Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects
Abstract
:1. Introduction
2. MD Processes and Membrane Materials
3. Necessity of Nanocomposite Membrane
- Conventional nanocomposites where the NPs and polymer matrix are homogeneously blended.
- Surface-modified nanocomposites, which involve the positioning of nanofillers on the surface of the membrane, thus altering the surface’s morphology and properties.
- Thin-film composites with nanocomposite support, where the thin separate hydrophilic layer of a polymeric dope solution is coated on the surface of the conventional nanocomposite to enhance the antifouling properties of the membrane.
- Thin-film nanocomposites, where the polymeric membrane’s surface is covered with a thin coating of a conventional nanocomposite layer which primarily enhances the antifouling properties.
4. Fabrication of Carbon-Based Nanocomposite Membrane
4.1. Free Standing Carbon Membrane
4.2. Surface Modification of the Existing Membrane Made from Other Materials
4.3. Incorporation of the Carbon-Based Nanomaterials into the Membrane Matrix Forming Mixed Matrix Membranes (MMMs)
4.4. 3D-Printed Membrane Components for MD
5. Major Carbon-Based Nanomaterials in MD Process
5.1. Carbon Nanotubes (CNTs)
5.2. Graphene Oxide (GO) and Reduced Graphene Oxide (rGO)
5.3. Carbon Black (CB)
6. Carbon-Based Nanocomposite for Photothermal/Joules-Heating MD
7. Photocatalytic MD Process
8. Challenges and Outlook
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Wildlife Fund. Water Scarcity. Available online: https://www.worldwildlife.org/threats/water-scarcity (accessed on 24 June 2024).
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Farid, M.U.; Kharraz, J.A.; Sun, J.; Boey, M.-W.; Riaz, M.A.; Wong, P.W.; Jia, M.; Zhang, X.; Deka, B.J.; Khanzada, N.K.; et al. An, Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. Adv. Mater. 2023, 36, 2307950. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Memb. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Chavez, L.H.A.; Ben-Sasson, M.; Castrillón, S.R.-V.; Yip, N.Y.; Elimelech, M. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2013, 47, 9569–9583. [Google Scholar] [CrossRef]
- Leaper, S.; Abdel-Karim, A.; Gorgojo, P. The use of carbon nanomaterials in membrane distillation membranes: A review. Front. Chem. Sci. Eng. 2021, 15, 755–774. [Google Scholar] [CrossRef]
- Chew, N.G.P.; Zhao, S.; Wang, R. Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv. Colloid Interface Sci. 2019, 273, 102022. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Memb. Sci. 2003, 212, 177–193. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Mason, A.P.; Malinauskas, E.A. Gas Transport in Porous Media: The Dusty-Gas Model; Elsevier: New York, NY, USA, 1983. [Google Scholar]
- Curcio, E.; Drioli, E. Membrane Distillation and Related Operations—A Review. Sep. Purif. Rev. 2005, 34, 35–86. [Google Scholar] [CrossRef]
- Yang, S.; Jasim, S.A.; Bokov, D.; Chupradit, S.; Nakhjiri, A.T.; El-Shafay, A.S. Membrane distillation technology for molecular separation: A review on the fouling, wetting and transport phenomena. J. Mol. Liq. 2022, 349, 118115. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Ko, C.-C.; Chen, L.-H.; Huang, C.-T.; Tung, K.-L.; Liao, Y.-C. A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation. Sep. Purif. Technol. 2018, 198, 79–86. [Google Scholar] [CrossRef]
- Parani, S.; Oluwafemi, O.S. Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications. Membranes 2021, 11, 934. [Google Scholar] [CrossRef]
- Ray, S.S.; Bakshi, H.S.; Dangayach, R.; Singh, R.; Deb, C.K.; Ganesapillai, M.; Chen, S.-S.; Purkait, M.K. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. Membranes 2020, 10, 140. [Google Scholar] [CrossRef]
- Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187–207. [Google Scholar] [CrossRef]
- Afsari, M.; Shon, H.K.; Tijing, L.D. Nanocomposite membranes for wastewater treatment via membrane distillation. In Nano-Enabled Technologies for Water Remediation; Kaleekkal, N.J., Mural, P.K.S., Vigneswaran, S., Eds.; Elsevier: New York, NY, USA, 2022; pp. 279–309. [Google Scholar]
- González, D.; Amigo, J.; Suárez, F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 2017, 80, 238–259. [Google Scholar] [CrossRef]
- Srisurichan, S.; Jiraratananon, R.; Fane, A.G. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. J. Memb. Sci. 2006, 277, 186–194. [Google Scholar] [CrossRef]
- El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M. A framework for better understanding membrane distillation separation process. J. Memb. Sci. 2006, 285, 4–29. [Google Scholar] [CrossRef]
- Roy, S.; Bhadra, M.; Mitra, S. Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep. Purif. Technol. 2014, 136, 58–65. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Rouxel, D.; Vincent, B. Dispersion of nanoparticles: From organic solvents to polymer solutions. Ultrason. Sonochem. 2014, 21, 149–153. [Google Scholar] [CrossRef]
- Alam, A.K.M.M. 17-Methods of nanoparticle dispersion in the polymer matrix. In Nanoparticle-Based Polymer Composites; Mavinkere Rangappa, S., Parameswaranpillai, J., Yashas Gowda, T.G., Siengchin, S., Seydibeyoglu, M.O., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 469–479. [Google Scholar]
- Masroor, S.; Composites, C.A. Carbon Allotropes and Composites; John Wiley & Sons Ltd.: New York, NY, USA, 2023; pp. 17–30. [Google Scholar]
- Xue, M.; Qiu, H.; Guo, W. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 2013, 24, 505720. [Google Scholar] [CrossRef]
- Manawi, Y.; Kochkodan, V.; Hussein, M.A.; Khaleel, M.A.; Khraisheh, M.; Hilal, N. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 2016, 391, 69–88. [Google Scholar] [CrossRef]
- Goh, K.; Karahan, H.E.; Wei, L.; Bae, T.-H.; Fane, A.G.; Wang, R.; Chen, Y. Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon 2016, 109, 694–710. [Google Scholar] [CrossRef]
- Yuan, Z.; Yu, Y.; Sui, X.; Yao, Y.; Chen, Y. Carbon composite membranes for thermal-driven membrane processes. Carbon 2021, 179, 600–626. [Google Scholar] [CrossRef]
- Goetz, S.A.; Nguyen, D.T.; Esser-Kahn, A.P. Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2. Carbon 2016, 105, 126–135. [Google Scholar] [CrossRef]
- Shao, S.; Cai, L.; Li, K.; Li, J.; Du, X.; Li, G.; Liang, H. Deposition of powdered activated carbon (PAC) on ultrafiltration (UF) membrane surface: Influencing factors and mechanisms. J. Memb. Sci. 2017, 530, 104–111. [Google Scholar] [CrossRef]
- Murugan, P.; Nagarajan, R.D.; Shetty, B.H.; Govindasamy, M.; Sundramoorthy, A.K. Recent trends in the applications of thermally expanded graphite for energy storage and sensors—A review. Nanoscale Adv. 2021, 3, 6294–6309. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, Q.; Meng, B.; Zhou, K.; Liu, G.; Gugliuzza, A.; Drioli, E.; Jin, W. Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. J. Memb. Sci. 2020, 611, 118364. [Google Scholar] [CrossRef]
- Dorrer, C.; Rühe, J. Some thoughts on superhydrophobic wetting. Soft Matter 2009, 5, 51–61. [Google Scholar] [CrossRef]
- Abdel-Karim, A.; Luque-Alled, J.M.; Leaper, S.; Alberto, M.; Fan, X.; Vijayaraghavan, A.; Gad-Allah, T.A.; El-Kalliny, A.S.; Szekely, G.; Ahmed, S.I.A.; et al. PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance. Desalination 2019, 452, 196–207. [Google Scholar] [CrossRef]
- Alsawat, M.; Altalhi, T.; Kumeria, T.; Santos, A.; Losic, D. Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity. Carbon 2015, 93, 681–692. [Google Scholar] [CrossRef]
