Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers
Abstract
:1. Introduction
2. The Need to Quantitatively Predict the Permeability from a Compound’s Chemical Structure
3. Importance of the Consistency and Accuracy of Permeability Data to the Performance of QSPRs Models
3.1. QSPRs Derived from In Vivo Datasets
3.2. QSPRs Derived from Ex Vivo and In Vitro Permeability Datasets
3.2.1. How Is the Performance of QSPRs in Predicting Caco-2 Papp Values
3.2.2. How Caco-2 Papp Data Is Selected and Compiled to Construct the QSPRs Models
4. Experimental Variability of Caco-2 Papp Values within Laboratories and between Laboratories
4.1. Assessing the Magnitude of Variability within Laboratories
4.2. Assessing the Magnitude of Variability between Laboratories
5. Analysis of the Sources of Variability and Their Impact on Papp Values
5.1. Sources of Variability Related to the Cell Culture
5.1.1. Heterogeneity of the Caco-2 Cells
5.1.2. Cell Source
5.1.3. Variations in Cell Culture Protocols
5.1.4. Culture Media Composition
5.1.5. Number of Passages
5.1.6. Seeding Density
5.1.7. Days Post-Seeding on Inserts
5.1.8. Characteristics of the Membrane Support: Material, Coating, Diameter, and Pore Size
5.2. Sources of Variability Related to the Permeability Experiments
5.2.1. Composition of the Transport Media
5.2.2. Addition of Surfactants, Amphiphilic Polymers, and Co-Solvents
5.2.3. Addition of Bovine Serum Albumin (BSA)
5.2.4. Selection of the Transport Media pH Value
5.2.5. Concentration-Dependent Effects
5.2.6. Unstirred Water Layer (UWL) and Stirring Conditions
5.2.7. Some Additional Considerations
6. Strategies for Reducing the Variability of Caco-2 Permeability Data
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borah, P.; Hazarika, S.; Deka, S.; Venugopala, K.N.; Nair, A.B.; Attimarad, M.; Sreeharsha, N.; Mailavaram, R.P. Application of Advanced Technologies in Natural Product Research: A Review with Special Emphasis on ADMET Profiling. Curr. Drug Metab. 2020, 21, 751–767. [Google Scholar] [CrossRef]
- Di, L.; Artursson, P.; Avdeef, A.; Benet, L.Z.; Houston, J.B.; Kansy, M.; Kerns, E.H.; Lennernas, H.; Smith, D.A.; Sugano, K. The Critical Role of Passive Permeability in Designing Successful Drugs. Chemmedchem 2020, 15, 1862–1874. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, P.; Bergstrom, C.A.S.; Luthman, K.; Artursson, P. Theoretical predictions of drug absorption in drug discovery and development. Clin. Pharmacokinet. 2002, 41, 877–899. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov. 2010, 9, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Samanta, P.; Wang, Y.; Fuladi, S.; Zou, J.; Li, Y.; Shen, L.; Weber, C.; Khalili-Araghi, F. Molecular determination of claudin-15 organization and channel selectivity. J. Gen. Physiol. 2018, 150, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Lingaraju, A.; Long, T.M.; Wang, Y.; Austin, J.R.; Turner, J.R. Conceptual barriers to understanding physical barriers. Semin. Cell Dev. Biol. 2015, 42, 13–21. [Google Scholar] [CrossRef]
- Günzel, D.; Yu, A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef]
- Van Itallie, C.M.; Fanning, A.S.; Anderson, J.M. Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am. J. Physiol. Ren. Physiol. 2003, 285, F1078–F1084. [Google Scholar] [CrossRef] [PubMed]
- Pauletti, G.M.; Okumu, F.W.; Borchardt, R.T. Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharm. Res. 1997, 14, 164–168. [Google Scholar] [CrossRef]
- Adson, A.; Raub, T.J.; Burton, P.S.; Barsuhn, C.L.; Hilgers, A.R.; Audus, K.L.; Ho, N.F.H. Quantitative Approaches to Delineate Paracellular Diffusion in Cultured Epithelial-Cell Monolayers. J. Pharm. Sci. 1994, 83, 1529–1536. [Google Scholar] [CrossRef]
- Mazzanti, L.; Ha-Duong, T. Understanding Passive Membrane Permeation of Peptides: Physical Models and Sampling Methods Compared. Int. J. Mol. Sci. 2023, 24, 5021. [Google Scholar] [CrossRef]
- Filipe, H.A.L.; Loura, L.M.S.; Moreno, M.J. Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study. Membranes 2023, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Benmameri, M.; Chantemargue, B.; Humeau, A.; Trouillas, P.; Fabre, G. MemCross: Accelerated Weight Histogram method to assess membrane permeability. Biochim. Biophys. Acta. Biomembr. 2023, 1865, 184120. [Google Scholar] [CrossRef] [PubMed]
- Venable, R.M.; Krämer, A.; Pastor, R.W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119, 5954–5997. [Google Scholar] [CrossRef]
- Hannesschlaeger, C.; Horner, A.; Pohl, P. Intrinsic Membrane Permeability to Small Molecules. Chem. Rev. 2019, 119, 5922–5953. [Google Scholar] [CrossRef]
- Missner, A.; Pohl, P. 110 Years of the Meyer-Overton Rule: Predicting Membrane Permeability of Gases and Other Small Compounds. Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 2009, 10, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Krämer, S.D.; Lombardi, D.; Primorac, A.; Thomae, A.V.; Wunderli-Allenspach, H. Lipid-Bilayer Permeation of Drug-Like Compounds. Chem. Biodivers. 2009, 6, 1900–1916. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ermondi, G.; Jimenez, D.G.; Rossi Sebastiano, M.; Kihlberg, J.; Caron, G. Conformational Sampling Deciphers the Chameleonic Properties of a VHL-Based Degrader. Pharmaceutics 2023, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Wenlock, M.; Barton, P.; Ritzén, A. Prediction of Chameleonic Efficiency. ChemMedChem 2021, 16, 2669–2685. [Google Scholar] [CrossRef]
- Matsson, P.; Doak, B.C.; Over, B.; Kihlberg, J. Cell permeability beyond the rule of 5. Adv. Drug Deliv. Rev. 2016, 101, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.S.; Sindhikara, D.; Jacobson, M.P. Simple Predictive Models of Passive Membrane Permeability Incorporating Size-Dependent Membrane-Water Partition. J. Chem. Inf. Model. 2016, 56, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, C.R.; Mathiowetz, A.M.; Shalaeva, M.; Goetz, G.; Liras, S. Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation. J. Chem. Inf. Model. 2012, 52, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Sugita, M.; Sugiyama, S.; Fujie, T.; Yoshikawa, Y.; Yanagisawa, K.; Ohue, M.; Akiyama, Y. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. J. Chem. Inf. Model. 2021, 61, 3681–3695. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.C.; Filipe, H.A.L.; Reis, R.L.; Prates Ramalho, J.P.; Coreta-Gomes, F.; Moreno, M.J.; Loura, L.M.S. Interaction of Bile Salts with Lipid Bilayers: An Atomistic Molecular Dynamics Study. Front. Physiol. 2019, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Lomize, A.L.; Pogozheva, I.D. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J. Chem. Inf. Model. 2019, 59, 3198–3213. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.E.; Shrestha, R.; Webb, L.J.; Elber, R. Membrane permeation of a peptide: It is better to be positive. J. Phys. Chem. B 2015, 119, 6412–6420. [Google Scholar] [CrossRef] [PubMed]
- Coreta-Gomes, F.M.; Martins, P.A.T.; Velazquez-Campoy, A.; Vaz, W.L.C.; Geraldes, C.F.G.; Moreno, M.J. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry. Langmuir 2015, 31, 9097–9104. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.J.; Salvador, A. Ligand’s Partition to the Lipid Bilayer Should Be Accounted for When Estimating Their Affinity to Proteins. Molecules 2023, 28, 3136. [Google Scholar] [CrossRef]
