Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal–Organic Frameworks: A Review
Abstract
:1. Introduction
2. Regulation of the Structure of the PA Layer by MOFs
2.1. Modulation of the Thickness of PA Layers
2.2. Regulation of the Morphology of PA Layers
2.3. Construction of Nano-Transmission Channels
3. Regulation of the Properties of the PA Layer by MOFs
3.1. Alterations in Hydrophilicity
3.2. Alterations in Surface Charge Properties
4. Strategy for the Preparation of MOF-TFN Membranes
4.1. Regulating Monomer Polymerization Behavior—MOFs as Aqueous-Phase Additives
4.2. Regulating the Surface Properties of the PA Layer—MOFs as Organic-Phase Additives
4.3. Avoiding Interface Defects—MOFs as Intermediate Layers
5. Optimization of the Properties of MOFs
5.1. Modulation of MOF Particle Size to Address Dispersion Issues
5.2. Modulation of MOF Pore Size for Precise Separation of Small Molecules
5.3. Modulation of MOF Functional Groups to Address Matrix Compatibility Issues
5.4. Design of MOFs with Different Charge Properties
6. MOF-TFN Membrane Design Guided by Molecular Simulation
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Terminology | Abbreviation | Terminology |
PA | polyamide | TFC | thin-film composite |
MOFs | metal–organic frameworks | TFN | thin-film nanocomposite |
NF | nanofiltration | RO | reverse osmosis |
UF | ultrafiltration | MPD | m-phenylenediamine |
TMC | 1,3,5-benzotricarbonyl chloride | PIP | piperazine |
GO | graphene oxide | COFs | covalent organic frameworks |
PIMs | inherently microporous polymers | SBUs | secondary building units |
IP | interfacial polymerization | HBSA | sodium 4-hydroxybenzenesulfonate |
PAH | polyaniline salt | SDS | sodium dodecyl sulfate |
PEI | polyetherimide | PSF | polysulfone |
PK | polyketone | MD | molecular dynamics |
SDBS | sodium dodecylbenzene sulfonate | BFS | branching fractal structures |
PVP | polyvinyl pyrrolidone | DFT | density functional theory |
CIP | conventional interfacial polymerization | ARIP | acetone-regulated interfacial polymerization |
SARIP | surfactant-regulated interfacial polymerization | γ-CD | γ-Cyclodextrin |
EDC | Endocrine-disrupting compound | CAIP | capillary-action-assisted interface polymerization |
XCD | p-xylene dichloride | piperazine-2-carboxylic acid | PIP-COOH |
TA | tannic acid | PE | polyethylene |
RIP | reversed-phase interfacial polymerization | GPTES | 3-glycerooxypropyl triethoxysilane |
PES | polyethersulfone | Lys | localization of lysine |
PDA | polydopamine | ED | ethylenediamine |
PhAC | pharmacological active compounds | ODA | octadecylamine |
EPD | electrophoretic deposition | ILs | ionic liquids |
CUS | coordination unsaturated sites | NEMD | non-equilibrium molecular dynamics |
References
- Xu, L.-H.; Li, S.-H.; Mao, H.; Li, Y.; Zhang, A.-S.; Wang, S.; Liu, W.-M.; Lv, J.; Wang, T.; Cai, W.-W.; et al. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022, 378, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Yu, X.; Fan, W.; Wee, V.; Zhao, D. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coord. Chem. Rev. 2021, 437, 213794. [Google Scholar] [CrossRef]
- Zhao, D.L.; Feng, F.; Shen, L.; Huang, Z.; Zhao, Q.; Lin, H.; Chung, T.-S. Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 2023, 454, 140447. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, Q.J.; Hou, Y.; Sun, H. Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: A review. Sep. Purif. Technol. 2024, 330, 125282. [Google Scholar] [CrossRef]
- Karan, S.; Jiang, Z.; Livingston, A.G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351. [Google Scholar] [CrossRef]
- Chiao, Y.-H.; Mai, Z.; Hung, W.-S.; Matsuyama, H. Osmotically assisted solvent reverse osmosis membrane for dewatering of aqueous ethanol solution. J. Membr. Sci. 2023, 672, 121434. [Google Scholar] [CrossRef]
