Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Thermodynamics
2.2.1. Hansen Solubility Parameter Calculation
2.2.2. Cloud Point Curve Measurement
2.3. Preparation of PSf Flat Sheet Membranes
2.4. Characterization of PSf Membranes
2.4.1. Morphology
2.4.2. Contact Angle
2.4.3. Porosity and MWCO
2.4.4. Filtration Studies
2.4.5. Recovery and Fouling Performance
3. Results and Discussion
3.1. Hansen Solubility Parameter Calculation
3.2. Cloud Point Curve
3.3. Porosity and MWCO
3.4. Hydrophobicity of Membranes
3.5. Morphology
3.6. Water Flux
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baker, R.W. Membrane Technology, Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Ho, W.; Sirkar, K. Membrane Handbook; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Pellegrin, M.-L.; Mitra, I.; Zhang, K.; Menniti, A.; Law, K.; Wert, J.; Lee, J.; Aguinaldo, J. Membrane Processes. Water Environ. Res. 2008, 80, 1113–1178. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Kim, S.S.; Kinzer, K.E. Microporous membrane formation via thermally-induced phase separation. II. Liquid—Liquid phase separation. J. Membr. Sci. 1991, 64, 1–11. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Hausman, R.; Digman, B.; Escobar, I.C.; Coleman, M.; Chung, T.S. Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity. J. Membr. Sci. 2010, 363, 195–203. [Google Scholar] [CrossRef]
- Staiti, P.; Lufrano, F.; Arico, A.S.; Passalacqua, E.; Antonucci, V. Sulfonated polybenzimidazole membranes—Preparation and physico-chemical characterization. J. Membr. Sci. 2001, 188, 71–78. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; di Nicolo, E.; Li, X.M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034–4059. [Google Scholar] [CrossRef]
- Clark, J.H.; Tavener, S.J. Alternative Solvents: Shades of Green. Org. Process Res. Dev. 2007, 11, 149–155. [Google Scholar] [CrossRef]
- Jessop, P.G. Searching for green solvents. Green Chem. 2011, 13, 1391–1398. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Smallwood, I. Handbook of Organic Solvent Properties; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Smyth, H.F., Jr.; Carpenter, C.P.; Weil, C.S.; Pozzani, U.C.; Striegel, J.A.; Nycum, J.S. Range-finding toxicity data: List VII. Am. Ind. Hyg. Assoc. J. 1969, 30, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Phillips, J.T.; Havrdova, E.; Bar-Or, A.; Kappos, L.; Kim, N.; Thullen, T.; Valencia, P.; Oliva, L.; Novas, M.; et al. Delayed-Release Dimethyl Fumarate and Pregnancy: Preclinical Studies and Pregnancy Outcomes from Clinical Trials and Postmarketing Experience. Neurol. Ther. 2015, 4, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Sherwood, J. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources. Int. J. Mol. Sci. 2015, 16, 17101–17159. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Jerome, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570. [Google Scholar] [CrossRef] [PubMed]
- Medina-Gonzalez, Y.; Aimar, P.; Lahitte, J.F.; Remigy, J.C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int. J. Sustain. Eng. 2011, 4, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Hassankiadeh, N.T.; Cui, Z.; Kim, J.H.; Shin, D.W.; Lee, S.Y.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J. Membr. Sci. 2015, 479, 204–212. [Google Scholar] [CrossRef]
- Marino, T.; Blasi, E.; Tornaghi, S.; di Nicolò, E.; Figoli, A. Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. J. Membr. Sci. 2018, 549, 192–204. [Google Scholar] [CrossRef]
- Roland Jacquot, P.M. Process for Producing Compounds Comprising Nitrile Functions. Rhodia Operations Sas. U.S. Patent 9,073,822, 7 July 2015. [Google Scholar]
- Randová, A.; Bartovská, L.; Morávek, P.; Matějka, P.; Novotná, M.; Matějková, S.; Drioli, E.; Figoli, A.; Lanč, M.; Friess, K. A fundamental study of the physicochemical properties of Rhodiasolv®Polarclean: A promising alternative to common and hazardous solvents. J. Mol. Liquids 2016, 224, 1163–1171. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Solvents; Noyes Publications: Devon, UK, 2001. [Google Scholar]