- Noy, A.; Park, H.G.; Fornasiero, F.; Holt, J.K.; Grigoropoulos, C.P.; Bakajin, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29. [Google Scholar] [CrossRef]
- Rao, N.; Singh, R.; Bashambu, L. Carbon-based nanomaterials: Synthesis and prospective applications. Mater. Today Proc. 2021, 44, 608–614. [Google Scholar] [CrossRef]
- Her, S.-C.; Hsu, W.-C. Sensing Performance and Mechanical Properties of Buckypaper Impregnated with Epoxy Resin. Nanomaterials 2020, 10, 2258. [Google Scholar] [CrossRef] [PubMed]
- Seraj, S.; Mohammadi, T.; Tofighy, M.A. Graphene-based membranes for membrane distillation applications: A review. J. Environ. Chem. Eng. 2022, 10, 107974. [Google Scholar] [CrossRef]
- Ajmani, G.S.; Goodwin, D.; Marsh, K.; Fairbrother, D.H.; Schwab, K.J.; Jacangelo, J.G.; Huang, H. Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Res. 2012, 46, 5645–5654. [Google Scholar] [CrossRef] [PubMed]
- Petukhov, D.I.; Johnson, D.J. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv. Colloid Interface Sci. 2024, 327, 103140. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Unnikrishnan, B.; Mao, J.-Y.; Lin, H.-J.; Huang, C.-C. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination 2018, 429, 119–133. [Google Scholar] [CrossRef]
- Thomas, M.; Corry, B. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150020. [Google Scholar] [CrossRef]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Hegab, H.M.; ElMekawy, A.; Barclay, T.G.; Michelmore, A.; Zou, L.; Saint, C.P.; Ginic-Markovic, M. Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS Appl. Mater. Interfaces 2015, 7, 18004–18016. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xia, Y.; Jing, X.; Cai, P.; Igalavithana, A.D.; Tang, C.; Tsang, D.C.W.; Ok, Y.S. Recent advances in mitigating membrane biofouling using carbon-based materials. J. Hazard. Mater. 2020, 382, 120976. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Tang, G.; Zhang, N. Recent progress on carbon based desalination membranes and carbon nanomaterial incorporated non-polyamide desalination membranes. J. Environ. Chem. Eng. 2021, 9, 105762. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, G.; Liu, C.; Fan, S. High-Density Carbon Nanotube Bucky papers with Superior Transport and Mechanical Properties. Nano Lett. 2012, 12, 4848–4852. [Google Scholar] [CrossRef] [PubMed]
- Dumée, L.F.; Sears, K.; Schütz, J.; Finn, N.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation. J. Memb. Sci. 2010, 351, 36–43. [Google Scholar] [CrossRef]
- Tight, T.H. Unimpeded Permeation of Water. Science 2012, 335, 442–444. [Google Scholar]
- Gong, B.; Yang, H.; Wu, S.; Xiong, G.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Graphene Array-Based Anti-fouling Solar Vapour Gap Membrane Distillation with High Energy Efficiency. Nano-Micro Lett. 2019, 11, 51. [Google Scholar] [CrossRef]
- Siddique, T.; Dutta, N.K.; Choudhury, N.R. Mixed-matrix membrane fabrication for water treatment. Membranes 2021, 11, 557. [Google Scholar] [CrossRef]
- Kim, J.; Yun, E.-T.; Tijing, L.; Shon, H.K.; Hong, S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J. Memb. Sci. 2022, 653, 120519. [Google Scholar] [CrossRef]
- Rao, U.; Iddya, A.; Jung, B.; Khor, C.M.; Hendren, Z.; Turchi, C.; Cath, T.; Hoek, E.M.V.; Ramon, G.Z.; Jassby, D. Mineral Scale Prevention on Electrically Conducting Membrane Distillation Membranes Using Induced Electrophoretic Mixing. Environ. Sci. Technol. 2020, 54, 3678–3690. [Google Scholar] [CrossRef] [PubMed]
- Zahirifar, J.; Karimi-Sabet, J.; Moosavian, S.M.A.; Hadi, A.; Khadiv-Parsi, P. Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation. Desalination 2018, 428, 227–239. [Google Scholar] [CrossRef]