- Zhao, L.; Ho, W.S.W. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J. Membr. Sci. 2014, 455, 44–54. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Mao, J.-Y.; Lin, H.-J.; Huang, C.-C. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling—A review. Desalination 2018, 429, 119–133. [Google Scholar] [CrossRef]
- Yang, B.; Gu, K.; Wang, S.; Yi, Z.; Zhou, Y.; Gao, C. Chitosan nanofiltration membranes with gradient cross-linking and improved mechanical performance for the removal of divalent salts and heavy metal ions. Desalination 2021, 516, 115200. [Google Scholar] [CrossRef]
- Feng, Y.; Peng, H.; Zhao, Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine. Sep. Purif. Technol. 2021, 280, 119848. [Google Scholar] [CrossRef]
- Labban, O.; Liu, C.; Chong, T.H. Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J. Membr. Sci. 2017, 521, 18–32. [Google Scholar] [CrossRef]
- Alvarez, P.J.J.; Chan, C.K.; Elimelech, M.; Halas, N.J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Y.; Hu, X.; Wang, C.; Huang, X.; Liu, D.; Zhang, Y. Monovalent/Divalent salts separation via thin film nanocomposite nanofiltration membrane containing aminated TiO2 nanoparticles. J. Taiwan Inst. Chem. Eng. 2020, 112, 169–179. [Google Scholar] [CrossRef]
- Liu, Z.; Qiang, R.; Lin, L.; Deng, X.; Yang, X.; Zhao, K.; Yang, J.; Li, X.; Ma, W.; Xu, M. Thermally modified polyimide/SiO2 nanofiltration membrane with high permeance and selectivity for efficient dye/salt separation. J. Membr. Sci. 2022, 658, 120747. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Wang, J.; Wei, Y.; Li, Z.; Gao, C. O-(Carboxymethyl)-chitosan Nanofiltration Membrane Surface Functionalized with Graphene Oxide Nanosheets for Enhanced Desalting Properties. ACS Appl. Mater. Interfaces 2015, 7, 4381–4389. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Gao, C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Appl. Mater. Interfaces 2015, 7, 8147–8155. [Google Scholar] [CrossRef]
- Kang, X.; Liu, X.; Liu, J.; Wen, Y.; Qi, J.; Li, X. Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance. Appl. Surf. Sci. 2020, 508, 145198. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Guo, J.; Cheng, X.; Han, G.; Lau, C.H.; Lin, H.; Liu, S.; Ma, J.; Shao, L. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 2023, 382, 202–206. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Qu, Z.; Fan, H.; Meng, H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat. Commun. 2023, 14, 7624. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, J.; Guo, B.-B.; Agarwal, S.; Greiner, A.; Xu, Z.-K. Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angew. Chem. 2021, 60, 14636–14643. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Liao, Z.; Chen, K.; Xie, J.; Li, Q.; Qi, J.; Sun, X.; Wang, L.; Li, J. Defect-engineered UiO-66-NH2 modified thin film nanocomposite membrane with enhanced nanofiltration performance. Chem. Commun. 2020, 56, 8372–8375. [Google Scholar] [CrossRef]
- Trinh, D.X.; Tran, T.P.N.; Taniike, T. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Sep. Purif. Technol. 2017, 177, 249–256. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, M.; Guo, Y.; Mamrol, N.; Yang, X.; Gao, C.; Van der Bruggen, B. Metal-organic framework based membranes for selective separation of target ions. J. Membr. Sci. 2021, 634, 119407. [Google Scholar] [CrossRef]
- Sarkar, P.; Modak, S.; Karan, S. Ultraselective and Highly Permeable Polyamide Nanofilms for Ionic and Molecular Nanofiltration. Adv. Funct. Mater. 2021, 31, 2007054. [Google Scholar] [CrossRef]
- Zhu, J.; Hou, J.; Zhang, R.; Yuan, S.; Li, J.; Tian, M.; Wang, P.; Zhang, Y.; Volodin, A.; Van der Bruggen, B. Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration. J. Mater. Chem. A 2018, 6, 15701–15709. [Google Scholar] [CrossRef]
