Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate
Abstract
:1. Introduction
2. Separation of Digestate
Characteristic | Unit | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | |
---|---|---|---|---|---|---|---|---|---|---|---|
Substrate for AD | pig slurry and plant materials | liquid manure and corn silage | pig manure | food waste | livestock manure and agricultural residue | chicken manure | sewage sludge | swine wastewater | cow manure | ||
L/S separation method | mechanical dewatering | filtration | |||||||||
pH | – | 8.03 | 7.54 | NA | 8.83 | 7.10 | NA | NA | 4.43 | 8.16 | 8.77 |
Total Solids (TS) | % | 2.32 | 1.45 | NA | 3763.33 mg/L | NA | NA | 2.63 | 2.84 g/kg | NA | 8.8 |
Volatile Solids (VS) | % TS | 67.2 | 66.1 | NA | NA | NA | NA | 49.13 | 1.35 g/kg | NA | 5.37 |
TSS | mg/L | NA | NA | 10,700 | NA | NA | NA | NA | 7.33 | 1041 | NA |
TOC | mg/L | NA | NA | NA | NA | 2140 | NA | NA | NA | 588.25 | 36% TS |
COD | mg/L | NA | NA | 13,400 | NA | NA | NA | NA | 7413 | 1009.50 | NA |
SCOD | mg/L | NA | NA | 11,700 | NA | NA | NA | NA | 6417 | NA | NA |
NH4+-N | mg/L | NA | NA | 2800 | NA | 2360 | NA | 3750 | 128.67 | 532.36 | 4.4% TS |
TN | mg/L | 9.70% TS | 14.8% TS | 5800 | 1536.80 | 3100 | 331.33 | 4500 | NA | 564.50 | 8.4% TS |
TC-to-TN ratio | – | 4.40 | 2.38 | NA | NA | NA | NA | NA | NA | NA | 4.2 |
Nitrate nitrogen | mg/L | NA | NA | NA | NA | 66.80 | NA | NA | 1013.33 | NA | TS |
VFA | mg/L | NA | NA | NA | NA | NA | NA | 56.38 | 3097 | NA | NA |
P | mg/L | 2.44% TS | 1.66% TS | 600 | 17.97 | 256 | 153.62 | NA | 810 | 41.94 | 4.3% TS |
K | mg/L | 5.78% TS | 9.24% TS | NA | NA | 960 | 470.25 | NA | NA | 303.13 | 10.7% TS |
Electrical conductivity (EC) | mS/cm | NA | NA | NA | NA | 25.8 | NA | NA | NA | 5.46 | 4.6 |
Calcium | mg/L | NA | NA | NA | NA | NA | 12.90 | NA | NA | 39.41 | NA |
Sodium | mg/L | NA | NA | NA | NA | 1590 | 106.2 | NA | NA | 104.80 | NA |
Magnesium | mg/L | NA | NA | NA | NA | NA | 3.38 | NA | NA | 15.59 | 3.6%TS |
Cadmium | mg/L | NA | NA | NA | NA | NA | 0.01 | NA | NA | 2.31 | 0.1 mg/kg TS |
Chromium | mg/L | NA | NA | NA | NA | NA | 0.05 | NA | NA | NA | 10 mg/kg TS |
Iron | mg/L | NA | NA | NA | NA | 1.01 | 4.20 | NA | 9.33 | NA | 0.25% TS |
Manganese | mg/L | NA | NA | NA | NA | 0.04 | 0.02 | NA | NA | NA | 360 mg/kg TS |
Copper | mg/L | NA | NA | NA | NA | 0.33 | 0.40 | NA | 7.00 | NA | NA |
Zinc | mg/L | NA | NA | NA | NA | 0.10 | 2.42 | NA | 14.00 | 4.55 | 135 mg/kg TS |
Aluminum | mg/L | NA | NA | NA | NA | NA | NA | NA | 0.60 | NA | NA |
3. Membrane Technologies for Nutrient Recovery from LFD
3.1. Pressure-Driven Membrane Technologies
3.2. ED
3.3. MCs
3.4. MD
3.5. Summary of the Use of Membrane Technologies for Nutrient Recovery from LFD
4. Fouling in Membrane-Based Processes
5. Biological Removal of N and Its Combination with Membrane Techniques
6. Pilot- and Full-Scale Applications of Membrane Technologies for Nutrient Recovery
7. Challenges and Costs of Membrane Technologies for Nutrient Recovery
8. Conclusions and Future Perspectives on Membrane-Based Technologies
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzioli, F.; Bertasini, D.; Bolzonella, D.; Frison, N.; Battista, F. A Critical Review on the Techno-Economic Feasibility of Nutrients Recovery from Anaerobic Digestate in the Agricultural Sector. Sep. Purif. Technol. 2023, 306, 122690. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Exploring Technological Alternatives of Nutrient Recovery from Digestate as a Secondary Resource. Renew. Sustain. Energy Rev. 2020, 134, 110379. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Song, X.; Zhang, B.; Li, G.; Huda, N.; Luo, W. Membrane Processes for Resource Recovery from Anaerobically Digested Livestock Manure Effluent: Opportunities and Challenges. Curr. Pollut. Rep. 2020, 6, 123–136. [Google Scholar] [CrossRef]
- Nageswara Rao, L.; Shaik, F. Review on an Integrated Pre-Treatment System to Reduce Membrane Accelerated Biofouling during Red Tide Occurrences in Oman. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Ablieieva, I.; Geletukha, G.; Kucheruk, P.; Enrich-Prast, A.; Carraro, G.; Berezhna, I.; Berezhnyi, D. Digestate Potential to Substitute Mineral Fertilizers: Engineering Approaches. J. Eng. Sci. 2022, 9, H1–H10. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and Liquid Fractionation of Digestate: Mass Balance, Chemical Characterization, and Agronomic and Environmental Value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Guillén Fiallos, C.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic Digestate Management, Environmental Impacts, and Techno-Economic Challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A Review of Pressure-Driven Membrane Processes in Wastewater Treatment and Drinking Water Production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-Based Processes for Wastewater Nutrient Recovery: Technology, Challenges, and Future Direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef]
