp,i | permeate mole fraction of species i (purity of species i at outlet) |
xp,i,0 | sweep inlet mole fraction of species i |
xp,i,max | maximum potential purity obtained from analytical solution at zero recovery |
z | axial position |
ξp,i | impurity fraction in permeate of component i |
ξp,i,error | impurity fraction error between two specified conditions |
φi | permeation constant of component i |
θi | dimensionless transport parameter (modified Péclet number) |
θi,offset | fractional change in the difference of θi between two specified conditions |
ζ | dimensionless axial position along the membrane |
νr,z | dimensionless retentate flow velocity |
νp,z | dimensionless permeate flow velocity |
ψ | reduced pressure ratio |
ψi | modified reduced pressure ratio of component i |
ψi,lim | limiting modified reduced pressure ratio of component i |
References
- Mat, N.C.; Lipscomb, G.G. Membrane Process Optimization for Carbon Capture. Int. J. Greenh. Gas Control 2017, 62, 1–12. [Google Scholar] [CrossRef]
- Ignatusha, P.; Lin, H.; Kapuscinsky, N.; Scoles, L.; Ma, W.; Patarachao, B.; Du, N. Membrane Separation Technology in Direct Air Capture. Membranes 2024, 14, 30. [Google Scholar] [CrossRef]
- Amin, M.; Butt, A.S.; Ahmad, J.; Lee, C.; Azam, S.U.; Mannan, H.A.; Naveed, A.B.; Farooqi, Z.U.R.; Chung, E.; Iqbal, A. Issues and Challenges in Hydrogen Separation Technologies. Energy Rep. 2023, 9, 894–911. [Google Scholar] [CrossRef]
- Roozitalab, A.; Hamidavi, F.; Kargari, A. A Review of Membrane Material for Biogas and Natural Gas Upgrading. Gas Sci. Eng. 2023, 114, 204969. [Google Scholar] [CrossRef]
- Ding, Y. Perspective on Gas Separation Membrane Materials from Process Economics Point of View. Ind. Eng. Chem. Res. 2020, 59, 556–568. [Google Scholar] [CrossRef]
- Iulianelli, A.; Drioli, E. Membrane Engineering: Latest Advancements in Gas Separation and Pre-Treatment Processes, Petrochemical Industry and Refinery, and Future Perspectives in Emerging Applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen Separation and Purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Zamidi Ahmad, M.; Malankowska, M.; Coronas, J. A New Relevant Membrane Application: CO2 Direct Air Capture (DAC). Chem. Eng. J. 2022, 446, 137047. [Google Scholar] [CrossRef]
- Gilassi, S.; Taghavi, S.M.; Rodrigue, D.; Kaliaguine, S. Simulation of Gas Separation Using Partial Element Stage Cut Modeling of Hollow Fiber Membrane Modules. AIChE J. 2018, 64, 1766–1777. [Google Scholar] [CrossRef]
- Brunetti, A.; Drioli, E.; Lee, Y.M.; Barbieri, G. Engineering Evaluation of CO2 Separation by Membrane Gas Separation Systems. J. Membr. Sci. 2014, 454, 305–315. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, S.C.; Bardow, A.; Anthony, J.E.; Boston, A.; Brown, S.; Fennell, P.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon Capture and Storage (CCS): The Way Forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Nekhamkina, O.; Sheintuch, M. Approximate Models of Concentration-Polarization in Pd-Membrane Separators. Fast Numerical Analysis. J. Membr. Sci. 2016, 500, 136–150. [Google Scholar] [CrossRef]
- Caravella, A.; Melone, L.; Sun, Y.; Brunetti, A.; Drioli, E.; Barbieri, G. Concentration Polarization Distribution along Pd-Based Membrane Reactors: A Modelling Approach Applied to Water-Gas Shift. Int. J. Hydrogen Energy 2016, 41, 2660–2670. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Movick, W.J.; Ikeda, A.; Hasegawa, Y.; Wolden, C.A.; Way, J.D. Modeling of an Ammonia Decomposition Membrane Reactor Including Purity with Complex Geometry and Non-Isothermal Behavior. J. Membr. Sci. 2024, 693, 122345. [Google Scholar] [CrossRef]