- Akther, N.; Kawabata, Y.; Lim, S.; Yoshioka, T.; Phuntsho, S.; Matsuyama, H.; Shon, H.K. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study. J. Membr. Sci. 2021, 630, 119309. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, J.; Yin, Z.; Khan, N.A.; Yang, C.; Long, M.; Lyu, B.; You, X.; Zhang, R.; El, A.; et al. Organic salt modulated preparation of ultra-thin and loose polyamide nanofiltration membranes with enhanced performance. J. Membr. Sci. 2023, 680, 121739. [Google Scholar] [CrossRef]
- Song, Q.; Lin, Y.; Zhou, S.; Istirokhatun, T.; Wang, Z.; Shen, Q.; Mai, Z.; Guan, K.; Matsuyama, H. Highly permeable nanofilms with asymmetric multilayered structure engineered via amine-decorated interlayered interfacial polymerization. J. Membr. Sci. 2023, 670, 121377. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, X.; Shen, Q.; Ueda, T.; Kawabata, Y.; Segawa, J.; Guan, K.; Istirokhatun, T.; Song, Q.; Yoshioka, T.; et al. Zwitterionic Copolymer-Regulated Interfacial Polymerization for Highly Permselective Nanofiltration Membrane. Nano Lett. 2021, 21, 6525–6532. [Google Scholar] [CrossRef]
- Huo, X.; Jing, Z.; Wang, H.; Chang, N. Sodium dodecyl sulfate/C-UIO-66 regulation of nanofiltration membrane with pleated and thin polyamide layer structure. Desalination 2022, 538, 115927. [Google Scholar] [CrossRef]
- Li, H.; Huang, L.; Li, X.; Huang, W.; Li, L.; Li, W.; Cai, M.; Zhong, Z. Calcium-alginate/HKUST-1 interlayer-assisted interfacial polymerization reaction enhances performance of solvent-resistant nanofiltration membranes. Sep. Purif. Technol. 2023, 309, 123031. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518–521. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, W.; Wang, Q.; Huang, F.; Gao, C.; Xue, L. Tuning the nano-porosity and nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial polymerization. J. Membr. Sci. 2021, 640, 119780. [Google Scholar] [CrossRef]
- Fu, W.; Deng, L.; Hu, M.; Mai, Z.; Xu, G.; Shi, Y.; Guan, K.; Gonzales, R.R.; Matsuoka, A.; Matsuyama, H. Polyamide composite membrane with 3D honeycomb-like structure via acetone-regulated interfacial polymerization for high-efficiency organic solvent nanofiltration. J. Membr. Sci. 2023, 679, 121711. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, T.; Li, S.-H.; Feng, Y.-N.; Zhao, Z.-Z.; Ren, Y.-S.; Zhao, Z.-P. Reticulated Polyamide Thin-Film Nanocomposite Membranes Incorporated with 2D Boron Nitride Nanosheets for High-Performance Nanofiltration. ACS Appl. Mater. Interfaces 2023, 15, 28606–28617. [Google Scholar] [CrossRef]
- Wen, Y.; Dai, R.; Li, X.; Zhang, X.; Cao, X.; Wu, Z.; Lin, S.; Tang, C.Y.; Wang, Z. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 2022, 8, eabm4149. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, H.; Wang, T.; Dai, R.; Wang, Z. Nanofoaming by surfactant tunes morphology and performance of polyamide nanofiltration membrane. Desalination 2023, 552, 116457. [Google Scholar] [CrossRef]
- Shen, K.; Li, P.; Zhang, T.; Wang, X. Salt-tuned fabrication of novel polyamide composite nanofiltration membranes with three-dimensional turing structures for effective desalination. J. Membr. Sci. 2020, 607, 118153. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, R.; Zhu, Y.; Wang, Z.; Fang, W.; Lin, S.; Jin, J. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proc. Natl. Acad. Sci. USA 2021, 118, e2019891118. [Google Scholar] [CrossRef]
- He, H.; Xu, P.; Wang, S.; Wang, X.; Ma, S.; Peng, H.; Lv, Y.; Zhou, H.; Chen, C. Inorganic salt-conditioning preparation of a copper (II) ions-doped thin film composite membrane with ridge-valley morphology for efficient organic solvent nanofiltration. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131114. [Google Scholar] [CrossRef]