- Moreno, M.J.; Filipe, H.A.L.; Cunha, S.V.P.; Ramos, C.V.; Martins, P.A.T.; Abel, B.; Loura, L.M.S.; Ambudkar, S.V. Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023, 15, 174. [Google Scholar] [CrossRef]
- Moreno, M.J.; Loura, L.M.S.; Martins, J.; Salvador, A.; Velazquez-Campoy, A. Analysis of the Equilibrium Distribution of Ligands in Heterogeneous Media-Approaches and Pitfalls. Int. J. Mol. Sci. 2022, 23, 9757. [Google Scholar] [CrossRef]
- Heerklotz, H.; Keller, S. How membrane partitioning modulates receptor activation: Parallel versus serial effects of hydrophobic ligands. Biophys. J. 2013, 105, 2607–2610. [Google Scholar] [CrossRef]
- Seelig, A.; Li-Blatter, X. P-glycoprotein (ABCB1)-weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport. Cancer Drug Resist. 2023, 6, 1–29. [Google Scholar] [CrossRef]
- Pelkmans, L.; Helenius, A. Endocytosis via caveolae. Traffic 2002, 3, 311–320. [Google Scholar] [CrossRef]
- Chai, G.H.; Xu, Y.; Chen, S.Q.; Cheng, B.; Hu, F.Q.; You, J.; Du, Y.Z.; Yuan, H. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology. ACS Appl. Mater. Interfaces 2016, 8, 5929–5940. [Google Scholar] [CrossRef]
- Neves, A.R.; Queiroz, J.F.; Costa Lima, S.A.; Figueiredo, F.; Fernandes, R.; Reis, S. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. J. Colloid Interface Sci. 2016, 463, 258–265. [Google Scholar] [CrossRef]
- Mäger, I.; Meyer, A.H.; Li, J.; Lenter, M.; Hildebrandt, T.; Leparc, G.; Wood, M.J.A. Targeting blood-brain-barrier transcytosis-perspectives for drug delivery. Neuropharmacology 2017, 120, 4–7. [Google Scholar] [CrossRef]
- Thuenauer, R.; Müller, S.K.; Römer, W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin. Drug Deliv. 2017, 14, 341–351. [Google Scholar] [CrossRef]
- Knyazev, E.; Nersisyan, S.; Tonevitsky, A. Endocytosis and Transcytosis of SARS-CoV-2 across the Intestinal Epithelium and Other Tissue Barriers. Front. Immunol. 2021, 12, 636966. [Google Scholar] [CrossRef]
- Choi, E.S.; Shusta, E.V. Strategies to identify, engineer, and validate antibodies targeting blood-brain barrier receptor-mediated transcytosis systems for CNS drug delivery. Expert Opin. Drug Deliv. 2023, 20, 1789–1800. [Google Scholar] [CrossRef]
- Fortuna, A.; Alves, G.; Falcão, A. The importance of permeability screening in drug discovery process: PAMPA, Caco-2 and rat everted gut assays. Curr. Top. Pharmacol. 2007, 11, 63–86. [Google Scholar]
- Matter, H.; Schmider, W. In-Silico ADME Modeling. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Vogel, H.G., Maas, J., Hock, F.J., Mayer, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1005–1052. [Google Scholar] [CrossRef]
- Beresford, A.P.; Selick, H.E.; Tarbit, M.H. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov. Today 2002, 7, 109–116. [Google Scholar]
- van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Kramer, S.D.; Aschmann, H.E.; Hatibovic, M.; Hermann, K.F.; Neuhaus, C.S.; Brunner, C.; Belli, S. When barriers ignore the "rule-of-five". Adv. Drug Deliv. Rev. 2016, 101, 62–74. [Google Scholar] [CrossRef]
- Kamenik, A.S.; Kraml, J.; Hofer, F.; Waibl, F.; Quoika, P.K.; Kahler, U.; Schauperl, M.; Liedl, K.R. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. J. Chem. Inf. Model. 2020, 60, 3508–3517. [Google Scholar] [CrossRef]
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef]
- Over, B.; Matsson, P.; Tyrchan, C.; Artursson, P.; Doak, B.C.; Foley, M.A.; Hilgendorf, C.; Johnston, S.E.; Lee, M.D.; Lewis, R.J.; et al. Structural and conformational determinants of macrocycle cell permeability. Nat. Chem. Biol. 2016, 12, 1065–1074. [Google Scholar] [CrossRef]
- Bockus, A.T.; Lexa, K.W.; Pye, C.R.; Kalgutkar, A.S.; Gardner, J.W.; Hund, K.C.R.; Hewitt, W.M.; Schwochert, J.A.; Glassey, E.; Price, D.A.; et al. Probing the Physicochemical Boundaries of Cell Permeability and Oral Bioavailability in Lipophilic Macrocycles Inspired by Natural Products. J. Med. Chem. 2015, 58, 4581–4589. [Google Scholar] [CrossRef]
- McKerrow, J.H.; Lipinski, C.A. The rule of five should not impede anti-parasitic drug development. Int. J. Parasitol.-Drugs Drug Resist. 2017, 7, 248–249. [Google Scholar] [CrossRef]
- Hermann, K.F.; Neuhaus, C.S.; Micallef, V.; Wagner, B.; Hatibovic, M.; Aschmann, H.E.; Paech, F.; Alvarez-Sanchez, R.; Kramer, S.D.; Belli, S. Kinetics of lipid bilayer permeation of a series of ionisable drugs and their correlation with human transporter-independent intestinal permeability. Eur. J. Pharm. Sci. 2017, 104, 150–161. [Google Scholar] [CrossRef]
- Muthas, D.; Boyer, S.; Hasselgren, C. A critical assessment of modeling safety-related drug attrition. MedChemComm 2013, 4, 1058–1065. [Google Scholar] [CrossRef]
- Schneckener, S.; Grimbs, S.; Hey, J.; Menz, S.; Osmers, M.; Schaper, S.; Hillisch, A.; Goller, A.H. Prediction of Oral Bioavailability in Rats: Transferring Insights from in Vitro Correlations to (Deep) Machine Learning Models Using in Silico Model Outputs and Chemical Structure Parameters. J. Chem. Inf. Model. 2019, 59, 4893–4905. [Google Scholar] [CrossRef]
- Wu, F.X.; Zhou, Y.Q.; Li, L.H.; Shen, X.H.; Chen, G.Y.; Wang, X.Q.; Liang, X.Y.; Tan, M.Y.; Huang, Z.N. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef]
- Volkova, T.V.; Perlovich, G.L. Permeability of New Antifungal Fluconazole Derivatives through a Lipophilic Membrane: Experiment and Modeling. Molecules 2023, 28, 389. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Moss, G.P.; Dearden, J.C.; Patel, H.; Cronin, M.T.D. Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol. Vitr. 2002, 16, 299–317. [Google Scholar] [CrossRef]
- Digiesi, V.; Roque, V.D.; Vallaro, M.; Caron, G.; Ermondi, G. Permeability prediction in the beyond-Rule-of 5 chemical space: Focus on cyclic hexapeptides. Eur. J. Pharm. Biopharm. 2021, 165, 259–270. [Google Scholar] [CrossRef]
- Oja, M.; Maran, U. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds. SAR QSAR Environ. Res. 2015, 26, 701–719. [Google Scholar] [CrossRef]
- Refsgaard, H.H.F.; Jensen, B.F.; Brockhoff, P.B.; Padkjær, S.B.; Guldbrandt, M.; Christensen, M.S. In silico prediction of membrane permeability from calculated molecular parameters. J. Med. Chem. 2005, 48, 805–811. [Google Scholar] [CrossRef]
- Filipe, H.A.L.; Salvador, A.; Silvestre, J.M.; Vaz, W.L.C.; Moreno, M.J. Beyond Overton’s Rule: Quantitative Modeling of Passive Permeation through Tight Cell Monolayers. Mol. Phar. 2014, 11, 3696–3706. [Google Scholar] [CrossRef]
- Zhang, S.; Thompson, J.P.; Xia, J.C.; Bogetti, A.T.; York, F.; Skillman, A.G.; Chong, L.T.; LeBard, D.N. Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a Weighted Ensemble of Trajectories. J. Chem. Inf. Model. 2022, 62, 1891–1904. [Google Scholar] [CrossRef]
- Rokitskaya, T.I.; Aleksandrova, E.V.; Korshunova, G.A.; Khailova, L.S.; Tashlitsky, V.N.; Luzhkov, V.B.; Antonenko, Y.N. Membrane Permeability of Modified Butyltriphenylphosphonium Cations. J. Phys. Chem. B 2022, 126, 412–422. [Google Scholar] [CrossRef]
- Nagle, J.F.; Mathai, J.C.; Zeidel, M.L.; Tristram-Nagle, S. Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 2008, 131, 77–85. [Google Scholar] [CrossRef]