- Chen, W.-H.; Syu, W.-Z.; Hung, C.-I.; Lin, Y.-L.; Yang, C.-C. Influences of Geometry and Flow Pattern on Hydrogen Separation in a Pd-Based Membrane Tube. Int. J. Hydrogen Energy 2013, 38, 1145–1156. [Google Scholar] [CrossRef]
- Alkhamis, N.; Anqi, A.E.; Oztekin, A. Computational Study of Gas Separation Using a Hollow Fiber Membrane. Int. J. Heat Mass Transf. 2015, 89, 749–759. [Google Scholar] [CrossRef]
- Alkhamis, N.; Oztekin, D.E.; Anqi, A.E.; Alsaiari, A.; Oztekin, A. Numerical Study of Gas Separation Using a Membrane. Int. J. Heat Mass Transf. 2015, 80, 835–843. [Google Scholar] [CrossRef]
- Alrehili, M.; Usta, M.; Alkhamis, N.; Anqi, A.E.; Oztekin, A. Flows Past Arrays of Hollow Fiber Membranes—Gas Separation. Int. J. Heat Mass Transf. 2016, 97, 400–411. [Google Scholar] [CrossRef]
- DeJaco, R.F.; Loprete, K.; Pennisi, K.; Majumdar, S.; Siepmann, J.I.; Daoutidis, P.; Murnen, H.; Tsapatsis, M. Modeling and Simulation of Gas Separations with Spiral-Wound Membranes. AIChE J. 2020, 66, e16274. [Google Scholar] [CrossRef]
- Kancherla, R.; Nazia, S.; Kalyani, S.; Sridhar, S. Modeling and Simulation for Design and Analysis of Membrane-Based Separation Processes. Comput. Chem. Eng. 2021, 148, 107258. [Google Scholar] [CrossRef]
- Foo, K.; Liang, Y.Y.; Goh, P.S.; Fletcher, D.F. Computational Fluid Dynamics Simulations of Membrane Gas Separation: Overview, Challenges and Future Perspectives. Chem. Eng. Res. Des. 2023, 191, 127–140. [Google Scholar] [CrossRef]
- Tessendorf, S.; Gani, R.; Michelsen, M.L. Modeling, Simulation and Optimization of Membrane-Based Gas Separation Systems. Chem. Eng. Sci. 1999, 54, 943–955. [Google Scholar] [CrossRef]
- Ahmad, F.; Lau, K.K.; Shariff, A.M.; Murshid, G. Process Simulation and Optimal Design of Membrane Separation System for CO2 Capture from Natural Gas. Comput. Chem. Eng. 2012, 36, 119–128. [Google Scholar] [CrossRef]
- Yuan, M.; Narakornpijit, K.; Haghpanah, R.; Wilcox, J. Consideration of a Nitrogen-Selective Membrane for Postcombustion Carbon Capture through Process Modeling and Optimization. J. Membr. Sci. 2014, 465, 177–184. [Google Scholar] [CrossRef]
- Zarca, R.; Ortiz, A.; Gorri, D.; Biegler, L.T.; Ortiz, I. Optimization of Multistage Olefin/Paraffin Membrane Separation Processes through Rigorous Modeling. AIChE J. 2019, 65, e16588. [Google Scholar] [CrossRef]
- Ramírez-Santos, Á.A.; Bozorg, M.; Addis, B.; Piccialli, V.; Castel, C.; Favre, E. Optimization of Multistage Membrane Gas Separation Processes. Example of Application to CO2 Capture from Blast Furnace Gas. J. Membr. Sci. 2018, 566, 346–366. [Google Scholar] [CrossRef]
- He, X.; Fu, C.; Hägg, M.-B. Membrane System Design and Process Feasibility Analysis for CO2 Capture from Flue Gas with a Fixed-Site-Carrier Membrane. Chem. Eng. J. 2015, 268, 1–9. [Google Scholar] [CrossRef]
- Lock, S.S.M.; Lau, K.K.; Ahmad, F.; Shariff, A.M. Modeling, Simulation and Economic Analysis of CO2 Capture from Natural Gas Using Cocurrent, Countercurrent and Radial Crossflow Hollow Fiber Membrane. Int. J. Greenh. Gas Control 2015, 36, 114–134. [Google Scholar] [CrossRef]
- Taifan, G.S.P.; Maravelias, C.T. Generalized Optimization-Based Synthesis of Membrane Systems for Multicomponent Gas Mixture Separation. Chem. Eng. Sci. 2022, 252, 117482. [Google Scholar] [CrossRef]
- Kaldis, S.P.; Kapantaidakis, G.C.; Papadopoulos, T.I.; Sakellaropoulos, G.P. Simulation of Binary Gas Separation in Hollow Fiber Asymmetric Membranes by Orthogonal Collocation. J. Membr. Sci. 1998, 142, 43–59. [Google Scholar] [CrossRef]