- Jafari, A.; Kebria, M.R.S.; Rahimpour, A.; Bakeri, G. Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation. Chem. Eng. Process.-Process Intensif. 2018, 126, 222–231. [Google Scholar] [CrossRef]
- Woo, Y.C.; Tijing, L.D.; Shim, W.-G.; Choi, J.-S.; Kim, S.-H.; He, T.; Drioli, E.; Shon, H.K. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. J. Memb. Sci. 2016, 520, 99–110. [Google Scholar] [CrossRef]
- Eynolghasi, M.B.; Mohammadi, T.; Tofighy, M.A. Fabrication of polystyrene (PS)/cyclohexanol-based carbon nanotubes (CNTs) mixed matrix membranes for vacuum membrane distillation application. J. Environ. Chem. Eng. 2022, 10, 108175. [Google Scholar] [CrossRef]
- Woo, Y.C.; Kim, Y.; Shim, W.-G.; Tijing, L.D.; Yao, M.; Nghiem, L.D.; Choi, J.-S.; Kim, S.-H.; Shon, H.K. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. J. Memb. Sci. 2016, 513, 74–84. [Google Scholar] [CrossRef]
- Han, M.; Dong, T.; Hou, D.; Yao, J.; Han, L. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. J. Memb. Sci. 2020, 607, 118078. [Google Scholar] [CrossRef]
- An, A.K.; Lee, E.J.; Guo, J.; Jeong, S.; Lee, J.G.; Ghaffour, N. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibers. Sci. Rep. 2017, 7, 41562. [Google Scholar]
- Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Al-Rub, R.K.A.; Arafat, H. 3D printed spacers based on TPMS architectures for scaling control in membrane distillation. J. Memb. Sci. 2019, 581, 38–49. [Google Scholar] [CrossRef]
- Almarzooqi, N.; Hong, S.; Verma, P.; Shaheen, A.; Schiffer, A.; AlMarzooqi, F. Photothermal Surface Heating Membrane Distillation Using 3D-Printed Ti3C2Tx MXene-Based Nanocomposite Spacers. ACS Appl. Mater. Interfaces 2023, 15, 20998–21007. [Google Scholar] [CrossRef]
- Jeong, S.; Gu, B.; Choi, S.; Ahn, S.; Lee, J.; Lee, J.; Jeong, S. Engineered multi-scale roughness of carbon nanofiller-embedded 3D printed spacers for membrane distillation. Water Res. 2023, 231, 119649. [Google Scholar] [CrossRef]
- Anvari, A.; Kekre, K.M.; Ronen, A. Scaling mitigation in radio-frequency induction heated membrane distillation. J. Memb. Sci. 2020, 600, 117859. [Google Scholar] [CrossRef]
- Jeong, S.; Gu, B.; Park, S.; Cho, K.; An, A.K.; Jeong, S. Mechanism elucidation and scaling control in membrane distillation using 3D printed carbon nanotube spacer. NPJ Clean Water 2023, 6, 80. [Google Scholar] [CrossRef]
- Hirsch, A. The era of carbon allotropes. Nat. Mater. 2010, 9, 868–871. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, L.; Tang, C.Y.; Yang, F.; Quan, X.; Jassby, D.; Zaworotko, M.J.; Guiver, M.D. Stable Superhydrophobic Ceramic-Based Carbon Nanotube Composite Desalination Membranes. Nano Lett. 2018, 18, 5514–5521. [Google Scholar] [CrossRef]
- Barrejón, M.; Prato, M. Carbon nanotube membranes in water treatment applications. Adv. Mater. Interfaces 2022, 9, 2101260. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jegal, J.; Kim, W.-N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 2006, 284, 406–415. [Google Scholar] [CrossRef]
- Shi, W.; Plata, D.L. Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chem. 2018, 20, 5245–5260. [Google Scholar] [CrossRef]
- Sianipar, M.; Kim, S.H.; Khoiruddin; Iskandar, F.; Wenten, I.G. Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Adv. 2017, 7, 51175–51198. [Google Scholar] [CrossRef]
- Islam, M.F.; Rojas, E.; Bergey, D.M.; Johnson, A.T.; Yodh, A.G. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Lett. 2003, 3, 269–273. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, L.; Pan, X.; Zhang, L.; Chen, H.; Gao, C. Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J. Memb. Sci. 2009, 342, 165–172. [Google Scholar] [CrossRef]
