Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Synthesis of Diblock Copolymers
2.3. Fabrication of Co-Flow Microfluidic Device
2.4. Experiment Setup
2.4.1. Experimental Setup for Microfluidic Device
2.4.2. Experimental Set-Up for Membrane Device
2.5. Experimental Procedure
2.5.1. Experimental Procedure of Microfluidic Experiments
2.5.2. Experimental Procedure of Membrane Experiments
2.6. Process Reproducibility Experiments
2.7. Micelle Size Measurement
2.8. Zeta Potential Measurement
3. Results and Discussion
3.1. Polymer Characterization
3.2. Experimental Images from Microfluidic Device
3.3. Parameters Affecting the Diameter of Polymeric Micelles
3.3.1. Copolymer Type
3.3.2. Organic Solvent
3.3.3. Micelles Preparation Techniques
3.3.4. Aqueous/Organic Phase ratio
3.4. Fluconazole-Loaded Micelles
3.4.1. Effect of Fluconazole Concentration in Organic Phase on Micelle Size
3.4.2. Effect of Fluconazole Concentration in Organic Phase on Encapsulation
3.5. Micelles Stability
Zeta Potential
3.6. Process Reproducibility
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moroi, Y. Micelles, Theoretical and Applied Aspects; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Zhang, L.; Eisenberg, A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Ngasaki, Y. Block copolymer synthesis for nanoscale drug and gene delivery. In Nanotechnology in Drug Delivery; de Villiers, M., Aramwit, P., Kwon, G., Eds.; Springer: New York, NY, USA, 2009; pp. 35–67. [Google Scholar]
- Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Controll. Release 2005, 109, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Addae-Mensah, K.A.; Wang, Z.; Parsa, H.; Chin, S.Y.; Laksanasopin, T.; Sia, S.K. Fundamentals of microfluidics devices. In Microfluidic Devices in Nanotechnology: Fundamental Concepts; Kumar, C.S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–38. [Google Scholar]
- Jahn, A.; Reiner, J.E. Preparation of micelles by continuous-flow microfluidics. J. Nanopart. Res. 2007, 10, 925–934. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Khalid, N.; Neves, M.A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab on a chip: Design, applications and scale up for drug discovery and delivery. Adv. Drug Deliv. Rev. 2013, 65, 1626–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, C.F.; Anna, S.L. Microfluidic methods for generating continuous droplet streams. J. Phys. D Appl. Phys. 2007, 40, 319–336. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Kobayashi, I.; Nakajima, M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid. Nanofluid. 2012, 13, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.; Vladisavljević, G.T.; Nagy, Z.K. Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem. Eng. Sci. 2015, 137, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.; Vladisavljević, G.T.; Bandulasena, H.C.H.; Nagy, Z.K. Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device. Chem. Eng. J. 2015, 280, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Vladisavljević, G.T.; Laouini, A.; Charcosset, C.; Fessi, H.; Bandulasena, H.C.H.; Holdich, R.G. Production of liposomes using microengineered membrane and co-flow microfluidic device. Coll. Surf. A Physicochem. Eng. Asp. 2014, 458, 168–177. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications, 2nd ed.; John Wiley & Sons Ltd: Chichester, UK, 2004. [Google Scholar]
- Giorno, L.; Drioli, E. Biocatalytic membrane reactors: Applications and perspectives. Trends Biotechnol. 2000, 18, 339–349. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Williams, R.A. Recent developments in manufacturing emulsions and particulate products using membranes. Adv. Coll. Int. Sci. 2005, 113, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladisavljević, G.T. Integrated membrane processes for the preparation of emulsions, particles, and bubbles. In Integrated Membrane Systems and Processes; Basile, A., Charcosset, C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 79–140. [Google Scholar]
- Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 2007, 99, 094502. [Google Scholar] [CrossRef] [PubMed]
- Vladisavljević, G.T.; Duncanson, W.J.; Shum, H.C.; Weitz, D.A. Emulsion templating of poly(lactic acid) particles: Droplet formation behaviour. Langmuir 2012, 28, 12948–12954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, D.D.; Hu, H.H. Interfacial tension between miscible liquids. In Recent Advances in Fluid Dynamics; Sachdev, P.L., Venkatachalappa, M., Eds.; CRC Press: Amsterdam, The Netherland, 1999; pp. 137–156. [Google Scholar]
- Levich, V.G.; Krylov, V.S. Surface-tension-driven phenomena. Ann. Rev. Fluid Mech. 1969, 1, 293–316. [Google Scholar] [CrossRef]