- Peng, W.; Lü, F.; Hao, L.; Zhang, H.; Shao, L.; He, P. Digestate Management for High-Solid Anaerobic Digestion of Organic Wastes: A Review. Bioresour. Technol. 2020, 297, 122485. [Google Scholar] [CrossRef]
- Lyons, G.A.; Cathcart, A.; Frost, J.P.; Wills, M.; Johnston, C.; Ramsey, R.; Smyth, B. Review of Two Mechanical Separation Technologies for the Sustainable Management of Agricultural Phosphorus in Nutrient-Vulnerable Zones. Agronomy 2021, 11, 836. [Google Scholar] [CrossRef]
- Carraro, G.; Tonderski, K.; Enrich-Prast, A. Solid-Liquid Separation of Digestate from Biogas Plants: A Systematic Review of the Techniques’ Performance. J. Environ. Manag. 2024, 356, 120585. [Google Scholar] [CrossRef] [PubMed]
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrere, H. Comprehensive Characterization of the Liquid Fraction of Digestates from Full-Scale Anaerobic Co-Digestion. Waste Manag. 2017, 59, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Beggio, G.; Peng, W.; Lü, F.; Cerasaro, A.; Bonato, T.; Pivato, A. Chemically Enhanced Solid–Liquid Separation of Digestate: Suspended Solids Removal and Effects on Environmental Quality of Separated Fractions. Waste Biomass Valorization 2022, 13, 1029–1041. [Google Scholar] [CrossRef]
- Nowak, M.; Czekała, W. Sustainable Use of Digestate from Biogas Plants: Separation of Raw Digestate and Liquid Fraction Processing. Sustainability 2024, 16, 5461. [Google Scholar] [CrossRef]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef]
- Slepetiene, A.; Ceseviciene, J.; Amaleviciute-Volunge, K.; Mankeviciene, A.; Parasotas, I.; Skersiene, A.; Jurgutis, L.; Volungevicius, J.; Veteikis, D.; Mockeviciene, I. Solid and Liquid Phases of Anaerobic Digestate for Sustainable Use of Agricultural Soil. Sustainability 2023, 15, 1345. [Google Scholar] [CrossRef]
- Świątczak, P.; Cydzik-Kwiatkowska, A.; Zielińska, M. Treatment of the Liquid Phase of Digestate from a Biogas Plant for Water Reuse. Bioresour. Technol. 2019, 276, 226–235. [Google Scholar] [CrossRef]
- Wang, P.; Xu, C.; Zhang, X.; Yuan, Q.; Shan, S. Effect of Photocatalysis on the Physicochemical Properties of Liquid Digestate. Environ. Res. 2023, 223, 115467. [Google Scholar] [CrossRef]
- Bian, X.; Wang, K.; Gong, H. Biochar-Enhanced Agricultural Application of Liquid Digestate from Food Waste Anaerobic Digestion for Celery Cultivation. Sci. Total Environ. 2023, 869, 161562. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Bantis, F.; Koukounaras, A.; Kougias, P.G. Exploitation of Liquid Digestate as the Sole Nutrient Source for Floating Hydroponic Cultivation of Baby Lettuce (Lactuca Sativa) in Greenhouses. Energies 2021, 14, 7199. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, X.; Li, Z.; Wang, X.; Sun, J. Effects of Liquid Digestate Pretreatment on Biogas Production for Anaerobic Digestion of Wheat Straw. Bioresour. Technol. 2019, 280, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, E.; Borowski, S.; Nowicka-Krawczyk, P.; Banach, K. Treatment of Liquid Digestate by Green Algal Isolates from Artificial Eutrophic Pond. Molecules 2022, 27, 6856. [Google Scholar] [CrossRef]
- Qi, B.; Jiang, X.; Wang, H.; Li, J.; Zhao, Q.; Li, R.; Wang, W. Resource Recovery from Liquid Digestate of Swine Wastewater by an Ultrafiltration Membrane Bioreactor (UF-MBR) and Reverse Osmosis (RO) Process. Environ. Technol. Innov. 2021, 24, 101830. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Cavani, L.; Porfido, C.; Terzano, R.; Pii, Y.; Cesco, S.; Marzadori, C.; Mimmo, T. The Fertilising Potential of Manure-Based Biogas Fermentation Residues: Pelleted vs. Liquid Digestate. Heliyon 2020, 6, e03325. [Google Scholar] [CrossRef] [PubMed]
- Garcia-González, M.C.; Vanotti, M.B. Recovery of Ammonia from Swine Manure Using Gas-Permeable Membranes: Effect of Waste Strength and PH. Waste Manag. 2015, 38, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, K.; Yu, H.; Liang, H.; Xie, B.; Li, G.; Qu, F.; van der Bruggen, B. Treatment of Anaerobic Digestion Effluent Using Membrane Distillation: Effects of Feed Acidification on Pollutant Removal, Nutrient Concentration and Membrane Fouling. Desalination 2019, 449, 6–15. [Google Scholar] [CrossRef]
- Selvaraj, P.S.; Periasamy, K.; Suganya, K.; Ramadass, K.; Muthusamy, S.; Ramesh, P.; Bush, R.; Vincent, S.G.T.; Palanisami, T. Novel Resources Recovery from Anaerobic Digestates: Current Trends and Future Perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1915–1999. [Google Scholar] [CrossRef]