- Amirilargani, M.; Tofighy, M.A.; Mohammadi, T.; Sadatnia, B. Novel Poly(vinyl alcohol)/Multiwalled Carbon Nanotube Nanocomposite Membranes for Pervaporation Dehydration of Isopropanol: Poly(sodium 4-styrenesulfonate) as a Functionalization Agent. Ind. Eng. Chem. Res. 2014, 53, 12819–12829. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 2012, 90, 69–82. [Google Scholar] [CrossRef]
- Gao, B.; Jiang, Z.; Zhao, C.; Gomaa, H.; Pan, F. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. J. Memb. Sci. 2015, 492, 230–241. [Google Scholar] [CrossRef]
- Holt, J.K.; Park, H.G.; Wang, Y.; Stadermann, M.; Artyukhin, A.B.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes. Science 2006, 312, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Majumder, B.J.H.M.; Chopra, N.; Andrews, R. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, C.; Pugliese, G.; Bahattab, M.A.; Aljlil, S.A.; Drioli, E.; Tocci, E. Multiwalled carbon nanotube membranes for water purification. Sep. Purif. Technol. 2018, 193, 378–385. [Google Scholar] [CrossRef]
- Si, Y.; Sun, C.; Li, D.; Yang, F.; Tang, C.Y.; Quan, X.; Dong, Y.; Guiver, M.D. Flexible Superhydrophobic Metal-Based Carbon Nanotube Membrane for Electrochemically Enhanced Water Treatment. Environ. Sci. Technol. 2020, 54, 9074–9082. [Google Scholar] [CrossRef]
- Sun, C.; Lyu, Q.; Si, Y.; Tong, T.; Lin, L.C.; Yang, F.; Tang, C.Y.; Dong, Y. Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. Environ. Sci. Technol. 2022, 56, 5775–5785. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Liu, L.; Yao, J.; Han, L. Beneficial CNT Intermediate Layer for Membrane Fluorination toward Robust Superhydrophobicity and Wetting Resistance in Membrane Distillation. ACS Appl. Mater. Interfaces 2020, 12, 20942–20954. [Google Scholar] [CrossRef]
- Francis, L.; Hilal, N. Electrohydrodynamic atomization of CNT on PTFE membrane for scaling resistant membranes in membrane distillation. NPJ Clean Water 2023, 6, 15. [Google Scholar] [CrossRef]
- Xie, B.; Xu, G.; Jia, Y.; Gu, L.; Wang, Q.; Mushtaq, N.; Cheng, B.; Hu, Y. Engineering carbon nanotubes enhanced hydrophobic membranes with high performance in membrane distillation by spray coating. J. Memb. Sci. 2021, 625, 118978. [Google Scholar] [CrossRef]
- Bhadra, M.; Roy, S.; Mitra, S. Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep. Purif. Technol. 2013, 120, 373–377. [Google Scholar] [CrossRef]
- Martínez, L.; Florido-Díaz, F.J.; Hernández, A.; Prádanos, P. Estimation of vapor transfer coefficient of hydrophobic porous membranes for applications in membrane distillation. Sep. Purif. Technol. 2003, 33, 45–55. [Google Scholar] [CrossRef]
- Dumée, L.; Germain, V.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Cerneaux, S.; Cornu, D.; Gray, S. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Memb. Sci. 2011, 376, 241–246. [Google Scholar] [CrossRef]
- Miao, E.-D.; Ye, M.-Q.; Guo, C.-L.; Liang, L.; Liu, Q.; Rao, Z.-H. Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization. Appl. Therm. Eng. 2019, 149, 1255–1264. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, H.; Wang, Y.; Xiao, C. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling. RSC Adv. 2018, 8, 18084–18092. [Google Scholar] [CrossRef] [PubMed]
- Intrchom, W.; Roy, S.; Humoud, M.S.; Mitra, S. Immobilization of Graphene Oxide on the Permeate Side of a Membrane Distillation Membrane to Enhance Flux. Membranes 2018, 8, 63. [Google Scholar] [CrossRef]
- Gethard, K.; Sae-Khow, O.; Mitra, S. Water Desalination Using Carbon-Nanotube-Enhanced Membrane Distillation. ACS Appl. Mater. Interfaces 2011, 3, 110–114. [Google Scholar] [CrossRef]
- Zeng, S.; Su, Q.; Zhang, L.-Z. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane. Int. J. Heat Mass Transf. 2020, 152, 119508. [Google Scholar] [CrossRef]