- Oruç, T.; Küçük, S.E.; Sezer, D. Lipid bilayer permeation of aliphatic amine and carboxylic acid drugs: Rates of insertion, translocation and dissociation from MD simulations. Phys. Chem. Chem. Phys. 2016, 18, 24511–24525. [Google Scholar] [CrossRef]
- Dickson, C.J.; Hornak, V.; Pearlstein, R.A.; Duca, J.S. Structure-Kinetic Relationships of Passive Membrane Permeation from Multiscale Modeling. J. Am. Chem. Soc. 2017, 139, 442–452. [Google Scholar] [CrossRef]
- Coimbra, J.T.S.; Feghali, R.; Ribeiro, R.P.; Ramos, M.J.; Fernandes, P.A. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv. 2021, 11, 899–908. [Google Scholar] [CrossRef]
- Swift, R.V.; Amaro, R.E. Back to the Future: Can Physical Models of Passive Membrane Permeability Help Reduce Drug Candidate Attrition and Move Us Beyond QSPR? Chem. Biol. Drug Des. 2013, 81, 61–71. [Google Scholar] [CrossRef]
- Brocke, S.A.; Degen, A.; MacKerell, A.D.; Dutagaci, B.; Feig, M. Prediction of Membrane Permeation of Drug Molecules by Combining an Implicit Membrane Model with Machine Learning. J. Chem. Inf. Model. 2019, 59, 1147–1162. [Google Scholar] [CrossRef]
- Sun, H.M. Predicting ADMET Properties by Projecting onto Chemical Space-Benefits and Pitfalls. Curr. Comput.-Aided Drug Des. 2005, 1, 179–193. [Google Scholar] [CrossRef]
- Thummel, K.; Kunze, K.; Shen, D. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. In Advanced Drug Delivery Reviews; Elsevier: Amsterdam, The Netherlands, 1997; Volume 27, pp. 99–127. [Google Scholar]
- Stuurman, F.; Nuijen, B.; Beijnen, J.; Schellens, J. Oral Anticancer Drugs: Mechanisms of Low Bioavailability and Strategies for Improvement. In Clinical Pharmacokinetics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 52, pp. 399–414. [Google Scholar]
- Cabrera-Pérez, M.; Pham-The, H. Computational modeling of human oral bioavailability: What will be next? Expert Opin. Drug Discov. 2018, 13, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, F.; Topliss, J.G. QSAR model for drug human oral bioavailability. J. Med. Chem. 2000, 43, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Pérez, M.A.; Pham-The, H.; Bermejo, M.; Alvarez, I.G.; Alvarez, M.G.; Garrigues, T.M. QSPR in Oral Bioavailability: Specificity or Integrality? Mini-Rev. Med. Chem. 2012, 12, 534–550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Wang, J.M.; Yu, H.D.; Li, Y.Y.; Hou, T.J. Recent Developments of In Silico Predictions of Oral Bioavailability. Comb. Chem. High. Throughput Screen. 2011, 14, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.V.; Glass, B.D.; Agatonovic-Kustrin, S. Prediction of drug bioavailability based on molecular structure. Anal. Chim. Acta 2003, 485, 89–102. [Google Scholar] [CrossRef]
- Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME Evaluation in Drug Discovery. 9. Prediction of Oral Bioavailability in Humans Based on Molecular Properties and Structural Fingerprints. In Molecular Pharmaceutics; ACS Publications: Washington, DC, USA, 2011; Volume 8, pp. 841–851. [Google Scholar]
- Maeda, K. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts. Drug Metab. Dispos. 2023, 51, 1136–1144. [Google Scholar] [CrossRef]
- Garg, R.; Garg, A. A Comprehensive Review on Recent Advances and Considerations for the Selection of Cell-based. Curr. Drug Deliv. 2023, 20, 526–544. [Google Scholar] [CrossRef] [PubMed]
- Youhanna, S.; Lauschke, V.M. The Past, Present and Future of Intestinal In Vitro Cell Systems for Drug Absorption Studies. J. Pharm. Sci. 2021, 110, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Michiba, K.; Maeda, K.; Kurimori, K.; Enomoto, T.; Shimomura, O.; Takeuchi, T.; Nishiyama, H.; Oda, T.; Kusuhara, H. Characterization of the Human Intestinal Drug Transport with Ussing Chamber System Incorporating Freshly Isolated Human Jejunum. Drug Metab. Dispos. 2021, 49, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Lennernäs, H.; Nylander, S.; Ungell, A.L. Jejunal permeability: A comparison between the ussing chamber technique and the single-pass perfusion in humans. Pharm. Res. 1997, 14, 667–671. [Google Scholar] [CrossRef]
- Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 1998, 41, 1007–1010. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [Google Scholar] [CrossRef]
- Diamond, J.M.; Katz, Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membr. Biol. 1974, 17, 121–154. [Google Scholar] [CrossRef]
- Klopman, G.; Stefan, L.R.; Saiakhov, R.D. ADME evaluation 2. A computer model for the prediction of intestinal absorption in humans. Eur. J. Pharm. Sci. 2002, 17, 253–263. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J. Chem. Inf. Model. 2007, 47, 460–463. [Google Scholar] [CrossRef]
- Eyer, K.; Paech, F.; Schuler, F.; Kuhn, P.; Kissner, R.; Belli, S.; Dittrich, P.S.; Krämer, S.D. A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer. J. Control. Release 2014, 173, 102–109. [Google Scholar] [CrossRef]
- Gabba, M.; Frallicciardi, J.; van’t Klooster, J.; Henderson, R.; Syga, Ł.; Mans, R.; van Maris, A.J.A.; Poolman, B. Weak Acid Permeation in Synthetic Lipid Vesicles and Across the Yeast Plasma Membrane. Biophys. J. 2020, 118, 422–434. [Google Scholar] [CrossRef]
- Frallicciardi, J.; Melcr, J.; Siginou, P.; Marrink, S.J.; Poolman, B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 2022, 13, 1605. [Google Scholar] [CrossRef]
- Sharifian Gh, M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol. Pharm. 2021, 18, 2122–2141. [Google Scholar] [CrossRef]
- Schaich, M.; Cama, J.; Al Nahas, K.; Sobota, D.; Sleath, H.; Jahnke, K.; Deshpande, S.; Dekker, C.; Keyser, U.F. An Integrated Microfluidic Platform for Quantifying Drug Permeation across Biomimetic Vesicle Membranes. Mol. Pharm. 2019, 16, 2494–2501. [Google Scholar] [CrossRef]
- Sarmento, B.; Andrade, F.; da Silva, S.B.; Rodrigues, F.; das Neves, J.; Ferreira, D. Cell-based in vitro models for predicting drug permeability. Expert Opin. Drug Metab. Toxicol. 2012, 8, 607–621. [Google Scholar] [CrossRef]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Pinto, M.; Robineleon, S.; Appay, M.D.; Kedinger, M.; Triadou, N.; Dussaulx, E.; Lacroix, B.; Simonassmann, P.; Haffen, K.; Fogh, J.; et al. Enterocyte-like differentiation and polarization of the human-colon carcinoma cell-line Caco-2 in culture. Biol. Cell 1983, 47, 323–330. [Google Scholar]
- Balimane, P.V.; Chong, S. Cell culture-based models for intestinal permeability: A critique. Drug Discov. Today 2005, 10, 335–343. [Google Scholar] [CrossRef]
- Volpe, D.A. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opin. Drug Discov. 2020, 15, 539–549. [Google Scholar] [CrossRef]
- Gartzke, D.; Fricker, G. Establishment of Optimized MDCK Cell Lines for Reliable Efflux Transport Studies. J. Pharm. Sci. 2014, 103, 1298–1304. [Google Scholar] [CrossRef]
- Harwood, M.D.; Zettl, K.; Weinheimer, M.; Pilla-Reddy, V.; Shen, H.; Jacobs, F.; Chu, X.Y.; Huth, F.; Nakakariya, M.; Chothe, P.P.; et al. Interlaboratory Variability in the Madin-Darby Canine Kidney Cell Proteome. Mol. Pharm. 2023, 20, 3505–3518. [Google Scholar] [CrossRef]
- Hidalgo, I.J. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem. 2001, 1, 385–401. [Google Scholar] [CrossRef]