- Kim, J.F.; Jung, J.T.; Wang, H.H.; Lee, S.Y.; Moore, T.; Sanguineti, A.; Drioli, E.; Lee, Y.M. Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. J. Membr. Sci. 2016, 509, 94–104. [Google Scholar] [CrossRef]
- Jung, J.T.; Kim, J.F.; Wang, H.H.; di Nicolo, E.; Drioli, E.; Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250–263. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, H.K.; Baik, K.J.; Kim, S.C. Liquid-liquid phase separation in polysulfone/solvent/water systems. J. Appl. Polym. Sci. 1997, 65, 2643–2653. [Google Scholar] [CrossRef]
- Abdelrasoul, A.; Doan, H.; Lohi, A.; Cheng, C.-H. Morphology Control of Polysulfone Membranes in Filtration Processes: A Critical Review. ChemBioEng Rev. 2015, 2, 22–43. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zadhoush, A. Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. J. Membr. Sci. 2017, 532, 47–57. [Google Scholar] [CrossRef]
- Yong, S.K.; Hyo, J.K.; Un, Y.K. Asymmetric membrane formation via immersion precipitation method. I. Kinetic effect. J. Membr. Sci. 1991, 60, 219–232. [Google Scholar] [CrossRef]
- Mallevialle, J.; Bersillon, J.L.; Anselme, C.; Aptel, P. Membrane Filtration in Drinking-Water Treatment—A Case Story. In Influence and Removal of Organics in Drinking Water; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Baker, R.W. Membrane Technology; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Tansel, B.; Bao, W.Y.; Tansel, I.N. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model. Desalination 2000, 129, 7–14. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, M.R.; Sakinah, M.; Hiroaki, O. Fabrication, fouling and foulant analyses of asymmetric polysulfone (PSF) ultrafiltration membrane fouled with natural organic matter (NOM) source waters. J. Membr. Sci. 2007, 299, 97–113. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kamide, K.; Iijima, H.; Matsuda, S. Thermodynamics of Formation of Porous Polymeric Membrane by Phase Separation Method I. Nucleation and Growth of Nuclei. Polym. J. 1993, 25, 1113–1131. [Google Scholar] [CrossRef]
- Yilmaz, L.; McHugh, A.J. Analysis of nonsolvent–solvent–polymer phase diagrams and their relevance to membrane formation modeling. J. Appl. Polym. Sci. 1986, 31, 997–1018. [Google Scholar] [CrossRef]
- Ismail, A.F.; Matsuura, T. Membrane Technology for Water and Wastewater Treatment, Energy and Environment; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Liu, Y.; Koops, G.H.; Strathmann, H. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J. Membr. Sci. 2003, 223, 187–199. [Google Scholar] [CrossRef]
- Iqbal, A.; Ani, I.; Rajput, R. Performance of microwave synthesized dual solvent dope solution and lithium bromide additives on poly(ethersulfone) membranes. J. Chem. Technol. Biotechnol. 2012, 87, 177–188. [Google Scholar] [CrossRef]
- Delaplace, G.; Guérin, R.; Leuliet, J.C. Dimensional analysis for planetary mixer: Modified power and Reynolds numbers. AIChE J. 2005, 51, 3094–3100. [Google Scholar] [CrossRef]
- Delaplace, G.; Thakur, R.K.; Bouvier, L.; André, C.; Torrez, C. Dimensional analysis for planetary mixer: Mixing time and Reynolds numbers. Chem. Eng. Sci. 2007, 62, 1442–1447. [Google Scholar] [CrossRef]
- Liu, D.; Chen, L.C.; Liu, T.J.; Fan, T.; Tsou, E.Y.; Tiu, C. An Effective Mixing for Lithium Ion Battery Slurries. Adv. Chem. Eng. Sci. 2014, 4, 515–528. [Google Scholar] [CrossRef]
- Asapu, S.; Pant, S.; Gruden, C.L.; Escobar, I.C. An investigation of low biofouling copper-charged membranes for desalination. Desalination 2014, 338, 17–25. [Google Scholar] [CrossRef]
- Durbin, C.; Hausman, R.; Escobar, I.C. An investigation of polymer dope and heating effects on hollow fiber membranes. Desalination Water Treat. 2013, 51, 6970–6977. [Google Scholar] [CrossRef]
- Flanagan, M.; Hausman, R.; Digman, B.; Escobar, I.C.; Coleman, M.; Chung, T.S. Surface Functionalization of Polybenzimidazole Membranes to Increase Hydrophilicity and Charge; American Chemical Society: Washington, DC, USA, 2011. [Google Scholar]
- Flanagan, M.F.; Escobar, I.C. Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis. J. Membr. Sci. 2013, 434, 85–92. [Google Scholar] [CrossRef]