- Feng, Y.; Dai, H.; Chen, J.; Kong, X.; Yang, J.; Jiang, L. Geometric structure-guided photo-driven ion current through asymmetric graphene oxide membranes. J. Mater. Chem. A 2019, 7, 20182–20186. [Google Scholar] [CrossRef]
- Leaper, S.; Abdel-Karim, A.; Faki, B.; Luque-Alled, J.M.; Alberto, M.; Vijayaraghavan, A.; Holmes, S.M.; Szekely, G.; Badawy, M.I.; Shokri, N.; et al. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J. Memb. Sci. 2018, 554, 309–323. [Google Scholar] [CrossRef]
- Wen, M.; Chen, M.; Ren, G.-K.; Li, P.-L.; Lv, C.; Yao, Y.; Liu, Y.-K.; Deng, S.-J.; Zheng, Z.; Xu, C.-G.; et al. Enhancing the selectivity of hydrogen isotopic water in membrane distillation by using graphene oxide. J. Memb. Sci. 2020, 610, 118237. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, X.; Du, Z.; Li, J.; Cheng, F. Effect of oxygenic groups on desalination performance improvement of graphene oxide-based membrane in membrane distillation. Sep. Purif. Technol. 2020, 251, 117304. [Google Scholar] [CrossRef]
- Seo, D.H.; Pineda, S.; Woo, Y.C.; Xie, M.; Murdock, A.T.; Ang, E.Y.M.; Jiao, Y.; Park, M.J.; Lim, S.I.; Lawn, M.; et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Tan, Y.Z.; Chew, J.W. Superior membrane distillation by induction heating of 3D rGO/Nafion/Ni foam for water treatment. J. Memb. Sci. 2020, 616, 118609. [Google Scholar] [CrossRef]
- Ray, S.S.; Gandhi, M.; Chen, S.-S.; Chang, H.-M.; Dan, C.T.N.; Le, H.Q. Anti-wetting behaviour of a superhydrophobic octadecyltrimethoxysilane blended PVDF/recycled carbon black composite membrane for enhanced desalination. Environ. Sci. Water Res. Technol. 2018, 4, 1612–1623. [Google Scholar] [CrossRef]
- Zakaria, N.A.; Zaliman, S.Q.; Leo, C.P.; Ahmad, A.L.; Ooi, B.S.; Poh, P.E. 3D imprinted superhydrophobic polyvinylidene fluoride/carbon black membrane for membrane distillation with electrochemical cleaning evaluation. J. Environ. Chem. Eng. 2022, 10, 107346. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Xin, R.; Huang, X.; Zuo, K.; Tung, K.-L.; Li, Q. Wetting-resistant photothermal nanocomposite membranes for direct solar membrane distillation. J. Memb. Sci. 2021, 620, 118913. [Google Scholar] [CrossRef]
- Chen, L.; Qian, Y.; Wang, Y.; He, F.; Zhang, X. An insight into the performance of CNT-based membrane with the application of electric field for distillation process. Desalination 2022, 528, 115613. [Google Scholar] [CrossRef]
- Francis, L.; Hilal, N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. Nanomaterials 2022, 12, 4331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Song, M.; Qu, F.; Zhou, Y.; Yang, Y.; Qi, J.; Li, J. Engineering Multinanochannel Polymer-Intercalated Graphene Oxide Membrane for Strict Volatile Sieving in Membrane Distillation. Environ. Sci. Technol. 2024, 58, 1399–1409. [Google Scholar] [PubMed]
- Alberto, M.; Skuse, C.; Tamaddondar, M.; Gorgojo, P. Immobilized graphene oxide-based membranes for improved pore wetting resistance in membrane distillation. Desalination 2022, 537, 115898. [Google Scholar] [CrossRef]
- Chen, T.; Ma, W.; Lee, J.; Jassby, D.; Rahaman, M.S. Development of robust and superamphiphobic membranes using reduced graphene oxide (rGO)/PVDF-HFP nanocomposite mats for membrane distillation. Environ. Sci. Nano 2021, 8, 2883–2893. [Google Scholar] [CrossRef]
- Bhadra, M.; Roy, S.; Mitra, S. Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 2016, 378, 37–43. [Google Scholar] [CrossRef]