- Rongwong, W.; Goh, K. Resource Recovery from Industrial Wastewaters by Hydrophobic Membrane Contactors: A Review. J. Environ. Chem. Eng. 2020, 8, 104242. [Google Scholar] [CrossRef]
- Lü, F.; Wang, Z.; Zhang, H.; Shao, L.; He, P. Anaerobic Digestion of Organic Waste: Recovery of Value-Added and Inhibitory Compounds from Liquid Fraction of Digestate. Bioresour. Technol. 2021, 333, 125196. [Google Scholar] [CrossRef]
- Silva, A.F.R.; Ribeiro, L.A.; Amaral, M.C.S. Efficiency of Nutrients Recovery from Sugarcane Vinasse Treatment by Different Electrodialysis Configurations and in Sequential-Batch Operation. Sep. Purif. Technol. 2023, 311, 123295. [Google Scholar] [CrossRef]
- Eraky, M.; Elsayed, M.; Qyyum, M.A.; Ai, P.; Tawfik, A. A New Cutting-Edge Review on the Bioremediation of Anaerobic Digestate for Environmental Applications and Cleaner Bioenergy. Environ. Res. 2022, 213, 113708. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhai, Y.; Liu, X.; Liu, X.; Wang, Z.; Zhou, Y.; Xu, M. Efficient Extraction of Phosphorus from Food Waste Biogas Digestate Ash through Two-Compartment Electrodialysis Cell. J. Environ. Chem. Eng. 2022, 10, 108701. [Google Scholar] [CrossRef]
- Masse, L.; Massé, D.I.; Pellerin, Y. The Use of Membranes for the Treatment of Manure: A Critical Literature Review. Biosyst. Eng. 2007, 98, 371–380. [Google Scholar] [CrossRef]
- Pinelli, D.; Bovina, S.; Rubertelli, G.; Martinelli, A.; Guida, S.; Soares, A.; Frascari, D. Regeneration and Modelling of a Phosphorous Removal and Recovery Hybrid Ion Exchange Resin after Long Term Operation with Municipal Wastewater. Chemosphere 2022, 286, 131581. [Google Scholar] [CrossRef]
- Zielińska, M.; Mikucka, W. Membrane Filtration for Valorization of Digestate from the Anaerobic Treatment of Distillery Stillage. Desalination Water Treat. 2021, 215, 60–68. [Google Scholar] [CrossRef]
- Gienau, T.; Brüß, U.; Kraume, M.; Rosenberger, S. Nutrient Recovery from Biogas Digestate by Optimised Membrane Treatment. Waste Biomass Valorization 2018, 9, 2337–2347. [Google Scholar] [CrossRef]
- Proskynitopoulou, V.; Garagounis, I.; Vourros, A.; Dimopoulos Toursidis, P.; Lorentzou, S.; Zouboulis, A.; Panopoulos, K. Nutrient Recovery from Digestate: Pilot Test Experiments. J. Environ. Manag. 2024, 353, 120166. [Google Scholar] [CrossRef]
- Minardi, E.R.; Chakraborty, S.; Calabrò, V.; Curcio, S.; Drioli, E. Membrane Applications for Biogas Production and Purification Processes: An Overview on a Smart Alternative for Process Intensification. RSC Adv. 2015, 5, 14156–14186. [Google Scholar] [CrossRef]
- Gerardo, M.L.; Aljohani, N.H.M.; Oatley-Radcliffe, D.L.; Lovitt, R.W. Moving towards Sustainable Resources: Recovery and Fractionation of Nutrients from Dairy Manure Digestate Using Membranes. Water Res. 2015, 80, 80–89. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef]
- Fernandes, F.; Silkina, A.; Fuentes-Grünewald, C.; Wood, E.E.; Ndovela, V.L.S.; Oatley-Radcliffe, D.L.; Lovitt, R.W.; Llewellyn, C.A. Valorising Nutrient-Rich Digestate: Dilution, Settlement and Membrane Filtration Processing for Optimisation as a Waste-Based Media for Microalgal Cultivation. Waste Manag. 2020, 118, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Piash, K.S.; Anwar, R.; Shingleton, C.; Erwin, R.; Lin, L.; Sanyal, O. Integrating Chemical Precipitation and Membrane Separation for Phosphorus and Ammonia Recovery from Anaerobic Digestate. AIChE J. 2022, 68, e17869. [Google Scholar] [CrossRef]
- Norddahl, B.; Horn, V.G.; Larsson, M.; du Preez, J.H.; Christensen, K. A Membrane Contactor for Ammonia Stripping, Pilot Scale Experience and Modeling. Desalination 2006, 199, 172–174. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Christiaens, P.; Tack, F.M.G. Fate of Macronutrients in Water Treatment of Digestate Using Vibrating Reversed Osmosis. Water Air Soil. Pollut. 2012, 223, 1593–1603. [Google Scholar] [CrossRef]