- Song, N.; Xie, X.; Chen, D.; Li, G.; Dong, H.; Yu, L.; Dong, L. Tailoring nanofiltration membrane with three-dimensional turing flower protuberances for water purification. J. Membr. Sci. 2021, 621, 118985. [Google Scholar] [CrossRef]
- Xiao, F.; Cao, M.; Chen, Y. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration. Desalination 2022, 544, 116146. [Google Scholar] [CrossRef]
- Huo, X.; Zhao, Y.; Jing, Z.; Wang, J.; Wang, H.; Chang, N. Construction of Lewis acid-base via the formation of defective UiO-66 for regulation of the surface nanostructure on nanofiltration membrane. Desalination 2024, 582, 117615. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, Y.; Liu, C.; Lee, K.-R.; Hung, W.-S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.; Lin, S. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 2020, 11, 2015. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, H.; Li, P.; Ding, S.; Wang, X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep. Purif. Technol. 2022, 297, 121541. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, C.; Shi, X.; Yang, G.; Wang, Y. Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Sep. Purif. Technol. 2022, 283, 120233. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, M.; Tong, C.; Wang, Z.; Liu, H.; Zhu, L. In-situ incorporating zwitterionic nanocellulose into polyamide nanofiltration membrane towards excellent perm-selectivity and antifouling performances. Desalination 2022, 521, 115397. [Google Scholar] [CrossRef]
- Xu, X.; Hua, G.; Chen, Y.; Zhang, Y.; Zhang, Z.; Yang, W.; Liu, F.; Li, A. Dually charged polyamide nanofiltration membrane incorporated UiO-66-(NH2)2: Synergistic rejection of divalent cations and anions. Sep. Purif. Technol. 2023, 311, 123223. [Google Scholar] [CrossRef]
- Dai, R.; Guo, H.; Tang, C.Y.; Chen, M.; Li, J.; Wang, Z. Hydrophilic Selective Nanochannels Created by Metal Organic Frameworks in Nanofiltration Membranes Enhance Rejection of Hydrophobic Endocrine-Disrupting Compounds. Environ. Sci. Technol. 2019, 53, 13776–13783. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tong, X.; Kim, J.; Tong, T.; Huang, C.-H.; Chen, Y. Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute–Solute Separation. Environ. Sci. Technol. 2022, 56, 5849–5859. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Han, H.; Zhu, Y.; Wang, X.; Wang, Z. Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Front. Environ. Sci. Eng. 2021, 16, 40. [Google Scholar] [CrossRef]
- Rahimi, Z.; Zinatizadeh, A.A.; Zinadini, S.; van Loosdrecht, M.C.M. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep. Purif. Technol. 2020, 247, 116979. [Google Scholar] [CrossRef]
- Bandehali, S.; Parvizian, F.; Moghadassi, A.; Hosseini, S.M. High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Sep. Purif. Technol. 2020, 237, 116361. [Google Scholar] [CrossRef]
- Bao, X.; Wu, Q.; Shi, W.; Wang, W.; Yu, H.; Zhu, Z.; Zhang, X.; Zhang, Z.; Zhang, R.; Cui, F. Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. Water Res. 2019, 153, 1–10. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, X.; Luo, X.; Cheng, X.; Xu, D.; Gan, Z.; Wang, W.; Bai, L.; Li, G.; Liang, H. Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. J. Colloid Interface Sci. 2020, 571, 155–165. [Google Scholar] [CrossRef]
- Guo, Y.-S.; Liu, Q.; Shen, Y.; Wang, N.; Ji, Y.-L.; Wanjiya, M.; An, Q.-F.; Gao, C.-J. Preparation of anti-fouling zwitterionic nanofiltration membrane with tunable surface charge. Adv. Membr. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Tang, S.; Chen, Y.; Zhang, H.; Zhang, T.; Wang, P.; Sun, H. A novel loose nanofiltration membrane with high permeance and anti-fouling performance based on aqueous monomer piperazine-2-carboxylic acid for efficient dye/salt separation. Chem. Eng. J. 2023, 475, 146111. [Google Scholar] [CrossRef]