- Aljumaily, M.M.; Alayan, H.M.; Mohammed, A.A.; Alsaadi, M.A.; Alsalhy, Q.F.; Figoli, A.; Criscuoli, A. The influence of coating super-hydrophobic carbon nanomaterials on the performance of membrane distillation. Appl. Water Sci. 2022, 12, 28. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, W.; Deshmukh, A.; Jia, S.; Guo, H.; Xin, R.; Elimelech, M.; Ajayan, P.M.; Lou, J.; Li, Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nat. Nanotechnol. 2020, 15, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Y.; Wang, Z.; Liu, L.; Liu, H.; Wang, J. Electrothermally Driven Membrane Distillation for Low-Energy Consumption and Wetting Mitigation. Environ. Sci. Technol. 2019, 53, 13506–13513. [Google Scholar] [CrossRef] [PubMed]
- Pagliero, M.; Comite, A.; Soda, O.; Costa, C. Influence of carbon-based fillers on photoactive mixed matrix membranes formation. J. Memb. Sci. 2022, 658, 120752. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Xu, Y.; Song, C.; Pan, Z.; Liu, Y. A superhydrophobic carbon nanotube hollow fiber membrane for electrically self-heating membrane distillation. Desalination 2022, 541, 116044. [Google Scholar] [CrossRef]
- Razaqpur, A.G.; Wang, Y.; Liao, X.; Liao, Y.; Wang, R. Progress of photothermal membrane distillation for decentralized desalination: A review. Water Res. 2021, 201, 117299. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Peh, C.K.; Meng, F.L.; Ho, G.W. Photothermal Membrane Distillation toward Solar Water Production. Small Methods 2021, 5, 2001200. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ju, J.; Zhang, Y.; Zhou, Y.; Wang, Y.; Kang, W. Dual-structured PTFE/PI-PI/PANI composite membranes for photothermal membrane distillation with excellent photothermal conversion and open pathways for water vapor transport. Desalination 2024, 575, 117320. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef]
- Irshad, M.S.; Arshad, N.; Wang, X. Nanoenabled Photothermal Materials for Clean Water Production. Glob. Chall. 2021, 5, 2000055. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanya, T.M.; Lin, P.T.; Chiao, Y.-H.; Widakdo, J.; Chuang, C.-H.; Rahmadhanty, S.F.; Yoshikawa, S.; Hung, W.-S. High performance self-heated membrane distillation system for energy efficient desalination process. J. Mater. Chem. A 2021, 9, 7868–7880. [Google Scholar]
- Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864. [Google Scholar] [CrossRef]
- Anvari, A.; Yancheshme, A.A.; Kekre, K.M.; Ronen, A. State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. J. Memb. Sci. 2020, 616, 118413. [Google Scholar] [CrossRef]
- Lu, H.; Shi, W.; Zhao, F.; Zhang, W.; Zhang, P.; Zhao, C.; Yu, G. High-Yield and Low-Cost Solar Water Purification via Hydrogel-Based Membrane Distillation. Adv. Funct. Mater. 2021, 31, 2101036. [Google Scholar] [CrossRef]
- Boo, C.; Elimelech, M. Carbon nanotubes keep up the heat. Nat. Nanotechnol. 2017, 12, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Intermittent direct joule heating of membrane surface for seawater desalination by air gap membrane distillation. J. Memb. Sci. 2022, 648, 120390. [Google Scholar] [CrossRef]
- Li, K.; Liu, H.; Zhang, Y.; Hou, D.; Zhang, Y.; Wang, J. Electrothermal hollow fiber membrane for convenient heat management in Joule vacuum membrane distillation. Chem. Eng. J. 2022, 443, 136521. [Google Scholar] [CrossRef]
- Dudchenko, A.V.; Chen, C.; Cardenas, A.; Rolf, J.; Jassby, D. Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nat. Nanotechnol. 2017, 12, 557–563. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Shen, Z. Joule heating membrane distillation enhancement with multi-level thermal concentration and heat recovery. Energy Convers. Manag. 2021, 238, 114111. [Google Scholar] [CrossRef]
- Anvari, A.; Kekre, K.M.; Yancheshme, A.A.; Yao, Y.; Ronen, A. Membrane distillation of high salinity water by induction heated thermally conducting membranes. J. Memb. Sci. 2019, 589, 117253. [Google Scholar] [CrossRef]
- Huang, J.; Tang, T.; He, Y. Coupling photothermal and Joule-heating conversion for self-heating membrane distillation enhancement. Appl. Therm. Eng. 2021, 199, 117557. [Google Scholar] [CrossRef]