- Laouini, A.; Koutroumanis, K.P.; Charcosset, C.; Georgiadou, S.; Fessi, H.; Holdich, R.G.; Vladisavljevic, G.T. pH-Sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method. ACS Appl. Mater. Int. 2013, 5, 8939–8947. [Google Scholar] [CrossRef] [PubMed]
- Laouini, A.; Charcosset, C.; Fessi, H.; Holdich, R.G.; Vladisavljević, G.T. Preparation of liposomes: A novel application of microengineered membranes—Investigation of the process parameters and application to the encapsulation of vitamin E. RSC Adv. 2013, 3, 4985–4994. [Google Scholar] [CrossRef]
- Beshey, B.N.; Okasha, A.S.; Eldin, M.E.N. Fluconazole and selective digestive decontamination for prevention of Candida infection in high risk critically ill patients. Alex. J. Med. 2014, 50, 93–98. [Google Scholar] [CrossRef]
- Wang, J.; Xing, X.; Fang, X.; Zhou, C.; Huang, F.; Wu, Z.; Lou, J.; Liang, W. Cationic amphilic drugs self-assemble to the core-shell interface of PEGylated phospholipid micelles and stabilize micellar structure. Philos. Trans. R. Soc. A 2016, 371, 2012.0309. [Google Scholar]
- Kim, S.; Shi, Y.; Kim, J.Y.; Park, K.; Cheng, J.X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle-cell interaction. Exp. Opin. Drug Deliv. 2010, 7, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Taddei, G. Micelle form and stability. Coll. Polym. Sci. 1994, 272, 1300–1305. [Google Scholar] [CrossRef]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 1973, 28c, 693–703. [Google Scholar]
- Hyde, S.T.; Fogden, A.; Lundberg, G. Bending energy of surfactant films. Trans. J. Chem. Soc. Faraday 1991, 87, 949–955. [Google Scholar]
- Tang, Y.; Liu, S.Y.; Armes, S.P.; Billingham, N.C. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 2003, 4, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Napper, D.H. Steric stabilization. J. Coll. Int. Sci. 1977, 58, 390–407. [Google Scholar] [CrossRef]
Polymer | PEG/PCL Mole Ratio in the Feed Mixture | Mn | Mw | Mw/Mn | fn | fw |
---|---|---|---|---|---|---|
PEG-b-PCL (A) | 1:1.5 | 9666 | 12,215 | 1.26 | 0.62 | 0.52 |
PEG-b-PCL (B) | 1:2.0 | 13,070 | 17,371 | 1.33 | 0.46 | 0.36 |
PEG-b-PCL (C) | 1:3.0 | 16,027 | 20,945 | 1.31 | 0.37 | 0.30 |
Organic Solvent | Technique | Drug-Free Micelles | Drug-Loaded Micelles | |||||
---|---|---|---|---|---|---|---|---|
PEG-b-PCL (A) | PEG-b-PCL (B) | PEG-b-PCL (C) | PEG-b-PCL (A) | PEG-b-PCL (B) | PEG-b-PCL (C) | |||
Acetone | Microfluidic | D (nm) | 70 ± 9 | 55 ± 4 | 58 ± 8 | 87 ± 12 | 112 ± 11 | 84 ± 17 |
PDI | 0.177 | 0.193 | 0.120 | 0.205 | 0.213 | 0.203 | ||
Membrane | D (nm) | 53 ± 7 | 48 ± 7 | 53 ± 4 | 51 ± 7 | 63 ± 5 | 49 ± 0.49 | |
PDI | 0.212 | 0.225 | 0.200 | 0.215 | 0.195 | 0.149 | ||
THF | Microfluidic | D (nm) | 61 ± 15 | 53 ± 9 | 54 ± 11 | |||
PDI | 0.264 | 0.204 | 0.236 | |||||
Membrane | D (nm) | 46 ± 7 | 41 ± 8 | 48 ± 3 | ||||
PDI | 0.261 | 0.193 | 0.206 |
Preparation Technique | PEG-b-PCL (A) | PEG-b-PCL (B) | PEG-b-PCL (C) | |||
---|---|---|---|---|---|---|
Diameter (nm) | PDI | Diameter (nm) | PDI | Diameter (nm) | PDI | |
Stirred tank without membrane | 80 ± 6 | 0.205 | 83 ± 10 | 0.123 | 69 | 0.201 |
Microfluidic device | 70 ± 9 | 0.177 | 55 ± 4 | 0.193 | 58 ± 8 | 0.120 |
Stirred tank with membrane | 53 ± 8 | 0.212 | 48 ± 4 | 0.254 | 53 ± 5 | 0.200 |
Drug Concentration in Organic Phase (mg·mL−1) | Diameter (nm) | PDI |
---|---|---|
0.50 | 57 ± 0.4 | 0.220 |
1.00 | 62 ± 4 | 0.195 |
2.50 | 74 ± 0.5 | 0.172 |
Polymer | Encapsulated Drug (mg·mL−1) | |
---|---|---|
Day 0 | Day 2 | |
PEG-b-PCL (B) | 0.23 | 0.17 |
PEG-b-PCL (C) | 0.21 | 0.11 |
Micelle Type | Zeta Potential (mV) | ||
---|---|---|---|
PEG-b-PCL (A) | PEG-b-PCL (B) | PEG-b-PCL (C) | |
Drug free | −11 | −12 | −12 |
Drug loaded | −7 | −5 | −6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Chowdhury, D.; Vladisavljević, G.T.; Koutroumanis, K.; Georgiadou, S. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices. Membranes 2016, 6, 29. https://doi.org/10.3390/membranes6020029
Lu Y, Chowdhury D, Vladisavljević GT, Koutroumanis K, Georgiadou S. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices. Membranes. 2016; 6(2):29. https://doi.org/10.3390/membranes6020029
Chicago/Turabian StyleLu, Yu, Danial Chowdhury, Goran T. Vladisavljević, Konstantinos Koutroumanis, and Stella Georgiadou. 2016. "Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices" Membranes 6, no. 2: 29. https://doi.org/10.3390/membranes6020029
APA StyleLu, Y., Chowdhury, D., Vladisavljević, G. T., Koutroumanis, K., & Georgiadou, S. (2016). Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices. Membranes, 6(2), 29. https://doi.org/10.3390/membranes6020029