- Huang, Y.; Merkel, T.C.; Baker, R.W. Pressure Ratio and Its Impact on Membrane Gas Separation Processes. J. Membr. Sci. 2014, 463, 33–40. [Google Scholar] [CrossRef]
- Lundin, S.-T.B.; Miklautz, M.; Ikeda, A.; Hasegawa, Y.; Ted Oyama, S. Criteria for the Use of 1D and 2D Models in Catalytic Membrane Reactor Modeling. Chem. Eng. J. 2023, 477, 147007. [Google Scholar] [CrossRef]
- Gómez-García, M.á.; Dobrosz-Gómez, I.; Fontalvo, J.; Rynkowski, J.M. Membrane Reactor Design Guidelines for Ammonia Decomposition. Catal. Today 2012, 191, 165–168. [Google Scholar] [CrossRef]
- Prasetya, N.; Himma, N.F.; Sutrisna, P.D.; Wenten, I.G.; Ladewig, B.P. A Review on Emerging Organic-Containing Microporous Material Membranes for Carbon Capture and Separation. Chem. Eng. J. 2020, 391, 123575. [Google Scholar] [CrossRef]
- Tong, Z.; Sekizkardes, A. Recent Developments in High-Performance Membranes for CO2 Separation. Membranes 2021, 11, 156. [Google Scholar] [CrossRef]
- Han, Y.; Ho, W.S.W. Polymeric Membranes for CO2 Separation and Capture. J. Membr. Sci. 2021, 628, 119244. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Keener, T.C.; Yang, Y.J. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-Fired Power Plants. J. Air Waste Manag. Assoc. 2009, 59, 725–732. [Google Scholar] [CrossRef]
- Hassan, N.S.; Jalil, A.A.; Bahari, M.B.; Khusnun, N.F.; Aldeen, E.M.S.; Mim, R.S.; Firmansyah, M.L.; Rajendran, S.; Mukti, R.R.; Andika, R.; et al. A Comprehensive Review on Zeolite-Based Mixed Matrix Membranes for CO2/CH2 Separation. Chemosphere 2023, 314, 137709. [Google Scholar] [CrossRef]
- Wang, H.; Lundin, S.-T.B.; Takanabe, K.; Ted Oyama, S. Synthesis of Size-Controlled Boehmite Sols: Application in High-Performance Hydrogen-Selective Ceramic Membranes. J. Mater. Chem. A 2022, 10, 12869–12881. [Google Scholar] [CrossRef]
Required Input | Variable | Unit | |
---|---|---|---|
Geometry | Membrane length | Lm | m |
Membrane radius | rm | m | |
Shell radius | rs | m | |
Membrane | Permeation rate | φi | mol m−2 s−1 Pa−1 |
Ideal selectivity | Sij | - | |
Conditions | Feed rate | f | m3 s−1 |
Feed composition | xr,i,0 | - | |
Sweep rate | s | m3 s−1 | |
Sweep composition | xp,i,0 | - | |
Reactor pressure | Pr | Pa | |
Permeate pressure | Pp | Pa | |
Temperature | T | K |
Required Input | Variable | Unit | |
---|---|---|---|
Dimensionless Parameters | Ideal selectivity | Sij | - |
Feed composition | xr,i,0 | - | |
Transport parameter | θi | - | |
Pressure ratio | ψ | - |
Target Purity (xp,i) | Required Selectivity (Sij) | ||
---|---|---|---|
Ri = 0% | Ri = 90% | Ri = 95% | |
70% | 21 | 57 | 72 |
90% | 89 | 240 | 300 |
99% | 950 | 2600 | 3200 |
99.9% | 5000 | 14,000 | 17,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundin, S.-T.B.; Ikeda, A.; Hasegawa, Y. On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator. Membranes 2024, 14, 143. https://doi.org/10.3390/membranes14060143
Lundin S-TB, Ikeda A, Hasegawa Y. On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator. Membranes. 2024; 14(6):143. https://doi.org/10.3390/membranes14060143
Chicago/Turabian StyleLundin, Sean-Thomas B., Ayumi Ikeda, and Yasuhisa Hasegawa. 2024. "On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator" Membranes 14, no. 6: 143. https://doi.org/10.3390/membranes14060143
APA StyleLundin, S. -T. B., Ikeda, A., & Hasegawa, Y. (2024). On the Maximum Obtainable Purity and Resultant Maximum Useful Membrane Selectivity of a Membrane Separator. Membranes, 14(6), 143. https://doi.org/10.3390/membranes14060143