- Yue, C.; Dong, H.; Chen, Y.; Shang, B.; Wang, Y.; Wang, S.; Zhu, Z. Direct Purification of Digestate Using Ultrafiltration Membranes: Influence of Pore Size on Filtration Behavior and Fouling Characteristics. Membranes 2021, 11, 179. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Xie, M.; Zhang, B.; Li, G.; Luo, W. Resource Recovery from Digested Manure Centrate: Comparison between Conventional and Aquaporin Thin-Film Composite Forward Osmosis Membranes. J. Memb. Sci. 2020, 593, 117436. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, S.; Zhang, B.; Wang, L.; He, Z. Forward Osmosis Promoted In-Situ Formation of Struvite with Simultaneous Water Recovery from Digested Swine Wastewater. Chem. Eng. J. 2018, 342, 274–280. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Pan, S.-Y.; Lin, Y.-I.; Cao, T.N.-D. Anaerobic Swine Digestate Valorization via Energy-Efficient Electrodialysis for Nutrient Recovery and Water Reclamation. Water Res. 2022, 224, 119066. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Mondor, M.; Masse, L.; Ippersiel, D.; Lamarche, F.; Massé, D.I. Use of Electrodialysis and Reverse Osmosis for the Recovery and Concentration of Ammonia from Swine Manure. Bioresour. Technol. 2008, 99, 7363–7368. [Google Scholar] [CrossRef]
- Ippersiel, D.; Mondor, M.; Lamarche, F.; Tremblay, F.; Dubreuil, J.; Masse, L. Nitrogen Potential Recovery and Concentration of Ammonia from Swine Manure Using Electrodialysis Coupled with Air Stripping. J. Environ. Manag. 2012, 95, S165–S169. [Google Scholar] [CrossRef] [PubMed]
- Aung, S.L.; Choi, J.; Cha, H.; Woo, G.; Song, K.G. Ammonia-Selective Recovery from Anaerobic Digestate Using Electrochemical Ammonia Stripping Combined with Electrodialysis. Chem. Eng. J. 2024, 479, 147949. [Google Scholar] [CrossRef]
- Oliveira, V.; Labrincha, J.; Dias-Ferreira, C. Extraction of Phosphorus and Struvite Production from the Anaerobically Digested Organic Fraction of Municipal Solid Waste. J. Environ. Chem. Eng. 2018, 6, 2837–2845. [Google Scholar] [CrossRef]
- Zeng, D.; Jiang, Y.; Schneider, C.; Su, Y.; Hélix-Nielsen, C.; Zhang, Y. Recycling of Acetate and Ammonium from Digestate for Single Cell Protein Production by a Hybrid Electrochemical-Membrane Fermentation Process. Resour. Conserv. Recycl. 2023, 188, 106705. [Google Scholar] [CrossRef]
- Proskynitopoulou, V.; Lorentzou, S.; Yaman, R.; Blanch, G.; Herbert, B.; Rubio Rincon, F.J.; Moradi, N.; Verdi, L.; Marta, A.D.; Toursidis, P.D.; et al. Mobile Solution for Digestate Transformation to High Added-Value Products. J. Clean. Prod. 2024, 477, 143915. [Google Scholar] [CrossRef]
- Proskynitopoulou, V.; Vourros, A.; Garagounis, I.; Toursidis, P.D.; Lorentzou, S.; Kougias, P.; Zouboulis, A.; Panopoulos, K.D. Treatment of Anaerobically Digested Pig Manure by Applying Membrane Processes for Nutrient Recovery and Antibiotics Removal. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef]
- González-García, I.; Oliveira, V.; Molinuevo-Salces, B.; García-González, M.C.; Dias-Ferreira, C.; Riaño, B. Two-Phase Nutrient Recovery from Livestock Wastewaters Combining Novel Membrane Technologies. Biomass Convers. Biorefin 2022, 12, 4563–4574. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Q.; Liu, R.; Song, L.; Zhang, Y.; Dai, X. Ammonia Recovery from Anaerobic Digestate: State of the Art, Challenges and Prospects. Bioresour. Technol. 2022, 363, 127957. [Google Scholar] [CrossRef]
- Hasanoğlu, A.; Romero, J.; Pérez, B.; Plaza, A. Ammonia Removal from Wastewater Streams through Membrane Contactors: Experimental and Theoretical Analysis of Operation Parameters and Configuration. Chem. Eng. J. 2010, 160, 530–537. [Google Scholar] [CrossRef]
- Darestani, M.; Haigh, V.; Couperthwaite, S.J.; Millar, G.J.; Nghiem, L.D. Hollow Fibre Membrane Contactors for Ammonia Recovery: Current Status and Future Developments. J. Environ. Chem. Eng. 2017, 5, 1349–1359. [Google Scholar] [CrossRef]
- Noriega-Hevia, G.; Serralta, J.; Borrás, L.; Seco, A.; Ferrer, J. Nitrogen Recovery Using a Membrane Contactor: Modelling Nitrogen and PH Evolution. J. Environ. Chem. Eng. 2020, 8, 103880. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Xu, Z.; Xu, H. A Study on the PP Hollow Fiber Membrane Contactor and Its Performance for Removing Ammonia from Wastewater or Mixed Gas: II. Ammonia Removal from Mixed Gas. Water Supply 2001, 1, 195–198. [Google Scholar] [CrossRef]
- Rivera, F.; Muñoz, R.; Prádanos, P.; Hernández, A.; Palacio, L. A Systematic Study of Ammonia Recovery from Anaerobic Digestate Using Membrane-Based Separation. Membranes 2021, 12, 19. [Google Scholar] [CrossRef]
- Wäeger-Baumann, F.; Fuchs, W. The Application of Membrane Contactors for the Removal of Ammonium from Anaerobic Digester Effluent. Sep. Sci. Technol. 2012, 47, 1436–1442. [Google Scholar] [CrossRef]
- Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.B.; García-González, M.C. Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study. Environments 2021, 8, 133. [Google Scholar] [CrossRef]
- Boehler, M.A.; Heisele, A.; Seyfried, A.; Grömping, M.; Siegrist, H. (NH4)2SO4 Recovery from Liquid Side Streams. Environ. Sci. Pollut. Res. 2015, 22, 7295–7305. [Google Scholar] [CrossRef]