- Albo, J.; Hagiwara, H.; Yanagishita, H.; Ito, K.; Tsuru, T. Structural Characterization of Thin-Film Polyamide Reverse Osmosis Membranes. Ind. Eng. Chem. Res. 2014, 53, 1442–1451. [Google Scholar] [CrossRef]
- Albo, J.; Wang, J.; Tsuru, T. Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures. J. Membr. Sci. 2014, 449, 109–118. [Google Scholar] [CrossRef]
- Albo, J.; Wang, J.; Tsuru, T. Application of interfacially polymerized polyamide composite membranes to isopropanol dehydration: Effect of membrane pre-treatment and temperature. J. Membr. Sci. 2014, 453, 384–393. [Google Scholar] [CrossRef]
- Strathmann, H.; Kock, K.; Amar, P.; Baker, R.W. The formation mechanism of asymmetric membranes. Desalination 1975, 16, 179–203. [Google Scholar] [CrossRef]
- Tsay, C.S.; McHugh, A.J. The combined effects of evaporation and quench steps on asymmetric membrane formation by phase inversion. J. Polym. Sci. Part B Polym. Phys. 1991, 29, 1261–1270. [Google Scholar] [CrossRef]
- Mosqueda-Jimenez, D.B.; Narbaitz, R.M.; Matsuura, T.; Chowdhury, G.; Pleizier, G.; Santerre, J.P. Influence of processing conditions on the properties of ultrafiltration membranes. J. Membr. Sci. 2004, 231, 209–224. [Google Scholar] [CrossRef]
- Mosqueda-Jimenez, D.B.; Narbaitz, R.M.; Matsuura, T. Manufacturing conditions of surface-modified membranes: Effects on ultrafiltration performance. Sep. Purif. Technol. 2004, 37, 51–67. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [PubMed]
- Marchese, J.; Ponce, M.; Ochoa, N.A.; Prádanos, P.; Palacio, L.; Hernández, A. Fouling behaviour of polyethersulfone UF membranes made with different PVP. J. Membr. Sci. 2003, 211, 1–11. [Google Scholar] [CrossRef]
- Kelly, S.T.; Zydney, A.L. Mechanisms for BSA fouling during microfiltration. J. Membr. Sci. 1995, 107, 115–127. [Google Scholar] [CrossRef]
- Hwang, K.J.; Sz, P.Y. Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chem. Eng. J. 2011, 166, 669–677. [Google Scholar] [CrossRef]
- Kennedy, M.D.; Chun, H.K.; Yangali, V.A.Q.; Heijman, B.G.J.; Schippers, J.C. Natural organic matter (NOM) fouling of ultrafiltration membranes: Fractionation of NOM in surface water and characterisation by LC-OCD. Desalination 2005, 178, 73–83. [Google Scholar] [CrossRef]
- Wan, H.; Briot, N.J.; Saad, A.; Ormsbee, L.; Bhattacharyya, D. Pore functionalized PVDF membranes with in-situ synthesized metal nanoparticles: Material characterization, and toxic organic degradation. J. Membr. Sci. 2017, 530, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Behzad, A.; Hooghan, K.; Aubry, C.; Khan, M.; Croue, J. SEM-FIB Characterization of Reverse Osmosis Membrane Fouling. Microsc. Microanal. 2011, 17, 1768–1769. [Google Scholar] [CrossRef]
- Zheng, Q.-Z.; Wang, P.; Yang, Y.-N.; Cui, D.-J. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Membr. Sci. 2006, 286, 7–11. [Google Scholar] [CrossRef]
- Nakao, S.-I. Determination of pore size and pore size distribution. J. Membr. Sci. 1994, 96, 131–165. [Google Scholar] [CrossRef]
- Kaur, S.; Ma, Z.; Gopal, R.; Singh, G.; Ramakrishna, S.; Matsuura, T. Plasma-Induced Graft Copolymerization of Poly(methacrylic acid) on Electrospun Poly(vinylidene fluoride) Nanofiber Membrane. Langmuir 2007, 23, 13085–13092. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on membrane morphology and transport properties. J. Membr. Sci. 2008, 309, 209–221. [Google Scholar] [CrossRef]
- Radovanovic, P.; Thiel, S.W.; Hwang, S.-T. Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation. J. Membr. Sci. 1992, 65, 213–229. [Google Scholar] [CrossRef]
- Radovanovic, P.; Thiel, S.W.; Hwang, S.-T. Formation of asymmetric polysulfone membranes by immersion precipitation. Part II. The effects of casting solution and gelation bath compositions on membrane structure and skin formation. J. Membr. Sci. 1992, 65, 231–246. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Kim, I.S.; Cho, J.; Ngo, H.H. Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. J. Membr. Sci. 2006, 278, 232–238. [Google Scholar] [CrossRef]
- Hernandez, S.; Porter, C.; Zhang, X.; Wei, Y.; Bhattacharyya, D. Layer-by-layer assembled membranes with immobilized porins. RSC Adv. 2017, 7, 56123–56136. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.W.Y.; Guiver, M.D.; Matsuura, T. Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems. J. Membr. Sci. 1991, 59, 219–227. [Google Scholar] [CrossRef]