- Hämmerle, S.P.; Rothen-Rutishauser, B.; Krämer, S.D.; Günthert, M.; Wunderli-Allenspach, H. P-glycoprotein in cell cultures: A combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 2000, 12, 69–77. [Google Scholar] [CrossRef]
- Pastan, I.; Gottesman, M.M.; Ueda, K.; Lovelace, E.; Rutherford, A.V.; Willingham, M.C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of p-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 1988, 85, 4486–4490. [Google Scholar] [CrossRef]
- Veszelka, S.; Tóth, A.; Walter, F.R.; Tóth, A.E.; Gróf, I.; Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; et al. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model with Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Front. Mol. Neurosci. 2018, 11, 166. [Google Scholar] [CrossRef]
- Jin, X.; Thu-Lan, L.; Reese, N.; Gaona, H.; Collazo-Velez, V.; Chau, V.; Potter, B.; Sousa, J.C.; Olmeda, R.; Li, Q.; et al. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J. Pharmacol. Toxicol. Methods 2014, 70, 188–194. [Google Scholar] [CrossRef]
- Bicker, J.; Alves, G.; Fortuna, A.; Soares-da-Silva, P.; Falcão, A. In vitro assessment of the interactions of dopamine β-hydroxylase inhibitors with human P-glycoprotein and Breast Cancer Resistance Protein. Eur. J. Pharm. Sci. 2018, 117, 35–40. [Google Scholar] [CrossRef]
- Mease, K.; Sane, R.; Podila, L.; Taub, M.E. Differential Selectivity of Efflux Transporter Inhibitors in Caco-2 and MDCK-MDR1 Monolayers: A Strategy to Assess the Interaction of a New Chemical Entity with P-gp, BCRP, and MRP2. J. Pharm. Sci. 2012, 101, 1888–1897. [Google Scholar] [CrossRef]
- Tang, F.X.; Horie, K.; Borchardt, R.T. Are MDCK cells transfected with the Human MDR1 gene a good model of the human intestinal mucosa? Pharm. Res. 2002, 19, 765–772. [Google Scholar] [CrossRef]
- Putnam, W.S.; Ramanathan, S.; Pan, L.; Takahashi, L.H.; Benet, L.Z. Functional characterization of monocarboxylic acid, large neutral amino acid, bile acid and peptide transporters, and P-glycoprotein in MDCK and Caco-2 cells. J. Pharm. Sci. 2002, 91, 2622–2635. [Google Scholar] [CrossRef]
- Chu, X.Y.; Bleasby, K.; Evers, R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin. Drug Metab. Toxicol. 2013, 9, 237–252. [Google Scholar] [CrossRef]
- Hellinger, E.; Veszelka, S.; Toth, A.E.; Walter, F.; Kittel, A.; Bakk, M.L.; Tihanyi, K.; Hada, V.; Nakagawa, S.; Thuy, D.H.D.; et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur. J. Pharm. Biopharm. 2012, 82, 340–351. [Google Scholar] [CrossRef]
- Tokuda, S.; Furuse, M. Claudin-2 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Claudin-2 Independently Determines the Leaky Property of Tight Junctions in MDCK Cells. PLoS ONE 2015, 10, e0119869. [Google Scholar] [CrossRef]
- Praça, C.; Rosa, S.; Sevin, E.; Cecchelli, R.; Dehouck, M.; Ferreira, L. Derivation of Brain Capillary-like Endothelial Cells from Human Pluripotent Stem Cell-Derived Endothelial Progenitor Cells. Stem Cell Rep. 2019, 13, 599–611. [Google Scholar] [CrossRef]
- Geldenhuys, W.; Mohammad, A.; Adkins, C.; Lockman, P. Molecular determinants of blood-brain barrier permeation. Ther. Deliv. 2015, 6, 961–971. [Google Scholar] [CrossRef]
- Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood–brain barrier models and their relevance for a successful development of CNS drug delivery systems: A review. Eur. J. Pharm. Biopharm. 2014, 87, 409–432. [Google Scholar] [CrossRef]
- Nakagawa, S.; Deli, M.; Kawaguchi, H.; Shimizudani, T.; Shimono, T.; Kittel, A.; Tanaka, K.; Niwa, M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 2009, 54, 253–263. [Google Scholar] [CrossRef]
- VanDussen, K.; Marinshaw, J.; Shaikh, N.; Miyoshi, H.; Moon, C.; Tarr, P.; Ciorba, M.; Stappenbeck, T. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 2015, 64, 911–920. [Google Scholar] [CrossRef]
- vandeWaterbeemd, H.; Camenisch, G.; Folkers, G.; Raevsky, O.A. Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant. Struct.-Act. Relatsh. 1996, 15, 480–490. [Google Scholar] [CrossRef]
- Sherer, E.C.; Verras, A.; Madeira, M.; Hagmann, W.K.; Sheridan, R.P.; Roberts, D.; Bleasby, K.; Cornell, W.D. QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities. Mol. Inform. 2012, 31, 231–245. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Basant, N. In silico prediction of cellular permeability of diverse chemicals using qualitative and quantitative SAR modeling approaches. Chemom. Intell. Lab. Syst. 2015, 140, 61–72. [Google Scholar] [CrossRef]
- Wang, N.N.; Dong, J.; Deng, Y.H.; Zhu, M.F.; Wen, M.; Yao, Z.J.; Lu, A.P.; Wang, J.B.; Cao, D.S. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. J. Chem. Inf. Model. 2016, 56, 763–773. [Google Scholar] [CrossRef]
- Wang, Y.K.; Chen, X.B. QSPR model for Caco-2 cell permeability prediction using a combination of HQPSO and dual-RBF neural network. RSC Adv. 2020, 10, 42938–42952. [Google Scholar] [CrossRef]
- Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 1996, 22, 67–84. [Google Scholar] [CrossRef]
- Press, B.; Di Grandi, D. Permeability for Intestinal Absorption: Caco-2 Assay and Related Issues. Curr. Drug Metab. 2008, 9, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Volpe, D.A. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J. Pharm. Sci. 2008, 97, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, G.; Kitchen, D.B. Computational approaches for modeling human intestinal absorption and permeability. J. Mol. Modell. 2006, 12, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.D.; Daga, P.R. Building a Quantitative Structure-Property Relationship (QSPR) Model. Bioinform. Drug Discov. 2019, 1939, 139–159. [Google Scholar] [CrossRef]
- Lomize, A.L.; Hage, J.M.; Schnitzer, K.; Golobokov, K.; LaFaive, M.B.; Forsyth, A.C.; Pogozheva, I.D. PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J. Chem. Inf. Model. 2019, 59, 3094–3099. [Google Scholar] [CrossRef] [PubMed]
- Juracka, J.; Srejber, M.; Melikova, M.; Bazgier, V.; Berka, K. MolMeDB: Molecules on Membranes Database. Database-J. Biol. Databases Curation 2019, 2019, baz078. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. Permeability: Caco-2/MDCK; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 499–574. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Yazdanian, M.; Glynn, S.L.; Wright, J.L.; Hawi, A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 1998, 15, 1490–1494. [Google Scholar] [CrossRef]
- Artursson, P.; Karlsson, J. Correlation between Oral-Drug Absorption in Humans and Apparent Drug Permeability Coefficients in Human Intestinal Epithelial (Caco-2) Cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.H.; Dando, S.A.; Soucek, K.M.; Morrison, R.A. In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm. Res. 1996, 13, 120–123. [Google Scholar] [CrossRef]
- Pade, V.; Stavchansky, S. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci. 1998, 87, 1604–1607. [Google Scholar] [CrossRef]
- Lee, J.B.; Zgair, A.; Taha, D.A.; Zang, X.W.; Kagan, L.; Kim, T.H.; Kim, M.G.; Yun, H.Y.; Fischer, P.M.; Gershkovich, P. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur. J. Pharm. Biopharm. 2017, 114, 38–42. [Google Scholar] [CrossRef]