- Oliveira, V.; Dias-Ferreira, C.; González-García, I.; Labrincha, J.; Horta, C.; García-González, M.C. A Novel Approach for Nutrients Recovery from Municipal Waste as Biofertilizers by Combining Electrodialytic and Gas Permeable Membrane Technologies. Waste Manag. 2021, 125, 293–302. [Google Scholar] [CrossRef]
- González-García, I.; Riaño, B.; Molinuevo-Salces, B.; García-González, M.C. Effect of Alkali and Membrane Area on the Simultaneous Recovery of Nitrogen and Phosphorous from Digestate by Membrane Technology and Chemical Precipitation. Sustainability 2023, 15, 3909. [Google Scholar] [CrossRef]
- Dube, P.J.; Vanotti, M.B.; Szogi, A.A.; García-González, M.C. Enhancing Recovery of Ammonia from Swine Manure Anaerobic Digester Effluent Using Gas-Permeable Membrane Technology. Waste Manag. 2016, 49, 372–377. [Google Scholar] [CrossRef]
- Zarebska, A.; Nieto, D.R.; Christensen, K.V.; Norddahl, B. Ammonia Recovery from Agricultural Wastes by Membrane Distillation: Fouling Characterization and Mechanism. Water Res. 2014, 56, 1–10. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Guan, K.; Gonzales, R.R.; Ishigami, T.; Xue, M.; Yoshioka, T.; Matsuyama, H. An Experimental Study on Recovering and Concentrating Ammonia by Sweep Gas Membrane Distillation. Process Saf. Environ. Prot. 2023, 171, 555–560. [Google Scholar] [CrossRef]
- Ma, W.; Han, R.; Zhang, W.; Zhang, H.; Zhao, L.; Chen, L.; Zhu, L. Advanced Oxidation Process/Coagulation Coupled with Membrane Distillation (AOP/Coag-MD) for Efficient Ammonia Recovery: Elucidating Biofouling Control Performance and Mechanism. J. Hazard. Mater. 2024, 469, 134093. [Google Scholar] [CrossRef] [PubMed]
- Ashoor, B.B.; Mansour, S.; Giwa, A.; Dufour, V.; Hasan, S.W. Principles and Applications of Direct Contact Membrane Distillation (DCMD): A Comprehensive Review. Desalination 2016, 398, 222–246. [Google Scholar] [CrossRef]
- Alawad, S.M.; Shamet, O.; Khalifa, A.E.; Lawal, D. Enhancing Productivity and Energy Efficiency in Vacuum Membrane Distillation Systems. Energy Convers. Manag. X 2024, 22, 100593. [Google Scholar] [CrossRef]
- Xu, B.; He, Z. Ammonia Recovery from Simulated Anaerobic Digestate Using a Two-stage Direct Contact Membrane Distillation Process. Water Environ. Res. 2021, 93, 1619–1626. [Google Scholar] [CrossRef]
- Aquino, M.; Santoro, S.; Di Profio, G.; La Russa, M.F.; Limonti, C.; Straface, S.; D’Andrea, G.; Curcio, E.; Siciliano, A. Membrane Distillation for Separation and Recovery of Valuable Compounds from Anaerobic Digestates. Sep. Purif. Technol. 2023, 315, 123687. [Google Scholar] [CrossRef]
- Karanasiou, A.; Angistali, K.; Plakas, K.V.; Kostoglou, M.; Karabelas, A.J. Ammonia Recovery from Anaerobic-Fermentation Liquid Digestate with Vacuum Membrane Distillation. Sep. Purif. Technol. 2023, 314, 123602. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, L.; Li, Z.; Ma, R.; Yang, Z. Experimental Study of Ammonia Removal from Water by Membrane Distillation (MD): The Comparison of Three Configurations. J. Memb. Sci. 2006, 286, 93–103. [Google Scholar] [CrossRef]
- Zhang, J.; Li, N.; Ng, D.; Ike, I.A.; Xie, Z.; Gray, S. Depletion of VOC in Wastewater by Vacuum Membrane Distillation Using a Dual-Layer Membrane: Mechanism of Mass Transfer and Selectivity. Environ. Sci. 2019, 5, 119–130. [Google Scholar] [CrossRef]
- Khan, E.U.; Nordberg, Å. Membrane Distillation Process for Concentration of Nutrients and Water Recovery from Digestate Reject Water. Sep. Purif. Technol. 2018, 206, 90–98. [Google Scholar] [CrossRef]
- Wen, L.; Peng, L.E.; Li, X. Contactless Membrane Distillation for Effective Ammonia Recovery from Waste Sludge: A New Configuration and Mass Transfer Mechanism. J. Memb. Sci. 2021, 638, 119733. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.E.-R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.-L.; Hou, L. A Comprehensive Review of Vacuum Membrane Distillation Technique. Desalination 2015, 356, 1–14. [Google Scholar] [CrossRef]
- Hu, Y.; Loh, C.Y.; Xie, M.; Chen, G.; Huang, M.; Qiao, J. Ammonia Recovery via Direct Contact Membrane Distillation: Modeling and Performance Optimization. J. Environ. Manag. 2024, 365, 121683. [Google Scholar] [CrossRef]
- Ullah, R.; Khraisheh, M.; Esteves, R.J.; McLeskey, J.T.; AlGhouti, M.; Gad-el-Hak, M.; Vahedi Tafreshi, H. Energy Efficiency of Direct Contact Membrane Distillation. Desalination 2018, 433, 56–67. [Google Scholar] [CrossRef]
- Kim, Y.-D.; Thu, K.; Ghaffour, N.; Choon Ng, K. Performance Investigation of a Solar-Assisted Direct Contact Membrane Distillation System. J. Memb. Sci. 2013, 427, 345–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Ji, S.; Li, Z.; Chen, P. Review of Thermal Efficiency and Heat Recycling in Membrane Distillation Processes. Desalination 2015, 367, 223–239. [Google Scholar] [CrossRef]