- Hu, Q.; Yuan, Y.; Wu, Z.; Lu, H.; Li, N.; Zhang, H. The effect of surficial function groups on the anti-fouling and anti-scaling performance of thin-film composite reverse osmosis membranes. J. Membr. Sci. 2023, 668, 121276. [Google Scholar] [CrossRef]
- Gao, C.; Zou, P.; Ji, S.; Xing, Y.; Cai, J.; Wu, J.; Wu, T. High-flux loose nanofiltration membrane with anti-dye fouling ability based on TA@ZIF-8 for efficient dye/salt separation. J. Environ. Chem. Eng. 2023, 11, 110444. [Google Scholar] [CrossRef]
- Cheng, P.; Zhu, T.; Wang, X.; Fan, K.; Liu, Y.; Wang, X.-M.; Xia, S. Enhancing Nanofiltration Selectivity of Metal–Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. Environ. Sci. Technol. 2023, 57, 12879–12889. [Google Scholar] [CrossRef]
- Guo, C.; Qian, Y.; Liu, P.; Zhang, Q.; Zeng, X.; Xu, Z.; Zhang, S.; Li, N.; Qian, X.; Yu, F. One-Step Construction of the Positively/Negatively Charged Ultrathin Janus Nanofiltration Membrane for the Separation of Li+ and Mg2+. ACS Appl. Mater. Interfaces 2023, 15, 4814–4825. [Google Scholar] [CrossRef]
- Xu, P.; Gonzales, R.R.; Hong, J.; Guan, K.; Chiao, Y.-H.; Mai, Z.; Li, Z.; Rajabzadeh, S.; Matsuyama, H. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment. J. Membr. Sci. 2023, 668, 121251. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Y.; Ma, J.; Wang, H.; Xue, X.; Bai, C.; Lin, M.; Luo, L.; Gao, C.; Xue, L. Polyamide/polyethylene thin film composite (PA/PE-TFC) NF membranes prepared from reverse-phase interface polymerization (RIP) for improved Mg(II)/Li(I) separation. Desalination 2023, 553, 116463. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, T.; Dai, Z.; Su, F.; Xia, X.; Dong, P.; Zhang, J. A novel positively charged nanofiltration membrane stimulated by amino-functionalized MXene Ti3C2Tx for high rejection of water hardness ions. J. Membr. Sci. 2023, 671, 121385. [Google Scholar] [CrossRef]
- Han, G.; Studer, R.M.; Lee, M.; Rodriguez, K.M.; Teesdale, J.J.; Smith, Z.P. Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. J. Membr. Sci. 2023, 666, 121133. [Google Scholar] [CrossRef]
- Gu, Z.; Yu, S.; Zhu, J.; Li, P.; Gao, X.; Zhang, R. Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity. Desalination 2020, 493, 114661. [Google Scholar] [CrossRef]
- Xiao, F.; Hu, X.; Chen, Y.; Zhang, Y. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance. ACS Appl. Mater. Interfaces 2019, 11, 47390–47403. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Xue, S.; Tang, Y.-J.; Ma, X.-H.; Xu, Z.-L. Polyamide Membranes with Net-like Nanostructures Induced by Different Charged MOFs for Elevated Nanofiltration. ACS Appl. Polym. Mater. 2020, 2, 585–593. [Google Scholar] [CrossRef]
- Zhang, H.-Z.; Sun, J.-Y.; Zhang, Z.-L.; Xu, Z.-L. Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants. Sep. Purif. Technol. 2021, 258, 118069. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D. Bioinspired MOF-Glucose-PDA composite membrane with high performance and antifouling ability based on three-dimensional modification for molecular separation. J. Environ. Chem. Eng. 2023, 11, 110470. [Google Scholar] [CrossRef]
- Zhu, J.; Hou, J.; Yuan, S.; Zhao, Y.; Li, Y.; Zhang, R.; Tian, M.; Li, J.; Wang, J.; Van der Bruggen, B. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. J. Mater. Chem. A 2019, 7, 16313–16322. [Google Scholar] [CrossRef]
- Cui, X.; Kong, G.; Feng, Y.; Li, L.; Fan, W.; Pang, J.; Fan, L.; Wang, R.; Guo, H.; Kang, Z.; et al. Interfacial polymerization of MOF “monomers” to fabricate flexible and thin membranes for molecular separation with ultrafast water transport. J. Mater. Chem. A 2021, 9, 17528–17537. [Google Scholar] [CrossRef]