- Gres, M.C.; Julian, B.; Bourrie, M.; Meunier, V.; Roques, C.; Berger, M.; Boulenc, X.; Berger, Y.; Fabre, G. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line. Pharm. Res. 1998, 15, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.J.; Choi, S.O.; Um, S.Y.; Kim, J.I.; Choo, H.Y.P.; Choi, S.Y.; Chung, S.Y. Prediction of the permeability of drugs through study on quantitative structure-permeability relationship. J. Pharm. Biomed. Anal. 2006, 41, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Kerns, E.H.; Di, L.; Petusky, S.; Farris, M.; Ley, R.; Jupp, P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci. 2004, 93, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Larregieu, C.A.; Benet, L.Z. Drug Discovery and Regulatory Considerations for Improving In Silico and In Vitro Predictions that Use Caco-2 as a Surrogate for Human Intestinal Permeability Measurements. AAPS J. 2013, 15, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef]
- Oltra-Noguera, D.; Mangas-Sanjuan, V.; Centelles-Sangüesa, A.; Gonzalez-Garcia, I.; Sanchez-Castaño, G.; Gonzalez-Alvarez, M.; Casabo, V.-G.; Merino, V.; Gonzalez-Alvarez, I.; Bermejo, M. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. J. Pharmacol. Toxicol. Methods 2015, 71, 21–32. [Google Scholar] [CrossRef]
- Delie, F.; Rubas, W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit. Rev. Ther. Drug Carr. Syst. 1997, 14, 221–286. [Google Scholar] [CrossRef]
- Hayeshi, R.; Hilgendorf, C.; Artursson, P.; Augustijns, P.; Brodin, B.; Dehertogh, P.; Fisher, K.; Fossati, L.; Hovenkamp, E.; Korjamo, T.; et al. Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur. J. Pharm. Sci. 2008, 35, 383–396. [Google Scholar] [CrossRef]
- Walter, E.; Kissel, T. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. Eur. J. Pharm. Sci. 1995, 3, 215–230. [Google Scholar] [CrossRef]
- Behrens, I.; Kamm, W.; Dantzig, A.H.; Kissel, T. Variation of peptide transporter (PepT1 expression in Caco-2 cells as a function and HPT1) of cell origin. J. Pharm. Sci. 2004, 93, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, V.M.; Shertzer, H.G.; Menon, A.G.; Pauletti, G.M. High glucose concentration in isotonic media alters Caco-2 cell permeability. AAPS Pharmsci 2003, 5, 17–25. [Google Scholar]
- DeMarco, V.G.; Li, N.; Thomas, J.; West, C.M.; Neu, J. Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J. Nutr. 2003, 133, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Ranaldi, G.; Consalvo, R.; Sambuy, Y.; Scarino, M.L. Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media. Toxicol. Vitr. 2003, 17, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Cook, T.J.; Sinko, P.J. Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm. Res. 1997, 14, 757–762. [Google Scholar] [CrossRef]
- Lu, S.; Gough, A.W.; Bobrowski, W.F.; Stewart, B.H. Transport properties are not altered across Caco-2 cells with heightened TEER despite underlying physiological and ultrastructural changes. J. Pharm. Sci. 1996, 85, 270–273. [Google Scholar] [CrossRef]
- Behrens, I.; Kissel, T. Do cell culture conditions influence the carrier-mediated transport of peptides in Caco-2 cell monolayers? Eur. J. Pharm. Sci. 2003, 19, 433–442. [Google Scholar] [CrossRef]
- Hosoya, K.; Kim, K.J.; Lee, V.H.L. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 1996, 13, 885–890. [Google Scholar] [CrossRef]
- Markowska, M.; Oberle, R.; Juzwin, S.; Hsu, C.P.; Gryszkiewicz, M.; Streeter, A.J. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. J. Pharmacol. Toxicol. Methods 2001, 46, 51–55. [Google Scholar] [CrossRef]
- Vachon, P.H.; Beaulieu, J.F. Transient mosaic patterns of morphological and functional-differentiation in the Caco-2 cell-line. Gastroenterology 1992, 103, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Herold, G.; Rogler, D.; Rogler, G.; Stange, E.F. Morphology of Caco-2 cells varies in different cell batches. Vitr. Cell. Dev. Biol.-Anim. 1994, 30A, 289–291. [Google Scholar] [CrossRef]
- Horie, K.; Tang, F.X.; Borchardt, R.T. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm. Res. 2003, 20, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Turco, L.; Catone, T.; Caloni, F.; Di Consiglio, E.; Testai, E.; Stammati, A. Caco-2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol. Vitr. 2011, 25, 13–20. [Google Scholar] [CrossRef]
- Spring, K.R. Routes and mechanism of fluid transport by epithelia. Annu. Rev. Physiol. 1998, 60, 105–119. [Google Scholar] [CrossRef]
- Angelis, I.D.; Turco, L. Caco-2 cells as a model for intestinal absorption. Curr. Protoc. Toxicol. 2011, 40, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Rodrigues, A.M.; Sobral, A.J.F.N.; Monsanto, P.V.; Vaz, W.L.C.; Moreno, M.J. Early Events in Photodynamic Therapy: Chemical and Physical Changes in a POPC:Cholesterol Bilayer due to Hematoporphyrin IX-mediated Photosensitization. Photochem. Photobiol. 2009, 85, 1409–1417. [Google Scholar] [CrossRef]
- Jovanovic, O.; Skulj, S.; Pohl, E.E.; Vazdar, M. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic. Biol. Med. 2019, 143, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.N.; Schwesinger, C.; Ye, J.M.; Denker, B.M.; Nigam, S.K. Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity. J. Biol. Chem. 2001, 276, 22048–22055. [Google Scholar] [CrossRef]
- Dubois, N.; Muñoz-Garcia, J.; Heymann, D.; Renodon-Cornière, A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem. Pharmacol. 2023, 216, 115765. [Google Scholar] [CrossRef]
- Morresi, C.; Cianfruglia, L.; Sartini, D.; Cecati, M.; Fumarola, S.; Emanuelli, M.; Armeni, T.; Ferretti, G.; Bacchetti, T. Effect of High Glucose-Induced Oxidative Stress on Paraoxonase 2 Expression and Activity in Caco-2 Cells. Cells 2019, 8, 1616. [Google Scholar] [CrossRef] [PubMed]
- Briske-Anderson, M.J.; Finley, J.W.; Newman, S.M. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proc. Soc. Exp. Biol. Med. 1997, 214, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111. [Google Scholar] [CrossRef]
- Moreira, L.N.; Feltrin, C.; Gonçalves, J.E.; de Castro, W.V.; Simoes, C.M.O.; de Pádua, R.M.; Cortes, S.F.; Braga, F.C. Determination of L-(+)-bornesitol, the hypotensive constituent of Hancornia speciosa, in rat plasma by LC-MS/MS and its application on a pharmacokinetic study. Biomed. Pharmacother. 2020, 132, 110900. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.T.; Nascimento, S.F.; Pires, C.L.; Godinho, L.P.; Churro, C.; Moreno, M.J.; Pardal, M.A. Determination of intestinal absorption of the paralytic shellfish toxin GTX-5 using the Caco-2 human cell model. Environ. Sci. Pollut. Res. 2021, 28, 67256–67266. [Google Scholar] [CrossRef] [PubMed]
- Artursson, P. Epithelial transport of drugs in cell-culture.1. A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 1990, 79, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Lechanteur, A.; Almeida, A.; Sarmento, B. Elucidation of the impact of cell culture conditions of Caco-2 cell monolayer on barrier integrity and intestinal permeability. Eur. J. Pharm. Biopharm. 2017, 119, 137–141. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, R.L.; Hunt, D.R.; Dewi, R.E.; Heilshorn, S.C. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates. Biomaterials 2017, 129, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Furubayashi, T.; Kataoka, M.; Sakane, T.; Sezaki, H.; Tokuda, H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 2000, 10, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Kou, J.H. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. Eur. J. Pharm. Biopharm. 2000, 50, 403–411. [Google Scholar] [CrossRef]