- Dongare, P.D.; Alabastri, A.; Pedersen, S.; Zodrow, K.R.; Hogan, N.J.; Neumann, O.; Wu, J.; Wang, T.; Deshmukh, A.; Elimelech, M.; et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA 2017, 114, 6936–6941. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zodrow, K.R.; Szemraj, P.B.; Li, Q. Photothermal nanocomposite membranes for direct solar membrane distillation. J. Mater. Chem. A 2017, 5, 23712–23719. [Google Scholar] [CrossRef]
- Chen, L.; Xu, P.; Musale, D.A.; Zhang, Y.; Asfan, R.; Galdeano, C.; Ghurye, G.L.; Wang, H. Multifunctional photocatalytic membrane distillation for treatment of hypersaline produced water using hydrophobically modified tubular ceramic membranes. J. Environ. Chem. Eng. 2023, 11, 111538. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, Y.; Huo, Y.; Li, H. Development of photocatalysis-membrane separation reactor systems for aqueous pollutant removal. PhotoMat 2023. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef] [PubMed]
- Hubadillah, S.K.; Tai, Z.S.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Sep. Purif. Technol. 2019, 217, 71–84. [Google Scholar] [CrossRef]
- Szymański, K.; Gryta, M.; Darowna, D.; Mozia, S. A new submerged photocatalytic membrane reactor based on membrane distillation for ketoprofen removal from various aqueous matrices. Chem. Eng. J. 2022, 435, 134872. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; An, X.; Hou, L. A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 2021, 412, 128663. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Cheng, W.; Hu, J. Photocatalytic membrane in water purification: Is it stepping closer to be driven by visible light? J. Memb. Sci. 2019, 584, 364–392. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Quan, X.; Yu, H.; Zhao, H. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl. Catal. B 2016, 194, 134–140. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, Y.; Jiang, Y. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chem. Eng. J. 2019, 356, 915–925. [Google Scholar] [CrossRef]
Polymer Type | Carbon Nanomaterial | Incorporation Method | Application | Performance | References |
---|---|---|---|---|---|
-- | BP (self-supporting) | DCMD | 12 LMH/99% rejection | [52] | |
PVDF | GO-ODA | AGMD | 16.7LMH/98.3% rejection | [58] | |
PVDF-HFP | CNTs | Electrospinning | DCMD | 48.1 LMH/99.98% rejection efficiency | [64] |
PVDF | APTS functionalized GO | Blending | AGMD | 6.2 LMH | [96] |
PTFE | CNTs | Coating | Electric enhance DCMD | 7.89 LMH | [106] |
PVDF-Co-HFP | CNTs | Electrospraying | DCMD | 8.1 LMH | [107] |
PVDF | GO/PVA&PP | Vacuum filtration | DCMD | 52 LMH | [108] |
PVDF | GO | Vacuum Filtration | AGMD | 10.7 LMH | [109] |
PVDF-CO-HFP | rGO | Electrospinning | DCMD | 27.79LMH/100% rejection | [110] |
PTFE | GO/PVDF | Drop cast | DCMD | 97 LMH | [111] |
PVDF-HFP | Powdered activated carbon | Chemical vapor deposition | DCMD | 77 LMH/99% rejection | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, C.; Kshetri, Y.K.; Wickramasinghe, S.R. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. Membranes 2024, 14, 160. https://doi.org/10.3390/membranes14070160
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. Membranes. 2024; 14(7):160. https://doi.org/10.3390/membranes14070160
Chicago/Turabian StyleRegmi, Chhabilal, Yuwaraj K. Kshetri, and S. Ranil Wickramasinghe. 2024. "Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects" Membranes 14, no. 7: 160. https://doi.org/10.3390/membranes14070160
APA StyleRegmi, C., Kshetri, Y. K., & Wickramasinghe, S. R. (2024). Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. Membranes, 14(7), 160. https://doi.org/10.3390/membranes14070160