- Shi, M.; He, Q.; Feng, L.; Wu, L.; Yan, S. Techno-Economic Evaluation of Ammonia Recovery from Biogas Slurry by Vacuum Membrane Distillation without PH Adjustment. J. Clean. Prod. 2020, 265, 121806. [Google Scholar] [CrossRef]
- He, Q.; Yu, G.; Wang, W.; Yan, S.; Zhang, Y.; Zhao, S. Once-through CO 2 Absorption for Simultaneous Biogas Upgrading and Fertilizer Production. Fuel Process. Technol. 2017, 166, 50–58. [Google Scholar] [CrossRef]
- Lee, J.-G.; Kim, W.-S. Numerical Study on Multi-Stage Vacuum Membrane Distillation with Economic Evaluation. Desalination 2014, 339, 54–67. [Google Scholar] [CrossRef]
- Dinh, L.M.; Jacob, P.; Visvanathan, C. Direct Contact and Sweeping Gas Membrane Distillation for Process Intensification—A Comparative Study. Desalination Water Treat. 2017, 89, 53–64. [Google Scholar] [CrossRef]
- Loussif, N.; Orfi, J. Comparative Study of Air Gap, Direct Contact and Sweeping Gas Membrane Distillation Configurations. Membr. Water Treat. 2016, 7, 71–86. [Google Scholar] [CrossRef]
- Rao, U.; Posmanik, R.; Hatch, L.E.; Tester, J.W.; Walker, S.L.; Barsanti, K.C.; Jassby, D. Coupling Hydrothermal Liquefaction and Membrane Distillation to Treat Anaerobic Digestate from Food and Dairy Farm Waste. Bioresour. Technol. 2018, 267, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lee, J.-G.; Tan, T.; Yeo, J.; Wong, P.W.; Ghaffour, N.; An, A.K. Enhanced Ammonia Recovery from Wastewater by Nafion Membrane with Highly Porous Honeycomb Nanostructure and Its Mechanism in Membrane Distillation. J. Memb. Sci. 2019, 590, 117265. [Google Scholar] [CrossRef]
- Naidu, G.; Tijing, L.; Johir, M.A.H.; Shon, H.; Vigneswaran, S. Hybrid Membrane Distillation: Resource, Nutrient and Energy Recovery. J. Memb. Sci. 2020, 599, 117832. [Google Scholar] [CrossRef]
- Finzi, A.; Guido, V.; Riva, E.; Ferrari, O.; Quilez, D.; Herrero, E.; Provolo, G. Performance and Sizing of Filtration Equipment to Replace Mineral Fertilizer with Digestate in Drip and Sprinkler Fertigation. J. Clean. Prod. 2021, 317, 128431. [Google Scholar] [CrossRef]
- Fugere, R.; Mameri, N.; Gallot, J.; Comeau, Y. Treatment of Pig Farm Effluents by Ultrafiltration. J. Memb. Sci. 2005, 255, 225–231. [Google Scholar] [CrossRef]
- Zhang, J.; Padmasiri, S.I.; Fitch, M.; Norddahl, B.; Raskin, L.; Morgenroth, E. Influence of Cleaning Frequency and Membrane History on Fouling in an Anaerobic Membrane Bioreactor. Desalination 2007, 207, 153–166. [Google Scholar] [CrossRef]
- Kertész, S.; Beszédes, S.; László, Z.; Szabó, G.; Hodúr, C. Nanofiltration and Reverse Osmosis of Pig Manure: Comparison of Results from Vibratory and Classical Modules. Desalination Water Treat. 2010, 14, 233–238. [Google Scholar] [CrossRef]
- Zarebska, A.; Romero Nieto, D.; Christensen, K.V.; Fjerbæk Søtoft, L.; Norddahl, B. Ammonium Fertilizers Production from Manure: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1469–1521. [Google Scholar] [CrossRef]
- Thörneby, L.; Persson, K.; Trägårdh, G. Treatment of Liquid Effluents from Dairy Cattle and Pigs Using Reverse Osmosis. J. Agric. Eng. Res. 1999, 73, 159–170. [Google Scholar] [CrossRef]
- Bilstad, T.; Madland, M.; Espedal, E.; Hanssen, P.H. Membrane Separation of Raw and Anaerobically Digested Pig Manure. Water Sci. Technol. 1992, 25, 19–26. [Google Scholar] [CrossRef]
- Fuchs, W.; Wager, F.; Kirchmayr, R.; Braun, R.; Dorsg, B. Digestate Treatment: Comparison and Assessment of Existing Technologies. In Proceedings of the Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 8–11 November 2010; CISA: Washington, DC, USA, 2010. [Google Scholar]
- Centeno Mora, E.; Chernicharo, C. de L. Use of Membrane Contactors for Removing and Recovering Dissolved Methane from Anaerobic Reactors Effluents: State-of-the-Art, Challenges, and Perspectives. Rev. Environ. Sci. Biotechnol. 2020, 19, 673–697. [Google Scholar] [CrossRef]
- Wang, Z.; He, P.; Zhang, H.; Zhang, N.; Lü, F. Desalination, Nutrients Recovery, or Products Extraction: Is Electrodialysis an Effective Way to Achieve High-Value Utilization of Liquid Digestate? Chem. Eng. J. 2022, 446, 136996. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Wong, T.W. Insights into Biofouling in Reverse Osmosis Membrane: A Comprehensive Review on Techniques for Biofouling Assay. J. Environ. Chem. Eng. 2023, 11, 110317. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Liu, C.; Zhou, Y.; Lin, X.; Gao, F. Microbial Deposition and Growth on Polyamide Reverse Osmosis Membrane Surfaces: Mechanisms, Impacts, and Potential Cures. Desalination 2023, 548, 116301. [Google Scholar] [CrossRef]