- Aungst, B.J.; Nguyen, N.H.; Bulgarelli, J.P.; Oates-Lenz, K. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm. Res. 2000, 17, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Neuhoff, S.; Artursson, P.; Zamora, I.; Ungell, A.L. Impact of extracellular protein binding on passive and active drug transport across Caco-2 cells. Pharm. Res. 2006, 23, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Chen, K.-J.; Lin, C.-C.; Nomeir, A.A. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int. J. Pharm. 2001, 222, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Katneni, K.; Charman, S.A.; Porter, C.J.H. Use of plasma proteins as solubilizing agents in in vitro permeability experiments: Correction for unbound drug concentration using the reciprocal permeability approach. J. Pharm. Sci. 2008, 97, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.L.; Huang, Q.R. Investigation of the Absorption Mechanism of Solubilized Curcumin Using Caco-2 Cell Monolayers. J. Agric. Food Chem. 2011, 59, 9120–9126. [Google Scholar] [CrossRef] [PubMed]
- Neuhoff, S.; Ungell, A.-L.; Zamora, I.; Artursson, P. pH-Dependent Bidirectional Transport of Weakly Basic Drugs Across Caco-2 Monolayers: Implications for Drug–Drug Interactions. Pharm. Res. 2003, 20, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.L.; Silva, I.M.V.; Coimbra, M.A.; Moreno, M.J.; Coreta-Gomes, F. Effect of Coffee on the Bioavailability of Sterols. Foods 2022, 11, 2935. [Google Scholar] [CrossRef] [PubMed]
- Broeders, J.J.W.; van Eijkeren, J.C.H.; Blaauboer, B.J.; Hermens, J.L.M. Transport of Chlorpromazine in the Caco-2 Cell Permeability Assay: A Kinetic Study. Chem. Res. Toxicol. 2012, 25, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, J.; Wang, X.; Zeng, S. Stereoselective Transport and Uptake of Propranolol Across Human Intestinal Caco-2 Cell Monolayers. Chirality 2010, 22, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Riede, J.; Umehara, K.-I.; Schweigler, P.; Huth, F.; Schiller, H.; Camenisch, G.; Poller, B. Examining P-gp efflux kinetics guided by the BDDCS-Rational selection of in vitro assay designs and mathematical models. Eur. J. Pharm. Sci. 2019, 132, 132–141. [Google Scholar] [CrossRef]
- Kishimoto, W.; Ishiguro, N.; Ludwig-Schwellinger, E.; Ebner, T.; Schaefer, O. In Vitro Predictability of Drug-Drug Interaction Likelihood of P-Glycoprotein-Mediated Efflux of Dabigatran Etexilate Based on [I]2IC50 Threshold. Drug Metab. Dispos. 2014, 42, 257–263. [Google Scholar] [CrossRef]
- Karlsson, J.; Artursson, P. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int. J. Pharm. 1991, 71, 55–64. [Google Scholar] [CrossRef]
- Korjamo, T.; Heikkinen, A.T.; Waltari, P.; Mönkkönen, J. The Asymmetry of the Unstirred Water Layer in Permeability Experiments. Pharm. Res. 2008, 25, 1714. [Google Scholar] [CrossRef]
- Bunchongprasert, K.; Shao, J. Impact of Media in Transport Study on Cell Monolayer Integrity and Permeability. J. Pharm. Sci. 2020, 109, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Shen, Z.L.; Zhai, S.; Xu, J.L.; Liang, H.; Shen, Q.; Li, Q.Y. Transport of curcumin derivatives in Caco-2 cell monolayers. Eur. J. Pharm. Biopharm. 2017, 117, 123–131. [Google Scholar] [CrossRef]
- Almeida, A.S.; Silva, B.; Remião, F.; Fernandes, C. Assessment of the Permeability of 3,4-Methylenedioxypyrovalerone (MDPV) across the Caco-2 Monolayer for Estimation of Intestinal Absorption and Enantioselectivity. Int. J. Mol. Sci. 2023, 24, 2680. [Google Scholar] [CrossRef] [PubMed]
- Jarc, T.; Novak, M.; Hevir, N.; Rižner, T.L.; Kreft, M.E.; Kristan, K. Demonstrating suitability of the Caco-2 cell model for BCS-based biowaiver according to the recent FDA and ICH harmonised guidelines. J. Pharm. Pharmacol. 2019, 71, 1231–1242. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Chow, M.S.; Zuo, Z. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int. J. Pharm. 2004, 287, 1–12. [Google Scholar] [CrossRef]
- Buyukozturk, F.; Benneyan, J.C.; Carrier, R.L. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J. Control. Release 2010, 142, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zucco, F.; Batto, A.F.; Bises, G.; Chambaz, J.; Chiusolo, A.; Consalvo, R.; Cross, H.; Dal Negro, G.; de Angelis, I.; Fabre, G.; et al. An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Atla-Altern. Lab. Anim. 2005, 33, 603–618. [Google Scholar] [CrossRef]
- Wilson, G.; Hassan, I.F.; Dix, C.J.; Williamson, I.; Shah, R.; Mackay, M.; Artursson, P. Transport and permeability properties of human Caco-2 cells—An in vitro model of the intestinal epithelial cell barrier. J. Control. Release 1990, 11, 25–40. [Google Scholar] [CrossRef]
- Hiebl, V.; Schachner, D.; Ladurner, A.; Heiss, E.H.; Stangl, H.; Dirsch, V.M. Caco-2 Cells for Measuring Intestinal Cholesterol Transport—Possibilities and Limitations. Biol. Proced. Online 2020, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Ingels, F.; Deferme, S.; Destexhe, E.; Oth, M.; Van den Mooter, G.; Augustijns, P. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm. 2002, 232, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.T.; Fischer, S.M.; Fricker, G.; Brandl, M. In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. Eur. J. Pharm. Sci. 2012, 45, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.M.C.; Geraldes, C.F.G.; Vaz, W.L.C.; Moreno, M.J. Emulsification of Cholesterol in Bile Salt Micelles: Relevance for Cholesterol Absorption. Proc. Biophys. J. 2010, 98, 80A. [Google Scholar]
- Moreno, M.J.; Bastos, M.; Velazquez-Campoy, A. Partition of amphiphilic molecules to lipid bilayers by isothermal titration calorimetry. Anal. Biochem. 2010, 399, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Delamaza, A.; Parra, J.L. Vesicle-micelle structural transitions of phospholipid-bilayers and sodium dodecyl-sulfate. Langmuir 1995, 11, 2435–2441. [Google Scholar] [CrossRef]
- Bogman, K.; Erne-Brand, F.; Alsenz, J.; Drewe, J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci. 2003, 92, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Ollila, F.; Slotte, J.P. A thermodynamic study of bile salt interactions with phosphatidylcholine and sphingomyelin unilamellar vesicles. Langmuir 2001, 17, 2835–2840. [Google Scholar] [CrossRef]
- Schuldes, H.; Dolderer, J.H.; Zimmer, G.; Knobloch, J.; Bickeboller, R.; Jonas, D.; Woodcock, B.G. Reversal of multidrug resistance and increase in plasma membrane fluidity in CHO cells with R-verapamil and bile salts. Eur. J. Cancer 2001, 37, 660–667. [Google Scholar] [CrossRef]
- Tan, A.M.; Ziegler, A.; Steinbauer, B.; Seelig, J. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes. Biophys. J. 2002, 83, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, L.; Takala, E.; Vuorela, H.; Vuorela, P.; Kaukonen, A.M.; Marvola, M. Anthranoid laxatives influence the absorption of poorly permeable drugs in human intestinal cell culture model (Caco-2). Eur. J. Pharm. Biopharm. 2007, 66, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Da Violante, G.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol. Pharm. Bull. 2002, 25, 1600–1603. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, T.; Gan, L.S. Plasma Protein Binding: From Discovery to Development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef]