- Liu, R.; Chi, L.; Feng, J.; Wang, X. MOFs-derived conductive structure for high-performance removal/release of phosphate as electrode material. Water Res. 2020, 184, 116198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Wang, D.; Cao, R.; Li, J. Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chem. Eng. J. 2022, 430, 132702. [Google Scholar] [CrossRef]
- Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate Metal–Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions. J. Am. Chem. Soc. 2017, 139, 8259–8266. [Google Scholar] [CrossRef]
- Yu, F.; Bai, X.; Liang, M.; Ma, J. Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem. Eng. J. 2021, 405, 126960. [Google Scholar] [CrossRef]
- Cabello, C.P.; Picó, M.F.F.; Maya, F.; del Rio, M.; Palomino, G.T. UiO-66 derived etched carbon/polymer membranes: High-performance supports for the extraction of organic pollutants from water. Chem. Eng. J. 2018, 346, 85–93. [Google Scholar] [CrossRef]
- Dai, R.; Wang, X.; Tang, C.Y.; Wang, Z. Dually Charged MOF-Based Thin-Film Nanocomposite Nanofiltration Membrane for Enhanced Removal of Charged Pharmaceutically Active Compounds. Environ. Sci. Technol. 2020, 54, 7619–7628. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Liu, L.; Chen, Y. Construction of high performance thin-film nanocomposite nanofiltration membrane by incorporation of hydrophobic MOF-derived nanocages. Appl. Surf. Sci. 2021, 570, 151093. [Google Scholar] [CrossRef]
- Zhao, Z.-Z.; Wang, T.; Zheng, X.; Ren, Y.; Zhao, Z.-P. MOF-808/Polyamide Thin-Film Nanocomposite Membranes for Efficient Nanofiltration. ACS Appl. Nano Mater. 2023, 6, 17615–17625. [Google Scholar] [CrossRef]
- Dai, R.; Li, J.; Wang, Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review. Adv. Colloid Interface Sci. 2020, 282, 102204. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, L.; Meng, F.; Shao, W.; Liu, X.; Li, M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J. Membr. Sci. 2021, 632, 119356. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Zhu, J.; Li, X.; Yuan, S.; Tian, M.; Wang, J.; Luis, P.; der Bruggen, B.V.; Lin, J. Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration. Desalination 2021, 512, 115125. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, W.; Jiao, Y.; Xu, Y.; Lin, H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J. Membr. Sci. 2021, 624, 119101. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, Y.; Zhang, W.; Lin, H.; Shen, L.; Li, R.; Jiao, Y.; Liao, B.-Q. Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficient desalination. J. Membr. Sci. 2021, 618, 118726. [Google Scholar] [CrossRef]
- Yang, F.; Sadam, H.; Zhang, Y.; Xia, J.; Yang, X.; Long, J.; Li, S.; Shao, L. A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem. Eng. Sci. 2020, 225, 115845. [Google Scholar] [CrossRef]
- Yang, S.; Li, H.; Zhang, X.; Du, S.; Zhang, J.; Su, B.; Gao, X.; Mandal, B. Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane. J. Membr. Sci. 2020, 614, 118433. [Google Scholar] [CrossRef]
- Echaide-Górriz, C.; Zapata, J.A.; Etxeberría-Benavides, M.; Téllez, C.; Coronas, J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep. Purif. Technol. 2020, 236, 116265. [Google Scholar] [CrossRef]
- Lind, M.L.; Ghosh, A.K.; Jawor, A.; Huang, X.; Hou, W.; Yang, Y.; Hoek, E.M.V. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes. Langmuir 2009, 25, 10139–10145. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tang, Y.P.; Ma, D.; Chung, T.-S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Membr. Sci. 2017, 541, 262–270. [Google Scholar] [CrossRef]
- Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci. 2019, 571, 23–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Q.; Li, Y.; Zhang, R.; Lu, G. Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. ACS Appl. Mater. Interfaces 2017, 9, 15079–15085. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, Y.; Guo, Y.; Zhang, L.; Zhang, Y.; Wang, J. A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem. Commun. 2018, 54, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling Zeolitic Imidazolate Framework Nano and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering. Chem. Mater. 2011, 23, 2130–2141. [Google Scholar] [CrossRef]
- Huang, C.; Gu, X.; Su, X.; Xu, Z.; Liu, R.; Zhu, H. Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene. J. Solid State Chem. 2020, 289, 121497. [Google Scholar] [CrossRef]
- Suresh, K.; Aulakh, D.; Purewal, J.; Siegel, D.J.; Veenstra, M.; Matzger, A.J. Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size. J. Am. Chem. Soc. 2021, 143, 10727–10734. [Google Scholar] [CrossRef]
- Bunzen, H.; Grzywa, M.; Hambach, M.; Spirkl, S.; Volkmer, D. From Micro to Nano: A Toolbox for Tuning Crystal Size and Morphology of Benzotriazolate-Based Metal–Organic Frameworks. Cryst. Growth Des. 2016, 16, 3190–3197. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Kitagawa, S.J.A.C. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angew. Chem. 2010, 48, 4739–4743. [Google Scholar] [CrossRef]
- Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes. Chem. Mater. 2010, 22, 4531–4538. [Google Scholar] [CrossRef]
- Llabrés-Campaner, P.J.; Zaragozá, R.J.; Aurell, M.J.; Ballesteros, R.; Abarca, B.; García-España, E.; Rodrigo, G.; Ballesteros-Garrido, R. Empirical modeling of material composition and size in MOFs prepared with ligand mixtures. Dalton Trans. 2019, 48, 2881–2885. [Google Scholar] [CrossRef] [PubMed]
- Łuczak, J.; Kroczewska, M.; Baluk, M.; Sowik, J.; Mazierski, P.; Zaleska-Medynska, A. Morphology control through the synthesis of metal-organic frameworks. Adv. Colloid Interface Sci. 2023, 314, 102864. [Google Scholar] [CrossRef]
- Bonnett, B.L.; Smith, E.D.; De La Garza, M.; Cai, M.; Haag, J.V.; Serrano, J.M.; Cornell, H.D.; Gibbons, B.; Martin, S.M.; Morris, A.J. PCN-222 Metal–Organic Framework Nanoparticles with Tunable Pore Size for Nanocomposite Reverse Osmosis Membranes. ACS Appl. Mater. Interfaces 2020, 12, 15765–15773. [Google Scholar] [CrossRef]
- Cseri, L.; Hardian, R.; Anan, S.; Vovusha, H.; Schwingenschlögl, U.; Budd, P.M.; Sada, K.; Kokado, K.; Szekely, G. Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: Precise molecular sieving with polymer-grafted metal–organic frameworks. J. Mater. Chem. A 2021, 9, 23793–23801. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Shu, Y.; Han, Q.; Chen, B.; Liu, B.; Wang, Z.; Tang, C.Y. Precisely regulated in-plane pore sizes of Co-MOF nanosheet membranes for efficient dye recovery. Desalination 2023, 567, 116979. [Google Scholar] [CrossRef]
- Yuan, S.; Huang, L.; Huang, Z.; Sun, D.; Qin, J.-S.; Feng, L.; Li, J.; Zou, X.; Cagin, T.; Zhou, H.-C. Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 4732–4738. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chevrier, S.M.; Yan, Q.; Gabriel, J.-C.P. Tailorable metal–organic framework based thin film nanocomposite membrane for lithium recovery from wasted batteries. Sep. Purif. Technol. 2024, 334, 125943. [Google Scholar] [CrossRef]
- He, H.-H.; Guan, Z.-J.; Peng, Y.; Liang, Y.; Li, J.; Zhang, L.-L.; Fang, Y. Engineering the interactions between metal-organic frameworks and modifying agents: Design, structures, and applications. Coord. Chem. Rev. 2024, 499, 215515. [Google Scholar] [CrossRef]