- Cheng, H.; Li, Y.; Li, L.; Chen, R.; Li, Y.Y. Long-Term Operation Performance and Fouling Behavior of a High-Solid Anaerobic Membrane Bioreactor in Treating Food Waste. Chem. Eng. J. 2020, 394, 124918. [Google Scholar] [CrossRef]
- Meng, J.; Shi, L.; Wang, S.; Hu, Z.; Terada, A.; Zhan, X. Membrane Fouling during Nutrient Recovery from Digestate Using Electrodialysis: Impacts of the Molecular Size of Dissolved Organic Matter. J. Memb. Sci. 2023, 685, 121974. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, H.; Qu, F.; Zhang, H.; Rong, H.; Yu, H.; Liang, H.; Ding, A.; Li, G.; Van der Bruggen, B. Application of Membrane Distillation to Anaerobic Digestion Effluent Treatment: Identifying Culprits of Membrane Fouling and Scaling. Sci. Total Environ. 2019, 688, 880–889. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Z.-L.; Yang, R.; Chen, S. Synchronously Recovering Different Nutrient Ions from Wastewater by Using Selective Electrodialysis. Water Sci. Technol. 2022, 86, 2627–2641. [Google Scholar] [CrossRef]
- Ma, W.; Han, R.; Zhu, L.; Zhang, W.; Zhang, H.; Jiang, L.; Chen, L. Peroxymonosulfate Enhanced Fe(III) Coagulation Coupled with Membrane Distillation for Ammonia Recovery: Membrane Fouling Control Process and Mechanism. Desalination 2023, 565, 116859. [Google Scholar] [CrossRef]
- Gienau, T.; Ehrmanntraut, A.; Kraume, M.; Rosenberger, S. Influence of Ozone Treatment on Ultrafiltration Performance and Nutrient Flow in a Membrane Based Nutrient Recovery Process from Anaerobic Digestate. Membranes 2020, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Román, F.; Adolph, J.; Hensel, O. Hydrothermal Treatment of Biogas Digestate as a Pretreatment to Reduce Fouling in Membrane Filtration. Bioresour. Technol. Rep. 2021, 13, 100638. [Google Scholar] [CrossRef]
- Niu, C.; Pan, Y.; Lu, X.; Wang, S.; Zhang, Z.; Zheng, C.; Tan, Y.; Zhen, G.; Zhao, Y.; Li, Y.-Y. Mesophilic Anaerobic Digestion of Thermally Hydrolyzed Sludge in Anaerobic Membrane Bioreactor: Long-Term Performance, Microbial Community Dynamics and Membrane Fouling Mitigation. J. Memb. Sci. 2020, 612, 118264. [Google Scholar] [CrossRef]
- Charfi, A.; Kim, S.; Yoon, Y.; Cho, J. Optimal Cleaning Strategy to Alleviate Fouling in Membrane Distillation Process to Treat Anaerobic Digestate. Chemosphere 2021, 279, 130524. [Google Scholar] [CrossRef]
- Ma, W.; Han, R.; Zhu, L.; Jiang, L.; Zhang, W.; Zhang, H.; Chen, L. Efficient Recovery of Ammonia from Digestate by Membrane Distillation: Nano-FeOOH Re-Entry Structure Modification, Anti-Fouling, and Anti-Wetting Performance. Sep. Purif. Technol. 2023, 323, 124414. [Google Scholar] [CrossRef]
- Intrchom, W.; Roy, S.; Mitra, S. Functionalized Carbon Nanotube Immobilized Membrane for Low Temperature Ammonia Removal via Membrane Distillation. Sep. Purif. Technol. 2020, 235, 116188. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Zhao, R.; Wang, D.; Zhou, L.; Han, L. Desalinating Real Shale Gas Wastewater by Membrane Distillation: Performance and Potentials. Water 2023, 15, 439. [Google Scholar] [CrossRef]
- Tawfik, A.; Eraky, M.; Khalil, M.N.; Osman, A.I.; Rooney, D.W. Sulfonated Graphene Nanomaterials for Membrane Antifouling, Pollutant Removal, and Production of Chemicals from Biomass: A Review. Environ. Chem. Lett. 2022, 21, 1093–1116. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Yang, H.; Fan, G.; Ding, A.; Liang, H.; Li, G.; Ren, N.; Van der Bruggen, B. Mussel-Inspired Polydopamine Modification of Polymeric Membranes for the Application of Water and Wastewater Treatment: A Review. Chem. Eng. Res. Des. 2020, 157, 195–214. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Nanofiltration Retentate Treatment. Nanofiltr. Princ. Appl. New Mater. 2021, 1–2, 933–960. [Google Scholar] [CrossRef]
- Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E. Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane Using Photocatalytic Activity of ZnO/MWCNTs Nanocomposite. J. Memb. Sci. 2017, 529, 133–141. [Google Scholar] [CrossRef]
- Tamiji, T.; Ameri, E. Preparation, Characterization, and Gas Permeation Properties of Blend Membranes of Polysulfone and Polyethylene Glycol Inclusive Alumina Nanoparticles. Int. J. Environ. Sci. Technol. 2017, 14, 1235–1242. [Google Scholar] [CrossRef]
- Derbali, Z.; Fahs, A.; Chailan, J.F.; Ferrari, I.V.; Di Vona, M.L.; Knauth, P. Composite Anion Exchange Membranes with Functionalized Hydrophilic or Hydrophobic Titanium Dioxide. Int. J. Hydrogen Energy 2017, 42, 19178–19189. [Google Scholar] [CrossRef]
- Lim, S.; Park, K.H.; Tran, V.H.; Akther, N.; Phuntsho, S.; Choi, J.Y.; Shon, H.K. Size-Controlled Graphene Oxide for Highly Permeable and Fouling-Resistant Outer-Selective Hollow Fiber Thin-Film Composite Membranes for Forward Osmosis. J. Memb. Sci. 2020, 609, 118171. [Google Scholar] [CrossRef]