- Rafols, C.; Amezqueta, S.; Fuguet, E.; Bosch, E. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J. Pharm. Biomed. Anal. 2018, 150, 452–459. [Google Scholar] [CrossRef]
- Zhuo, W.L.; Peng, X.L.; Lin, X. Insights into the interaction mechanism between tiagabine hydrochloride and two serum albumins. RSC Adv. 2018, 8, 24953–24960. [Google Scholar] [CrossRef]
- Pantusa, M.; Sportelli, L.; Bartucci, R. Spectroscopic and calorimetric studies on the interaction of human serum albumin with DPPC/PEG:2000-DPPE membranes. Eur. Biophys. J. Biophys. Lett. 2008, 37, 961–973. [Google Scholar] [CrossRef]
- Reddy, A.C.P.; Sudharshan, E.; Rao, A.G.A.; Lokesh, B.R. Interaction of curcumin with human serum albumin—A spectroscopic study. Lipids 1999, 34, 1025–1029. [Google Scholar] [CrossRef]
- Thomae, A.V.; Wunderli-Allenspach, H.; Kramer, S.D. Permeation of aromatic carboxylic acids across lipid bilayers: The pH-partition hypothesis revisited. Biophys. J. 2005, 89, 1802–1811. [Google Scholar] [CrossRef]
- Bretschneider, B.; Brandsch, M.; Neubert, R. Intestinal transport of beta-lactam antibiotics: Analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm. Res. 1999, 16, 55–61. [Google Scholar] [CrossRef]
- Ieiri, I.; Doi, Y.; Maeda, K.; Sasaki, T.; Kimura, M.; Hirota, T.; Chiyoda, T.; Miyagawa, M.; Irie, S.; Iwasaki, K.; et al. Microdosing Clinical Study: Pharmacokinetic, Pharmacogenomic (SLCO2B1), and Interaction (Grapefruit Juice) Profiles of Celiprolol Following the Oral Microdose and Therapeutic Dose. J. Clin. Pharmacol. 2012, 52, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Petri, N.; Tannergren, C.; Rungstad, D.; Lennernäs, H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm. Res. 2004, 21, 1398–1404. [Google Scholar] [CrossRef]
- Li, Y.; Shin, Y.; Yu, C.; Kosmeder, J.; Hirschelman, W.; Pezzuto, J.; van Breemen, R. Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: Application to resveratrol absorption and metabolism. Comb. Chem. High Throughput Screen. 2003, 6, 757–767. [Google Scholar] [CrossRef]
- Laitinen, L.; Kangas, H.; Kaukonen, A.M.; Hakala, K.; Kotiaho, T.; Kostiainen, R.; Hirvonen, J. N-in-one permeability studies of heterogeneous sets of compounds across Caco-2 cell monolayers. Pharm. Res. 2003, 20, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Lynch, J.; Barry, P. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons. J. Membr. Biol. 1997, 159, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feng, F.; Fawcett, J.P.; Tucker, I.G. Kinetic and equilibrium studies of bile salt-liposome interactions. J. Liposome Res. 2015, 25, 58–66. [Google Scholar] [CrossRef]
- Bourgaux, C.; Couvreur, P. Interactions of anticancer drugs with biomembranes: What can we learn from model membranes? J. Control. Release 2014, 190, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, D.; Cuenoud, B.; Krämer, S. Lipid membrane interactions of indacaterol and salmeterol: Do they influence their pharmacological properties? Eur. J. Pharm. Sci. 2009, 38, 533–547. [Google Scholar] [CrossRef]
- Tse, C.; Comer, J.; Wang, Y.; Chipot, C. Link between Membrane Composition and Permeability to Drugs. J. Chem. Theory Comput. 2018, 14, 2895–2909. [Google Scholar] [CrossRef]
- Zocher, F.; van der Spoel, D.; Pohl, P.; Hub, J. Local Partition Coefficients Govern Solute Permeability of Cholesterol-Containing Membranes. Biophys. J. 2013, 105, 2760–2770. [Google Scholar] [CrossRef]
- Moreno, M.J.; Estronca, L.; Vaz, W.L.C. Translocation of phospholipids and dithionite permeability in liquid-ordered and liquid-disordered membranes. Biophys. J. 2006, 91, 873–881. [Google Scholar] [CrossRef]
- Saito, H.; Shinoda, W. Cholesterol Effect on Water Permeability through DPPC and PSM Lipid Bilayers: A Molecular Dynamics Study. J. Phys. Chem. B 2011, 115, 15241–15250. [Google Scholar] [CrossRef]
- Lange, Y.; Tabei, S.M.A.; Ye, J.; Steck, T.L. Stability and Stoichiometry of Bilayer Phospholipid-Cholesterol Complexes: Relationship to Cellular Sterol Distribution and Homeostasis. Biochemistry 2013, 52, 6950–6959. [Google Scholar] [CrossRef]
- Konsoula, R.; Barile, F.A. Correlation of in vitro cytotoxicity with paracellular permeability in Caco-2 cells. Toxicol. Vitr. 2005, 19, 675–684. [Google Scholar] [CrossRef]
- Lennernäs, H. Human intestinal permeability. J. Pharm. Sci. 1998, 87, 403–410. [Google Scholar] [CrossRef]
- Pires, C.L.; Praca, C.; Martins, P.A.T.; de Carvalho, A.; Ferreira, L.; Marques, M.P.M.; Moreno, M.J. Re-Use of Caco-2 Monolayers in Permeability Assays-Validation Regarding Cell Monolayer Integrity. Pharmaceutics 2021, 13, 1563. [Google Scholar] [CrossRef]
- Paketuryte, V.; Petrauskas, V.; Zubriene, A.; Abian, O.; Bastos, M.; Chen, W.-Y.; Moreno, M.J.; Krainer, G.; Linkuviene, V.; Sedivy, A.; et al. Uncertainty in protein-ligand binding constants: Asymmetric confidence intervals versus standard errors. Eur. Biophys. J. Biophys. Lett. 2021, 50, 661–670. [Google Scholar] [CrossRef]
- Natoli, M.; Leoni, B.D.; D’Agnano, I.; Zucco, F.; Felsani, A. Good Caco-2 cell culture practices. Toxicol. Vitr. 2012, 26, 1243–1246. [Google Scholar] [CrossRef]
- Gao, J.; Hugger, E.D.; Beck-Westermeyer, M.S.; Borchardt, R.T. Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers. Curr. Protoc. Pharmacol. 2001, 8, 7-2. [Google Scholar] [CrossRef]
- Paixao, P.; Gouveia, L.F.; Morais, J.A.G. Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur. J. Pharm. Sci. 2010, 41, 107–117. [Google Scholar] [CrossRef]
- Pires, C.L.; Rosa, S.; de Carvalho, A.L.B.; Ferreira, L.; Marques, M.P.M.; Moreno, M.J. Re-use of Caco-2 monolayers for a higher throughput assessment of drug permeability–methodology and validation for passive permeation. Preprints 2024, 2024052057. [Google Scholar] [CrossRef]
- Thomae, A.V.; Koch, T.; Panse, C.; Wunderli-Allenspach, H.; Krämer, S.D. Comparing the lipid membrane affinity and permeation of drug-like acids: The intriguing effects of cholesterol and charged lipids. Pharm. Res. 2007, 24, 1457–1472. [Google Scholar] [CrossRef] [PubMed]
Prediction Model | Data Collection | Performance a | ||||
---|---|---|---|---|---|---|
Author, Year | Size of Training Set (tr) Test Set (t) External Test Set (ext-t) | LogPapp Range | Available Online and Free | Data Sources | Best Model | Most Important Molecular Descriptors (Correlation) |
Sherer et al. [120] 2012 | tr: 15,791 t: 1536 ext-t: 313 | [−7.5; −4.3] | no | In-house b literature publications | R2t: 0.52 RMSEt: 0.20 R2ext-t: 0.41 RMSEext-t: 0.91 | LogP (−) Polar surface area (−) H-bond potential (−) Aqueous solubility (+) |
Singh et al. [121] 2015 | Tr: 508 t: 70 ext-t: 100 | [−7.8; −3.4] | yes | >250 literature publications | RMSEtest: 0.27 RMSEext-t: 0.24 | Polar surface area (−) LogP (+) Aqueous solubility (−) |
Wang et al. [122] 2016 | tr: 1017 t: 255 | [−7.8; −3.5] | yes | 2 public databases c 23 literature publications | R2test: 0.81 RMSEtest: 0.31 R2ext-t: 0.75 RMSEext-t: 0.36 | H-bond donors (− −) Polar volume (− −) |