- Xue, T.; He, T.; Peng, L.; Syzgantseva, O.A.; Li, R.; Liu, C.; Sun, D.T.; Xu, G.; Qiu, R.; Wang, Y.; et al. A customized MOF-polymer composite for rapid gold extraction from water matrices. Sci. Adv. 2023, 9, eadg4923. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, N.; Feng, C.; Zhang, Q.; Yu, J.; Jiao, Y.; Xu, Y.; Chen, J. Citric acid modified β-cyclodextrin for the synthesis of water-stable and recoverable CD-MOF with enhanced adsorption sites: Efficient removal of Congo red and copper ions from wastewater. J. Environ. Chem. Eng. 2023, 11, 111413. [Google Scholar] [CrossRef]
- Cui, X.; Kong, G.; Wei, S.; Cui, Y.; Yu, P.; Kang, Z.; Guo, H. Amino-grafted MOF-based composite membranes for improving Li+/Mg2+ separation performance. Sep. Purif. Technol. 2024, 330, 125485. [Google Scholar] [CrossRef]
- Xiao, S.; Huo, X.; Tong, Y.; Cheng, C.; Yu, S.; Tan, X. Improvement of thin-film nanocomposite (TFN) membrane performance by CAU-1 with low charge and small size. Sep. Purif. Technol. 2021, 274, 118467. [Google Scholar] [CrossRef]
- Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; et al. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468. [Google Scholar] [CrossRef]
- Winarta, J.; Shan, B.; McIntyre, S.M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Cryst. Growth Des. 2020, 20, 1347–1362. [Google Scholar] [CrossRef]
- Hong, A.N.; Kusumoputro, E.; Wang, Y.; Yang, H.; Chen, Y.; Bu, X.; Feng, P. Simultaneous Control of Pore-Space Partition and Charge Distribution in Multi-Modular Metal–Organic Frameworks. Angew. Chem. 2022, 61, e202116064. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lopez, R.; Ramon, G.Z.; Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Membr. Sci. 2016, 497, 365–376. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, M.; Zhou, K.; Law, A. Molecular Insights into the Composition-Structure-Property Relationships of Polyamide Thin Films for Reverse Osmosis Desalination. Environ. Sci. Technol. 2019, 53, 6374–6382. [Google Scholar] [CrossRef]
- Zhang, W.; Chu, R.; Shi, W.; Hu, Y. Quantitively unveiling the activity-structure relationship of polyamide membrane: A molecular dynamics simulation study. Desalination 2022, 528, 115640. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.-P.; Zong, Z.-A.; Lin, R.; Zhang, X.-Y.; Chen, F.-S.; Ding, W.-D.; Zhang, L.-L.; Meng, X.-M.; Hou, J. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J. Membr. Sci. 2022, 653, 120520. [Google Scholar] [CrossRef]
- Caskey, S.R.; Wong-Foy, A.G.; Matzger, A.J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 2008, 130, 10870–10871. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.; Bai, J. Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal–Organic Frameworks To Sharply Enhance the Selectivity for CO2. J. Am. Chem. Soc. 2013, 135, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Daglar, H.; Keskin, S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord. Chem. Rev. 2020, 422, 213470. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Huo, X.; Gao, L.; Shao, W.; Chang, N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal–Organic Frameworks: A Review. Membranes 2024, 14, 201. https://doi.org/10.3390/membranes14090201
Jia Y, Huo X, Gao L, Shao W, Chang N. Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal–Organic Frameworks: A Review. Membranes. 2024; 14(9):201. https://doi.org/10.3390/membranes14090201
Chicago/Turabian StyleJia, Yanjun, Xiaowen Huo, Lu Gao, Wei Shao, and Na Chang. 2024. "Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal–Organic Frameworks: A Review" Membranes 14, no. 9: 201. https://doi.org/10.3390/membranes14090201
APA StyleJia, Y., Huo, X., Gao, L., Shao, W., & Chang, N. (2024). Controllable Design of Polyamide Composite Membrane Separation Layer Structures via Metal–Organic Frameworks: A Review. Membranes, 14(9), 201. https://doi.org/10.3390/membranes14090201