- Song, H.; Xie, F.; Chen, W.; Liu, J. FO/MD Hybrid System for Real Dairy Wastewater Recycling. Environ. Technol. 2018, 39, 2411–2421. [Google Scholar] [CrossRef]
- Chekli, L.; Phuntsho, S.; Kim, J.E.; Kim, J.; Choi, J.Y.; Choi, J.S.; Kim, S.; Kim, J.H.; Hong, S.; Sohn, J.; et al. A Comprehensive Review of Hybrid Forward Osmosis Systems: Performance, Applications and Future Prospects. J. Memb. Sci. 2016, 497, 430–449. [Google Scholar] [CrossRef]
- Chekli, L.; Phuntsho, S.; Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Chanan, A. A Review of Draw Solutes in Forward Osmosis Process and Their Use in Modern Applications. Desalination Water Treat. 2012, 43, 167–184. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N 2 O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Li, T.; Wang, G.; Dai, X. Two-Step Partial Nitrification-Anammox Process for Treating Thermal-Hydrolysis Anaerobic Digester Effluent: Start-up and Microbial Characterisation. J. Clean. Prod. 2020, 252, 119784. [Google Scholar] [CrossRef]
- De Vrieze, J.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Bral, A.; Varga, S.; Prat, D.; Peng, L.; et al. Resource Recovery from Pig Manure via an Integrated Approach: A Technical and Economic Assessment for Full-Scale Applications. Bioresour. Technol. 2019, 272, 582–593. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Chen, Y.; Guo, Z.; Xu, G.; Yin, L.; Tian, Y.; Lavrnić, S. Anaerobic Fluidized-Bed Membrane Bioreactor for Treatment of Liquid Fraction of Sludge Digestate: Performance and Agricultural Reuse Analysis. Sustainability 2023, 15, 7698. [Google Scholar] [CrossRef]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients Recovery from Anaerobic Digestate of Agro-Waste: Techno-Economic Assessment of Full Scale Applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Van Puffelen, J.L.; Brienza, C.; Regelink, I.C.; Sigurnjak, I.; Adani, F.; Meers, E.; Schoumans, O.F. Performance of a Full-Scale Processing Cascade That Separates Agricultural Digestate and Its Nutrients for Agronomic Reuse. Sep. Purif. Technol. 2022, 297, 121501. [Google Scholar] [CrossRef]
- Gienau, T.; Brüß, U.; Kraume, M.; Rosenberger, S. Nutrient Recovery from Anaerobic Sludge by Membrane Filtration: Pilot Tests at a 2.5 MWe Biogas Plant. Int. J. Recycl. Org. Waste Agric. 2018, 7, 325–334. [Google Scholar] [CrossRef]
Ammonia Recovery Rate (%) | Energy Consumption (kWh/m3) | Thermal Efficiency (%) | |
---|---|---|---|
DCMD | 98.72% [84] | 1500 kWh/m3 [85] 436 kWh/m3 with a heat recovery system [86] | 59.6–70.5 [87] |
VMD | 100% [88] <70% [89] | 88 kWh/m3 (multi-stage system) [90] | 88.1–91.9 [87] |
AGMD | up to 100% [81] | 900–1300 kWh/m3 without heat recovery, 66–170 kWh/m3 with heat recovery [81] | 70.0–98.0 [87] |
SGMD | 85% [72] | 1.09 kWh/kg [91] | ~92.0 [92] |
Nutrient Recovery Rate | Energy Consumption | |
---|---|---|
MF | ~20% (NH4+, PO43−) [38] | 1.77 kWh/t [96] |
UF | ~30% (NH4+), ~60% (PO43−) [38] | 10–15 kWh/m3 [37] 2.3–8.8 kWh/m3 [97,98] |
NF | 5–23% (NH4+-N), 97% (P) [40] 94.35% (N) (MF–UF–NF) [42] | 2.2 kWh/m3 [99] 4.5–11 kWh/m3 (UF-NF) [100] |
RO | 99–100% (N and P) [34] 75–95% (N), 85–99% (P) (UF–RO) [1] >85% (NH4+, PO43−) [38] | 4.3–5.5 kWh/m3 [101,102] 20–30 kWh/m3 (UF-RO) [37] 16–25 kWh/m3 (UF-RO) [103] 6.6–14.4 kWh/m3 (UF-RO) [100] |
ED | 43–65% (NH4+) [49] 90.5% (NH4+) (ED–electrochemical ammonia stripping) [53] 60.1% (NH4+-N) [55] 43% (P) [54] 51–67.8% (N) (MF–UF–ED) [56] 51% (NH4+-N) (MF–UF–ED) [57] 94% (N), 74% (P) (MC–ED) [58] 81% (N), 74% (P) (MC–ED) [68] | 0.44 kWh/m3 [49] 11.6 kWh/kg NH3 [53] |
MC | 96–98% (NH4+) [62,63] 71.6% (NH4+) [64] 95% (NH4+) [67] 55.3% (TAN) [66] 85–90% (NH4+) (UF–MC) [44] 77% (N), 80% (P) (MC–chemical precipitation) [69] | 0.049 kWh/m3 [104] |
MD | >99% (P) [27] 100% (TAN), >98% (P) [81] 84.2% (NH4+) [76] | 0.25 kWh/m3 [65] 2.5–9.1 kWh/m3 (UF-MD) [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Bułkowska, K. Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate. Membranes 2025, 15, 45. https://doi.org/10.3390/membranes15020045
Zielińska M, Bułkowska K. Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate. Membranes. 2025; 15(2):45. https://doi.org/10.3390/membranes15020045
Chicago/Turabian StyleZielińska, Magdalena, and Katarzyna Bułkowska. 2025. "Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate" Membranes 15, no. 2: 45. https://doi.org/10.3390/membranes15020045
APA StyleZielińska, M., & Bułkowska, K. (2025). Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate. Membranes, 15(2), 45. https://doi.org/10.3390/membranes15020045