Wang and Chen [123] 2020 | tr: 1458 t: 369 | [−7.9; −3.7] | yes | 1 public database d Literature publications of Wang et al. 2016 | R2test: 0.76 RMSEtest: 0.39 | H-bond potential (− −) |
Database | Number of Compounds | Parameter Reported | Data Collection | Include Primary Reference | Organization Level after Download | Interpretation Level | |||
---|---|---|---|---|---|---|---|---|---|
Experimental | In Silico | Salicylic Acid | Propranolol | ||||||
PerMM [129] 2019 | 186 | LogPc a | ✓ | −4.57 | −4.20 | medium | hard | ||
MolMeDB [130] 2019 | 637 | LogPapp b | ✓ | −5.47 | ✓ | good | easy | ||
✓ | −4.89 | ||||||||
✓ | −4.66 | ||||||||
✓ | −4.78 | ||||||||
✓ | −4.73 | ||||||||
✓ | −4.66 | ||||||||
✓ | −4.23 | −4.60 | |||||||
✓ | −3.39 | −4.45 |
Study | All Compounds | Mannitol | Propranolol | Amoxicillin | |||||
---|---|---|---|---|---|---|---|---|---|
Number | Replicates per Compound | %SD b | n | %SD | n | %SD | n | %SD | |
Irvine et al. [132] | 55 | 6 | 28.3 | 6 | 33.3 | 6 | 11.8 | 6 | 47.6 |
Yazdanian et al. [133] | 51 | 3–9 a | 12.7 | 102 | 31.6 | 6 | 14.2 | ||
Chong et al. [135] | 10 | 3 | 10.3 | 3 | 20.0 | 3 | 6.8 | 3 | 25.0 |
Pade et al. [136] | 9 | 3 | 5.6 | 12 | 20.0 | 3 | 4.0 |
Compound a | Papp (10−6 cm/s) A → B | Reference | |||
---|---|---|---|---|---|
Cell Supplier | |||||
ATCC | DKFZ b | ||||
Mannitol | 5.23 ± 0.24 | 0.187 ± 0.007 | Walter and Kissel [146] | ||
Acetylsalicylic acid | 20.6 ± 0.7 | 22.7 ± 1.3 | Walter and Kissel [146] | ||
Cephradine | 1.36 | 1.45 | Behrens et al. [147] | ||
Culture media composition | |||||
5.5 mM Glucose | 25 mM Glucose | −glutamine | +0.6 mM | ||
Mannitol | 0.43 ± 0.05 | 0.71 ± 0.01 | D’Souza et al. [148] | ||
3.9 | 1.0 | DeMarco et al. [149] | |||
−serum | +10% (v/v) | ||||
3.0 | 0.87 ± 0.16 | Ranaldi et al. [150] | |||
Hydrocortisone | 20.4 ± 0.64 | 25.2 ± 0.25 | D’Souza et al. [148] | ||
Digoxin | 0.99 ± 0.05 | 1.27 ± 0.05 | D’Souza et al. [148] | ||
Passage number | |||||
Low (28–47) | High (93–112) | ||||
Mannitol | 3.4 | 2.2 | Yu et al. [151] | ||
5 | 5 | Lu et al. [152] | |||
Hydrocortisone | 40 | 50 | Lu et al. [152] | ||
Progesterone | 650 | 900 | Yu et al. [151] | ||
Cephradine | 9.49 ± 0.47 | 2.05 ± 0.01 | Yu et al. [151] | ||
Glycylsarcosine | 8 | 9 | Lu et al. [152] | ||
Seeding density (cells/cm2) | |||||
Low (1 × 104) | Intermediate (6 × 104) | High (1 × 105) | |||
FITC-dextran (Mw 4000) | 0.07 | 0.05 | 0.05 | Behrens et al. [153] | |
Cephradine | 1.6 | 2.1 | 2.5 | ||
Day post-seeding | |||||
7 | 14 | 21 | 28 | ||
FITC-dextran (Mw 4000) | 0.05 | 0.25 | 0.04 | 0.02 | Behrens et al. [153] |
Cephradine | 1.1 | 1.3 | 2.03 ± 0.6 | 1.8 | Behrens et al. [153] |
Cyclosporinc | 8 | 9 | 11 | 18 | Hosoya et al. [154] |
Membrane material and coating | |||||
PC | PE | PET | PC + Collagen | ||
FITC-dextran (Mw 4000) | 0.03 | 0.022 ± 0.0066 | 0.012 ± 0.0038 | 0.05 | Behrens et al. [153] |
Mannitol | 22.1 ± 0.09 | 7.44 ± 0.33 | Walter and Kissel [146] | ||
Cephradine | 2.0 | 0.75 | 0.25 | 3.79 ± 1.48 | Behrens et al. [153] |
Membrane diameter in mm (plate type) | |||||
6.5 (24-well) | 12 (12-well) | 24 (6-well) | |||
Mannitol | 1.4 ± 0.2 | 1.3 ± 0.1 | 0.90 ± 0.1 | Markowska et al. [155] | |
Propranolol | 38.9 ± 1.9 | 36.6 ± 0.9 | 24.2 ± 0.3 |
Compound a | Papp (10−6 cm/s) A → B | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Addition of bile salts, surfactants, and co-solvents on the donor side | |||||||||||
10 mM taurocholate | 10 mM cholate | 10 mM SLS b | 2% (v/v) DMSO | 2% (v/v) ethanol | |||||||
− | + | − | + | − | + | − | + | − | + | ||
Dexamethasone | 1.7 | 2.1 | 1.4 | 1.4 | 1.6 | 1.0 | 1.4 | 1.0 | 1.4 | 1.4 | Yamashita et al. [174] |
1% (v/v) povidone | 1% (v/v) pluronic F68 | 1% (v/v) gelucir 44/14 | |||||||||
− | + | + | + | Saha et al. [175] | |||||||
Sch 56592 c | 100 | 140 | 115 | 30 | |||||||
Sch-X c | 100 | 135 | 150 | 165 | |||||||
Sch-Y c | 100 | 105 | 135 | 20 | |||||||
Addition of BSA % (w/v) on the acceptor side | |||||||||||
0 | 0.5 | 1 | 2 | 4 | |||||||
Atenolol | 0.68 ± 0.04 | 0.53 ± 0.04 | Aungst et al. [176] | ||||||||
Warfarin | 28.2 ± 1.5 | 33.1 ± 0.5 | |||||||||
Chlorpromazine | 9.1 ± 1.7 | 46.5 ± 2.0 | |||||||||
Phenytoin | 15.4 ± 0.3 | 21.5 ± 1.2 | |||||||||
Mannitol | 0.3 | 0.3 | Neuhoff et al. [177] | ||||||||
1 | 2 | 2 | 2 | 1 | Krishna et al. [178] | ||||||
SCH-A d | 4 | 11 | 15 | 18 | 19 | ||||||
Propranolol | 8 | 9 | |||||||||
110 | 150 | Neuhoff et al. [177] | |||||||||
Metoprolol | 100 | 110 | |||||||||
Progesterone | 8.2 | 22.6 | Krishna et al. [178] | ||||||||
SCH-B d | 2.2 | 9.4 | |||||||||
SCH-E d | 11 | 10 | |||||||||
Digoxin | 3 | 4 | Neuhoff et al. [177] | ||||||||
Addition of BSA % (w/v) on the donor side | |||||||||||
0 | 0.1 | 0.5 | 1 | 4 | |||||||
Mannitol | 0.3 | 0.3 | Neuhoff et al. [177] | ||||||||
Metoprolol | 100 e | 90 d | |||||||||
Propranolol | 100 e | 60 d | |||||||||
36 | 35 | 32 | 28 | Katneni et al. [179] | |||||||
Diazepam | 53 | 46 | 29 | 21 | |||||||
Addition of BSA % (w/v) on the donor and acceptor sides | |||||||||||
1% (v/v) DMSO/4 | 4/4 | ||||||||||
Curcumin | 7.1 ± 0.6 | 3.5 ± 0.3 | Yu at al. [180] | ||||||||
pH (apical/basolateral) | |||||||||||
5.0/7.4 | 6.0/7.4 | 7.4/7.4 | 8.0/7.4 | ||||||||
FITC-dextran | 0.006 ± 0.001 | 0.003 ± 0.000 | Yamashita et al. [174] | ||||||||
Atenolol | 0.19 ± 0.02 | 0.40 ± 0.01 | |||||||||
0.30 ± 0.08 | 1.26 ± 0.08 | 2.31 ± 0.09 | Neuhoff et al. [181] | ||||||||
Dexamethasone | 12.3 ± 0.2 | 12.1 ± 0.5 | Yamashita et al. [174] | ||||||||
Salicylic acid | 87.5 ± 4.8 | 3.35 ± 0.12 | |||||||||
Ampicillin | 0.17 ± 0.01 | 0.081 ± 0.001 | |||||||||
Concentration (µM) | |||||||||||
10 | 50 | 100 | 150 | ||||||||
Dehydroergosterol | <0.001 | 0.0017 | 0.026 | Pires et al. [182] | |||||||
Chlorpromazine | 10.2 ± 1.6 | 13.3 ± 1.5 | 15.5 ± 1.8 | Broeders et al. [183] | |||||||
Propranolol (R/S) | 2.5 | 9 | 10 | Wang et al. [184] | |||||||
4 e | 7 e | 8.6 e | |||||||||
0.1 | 1 | 10 | 100 | ||||||||
Quinidine | 0.1 | 0.4 | 1.6 | Riede et al. [185] | |||||||
Digoxin+clarithromycin f | 1 | 2.4 | 4.6 | Kishimoto et al. [186] | |||||||
18 e | 15 e | 6.3 e | |||||||||
Digoxin+cyclosporine A f | 0.7 | 1.7 | 2.4 | ||||||||
11 e | 6 e | 3.6 e | |||||||||
Stirring rate | |||||||||||
0 | Low (135 rpm) | High (1090 rpm) | |||||||||
Mannitol | 0.22 ± 0.08 | 0.26 ± 0.11 | Artursson et al. [187] | ||||||||
Testosterone | 35.7 ± 3.3 | 51.8 ± 7.9 | 100.8 ± 7.9 | ||||||||
Low (250 rpm) | High (420 rpm) | ||||||||||
Propranolol | 75 ± 10 | 221 ± 13 | Korjamo et al. [188] | ||||||||
Verapamil | 57 ± 6 | 174 ± 15 | |||||||||
64 ± 14 e | 140 ± 11 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, C.L.; Moreno, M.J. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. Membranes 2024, 14, 157. https://doi.org/10.3390/membranes14070157
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. Membranes. 2024; 14(7):157. https://doi.org/10.3390/membranes14070157
Chicago/Turabian StylePires, Cristiana L., and Maria João Moreno. 2024. "Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers" Membranes 14, no. 7: 157. https://doi.org/10.3390/membranes14070157
APA StylePires, C. L., & Moreno, M. J. (2024). Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. Membranes, 14(7), 157. https://doi.org/10.3390/membranes14070157