- Wijmans, J.; Kant, J.; Mulder, M.; Smolders, C. Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: Relationship with membrane formation. Polymer 1985, 26, 1539–1545. [Google Scholar] [CrossRef]
- Miao, R.; Wang, L.; Zhu, M.; Deng, D.; Li, S.S.; Wang, J.; Liu, T.; Lv, Y. Effect of Hydration Forces on Protein Fouling of Ultrafiltration Membranes: The Role of Protein Charge, Hydrated Ion Species, and Membrane Hydrophilicity. Environ. Sci. Technol. 2017, 51, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, S.; Shobana, K.; Anitharaj, S.; Mohan, D. Preparation, Morphology, Performance, and Hydrophilicity Studies of Poly(amide-imide) Incorporated Cellulose Acetate Ultrafiltration Membranes. Ind. Eng. Chem. Res. 2011, 50, 5550–5564. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Zheng, J.; Hou, S.; Zhang, S.B.; Li, S. Correlation of the polymer hydrophilicity and membrane fabrication process on the properties of asymmetric membranes in a vapor-induced phase-inversion process. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Kasemset, S.; Wang, L.; He, Z.; Miller, D.J.; Kirschner, A.; Freeman, B.D.; Sharma, M.M. Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane. J. Membr. Sci. 2017, 522, 100–115. [Google Scholar] [CrossRef]
- Machado, P.S.T.; Habert, A.C.; Borges, C.P. Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes. J. Membr. Sci. 1999, 155, 171–183. [Google Scholar] [CrossRef]
- Alpatova, A.; Kim, E.-S.; Sun, X.; Hwang, G.; Liu, Y.; El-Din, M.G. Fabrication of porous polymeric nanocomposite membranes with enhanced anti-fouling properties: Effect of casting composition. J. Membr. Sci. 2013, 444, 449–460. [Google Scholar] [CrossRef]
- Qin, P.; Hong, X.; Karim, M.N.; Shintani, T.; Li, J.; Chen, C. Preparation of Poly(phthalazinone-ether-sulfone) Sponge-Like Ultrafiltration Membrane. Langmuir 2013, 29, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, J.; Kim, J.M.; Kang, S.W. Water treatment by polysulfone membrane modified with tetrahydrofuran and water pressure. Macromol. Res. 2016, 24, 1020–1023. [Google Scholar] [CrossRef]
- Melpolder, F.W.; Headington, C.E. Calculation of Relative Volatility from Boiling Points. Ind. Eng. Chem. 1947, 39, 763–766. [Google Scholar] [CrossRef]
- Nasirzadeh, K.; Neueder, R.; Kunz, W. Vapor Pressures of Propylene Carbonate and N,N-Dimethylacetamide. J. Chem. Eng. Data 2005, 50, 26–28. [Google Scholar] [CrossRef]
- National Industrial Chemicals Notification and Assessment Scheme. Public Report File std/1544: Pentanoic Acid, 5-(dimethylamino)-2-methyl-5-oxo-, Methyl Ester (rhodiasolv polarclean). Available online: https://www.nicnas.gov.au/__data/assets/word_doc/0016/15253/STD-1544-Final-FR.docx (accessed on 30 March 2018).
- Wei, Y.; Chaudhary, V. Fast Quantitative Analysis of Stock Trading Points in Dual Period of DMAC. In Proceedings of the 2015 IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March–2 April 2015; pp. 34–43. [Google Scholar]
- Jonsson, G. Methods for determining the selectivity of reverse osmosis membranes. Desalination 1977, 24, 19–37. [Google Scholar] [CrossRef]
- Zhang, Z.; An, Q.; Liu, T.; Zhou, Y.; Qian, J.; Gao, C. Fabrication of polysulfone ultrafiltration membranes of a density gradient cross section with good anti-pressure stability and relatively high water flux. Desalination 2011, 269, 239–248. [Google Scholar] [CrossRef]
- Chaturvedi, B.K.; Ghosh, A.K.; Ramachandhran, V.; Trivedi, M.K.; Hanra, M.S.; Misra, B.M. Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination 2001, 133, 31–40. [Google Scholar] [CrossRef]
- Stropnik, C.; Kaiser, V.; Musil, V.; Brumen, M. Wet-phase-separation membranes from the polysulfone/N,N-dimethylacetamide/water ternary system: The formation and elements of their structure and properties. J. Appl. Polym. Sci. 2005, 96, 1667–1674. [Google Scholar] [CrossRef]
- Helm, G.S.; Wei, J.; Corner-Walker, N. Comparison of new polysulfone membrane GR70PE with other commercial membranes for concentration of proteins—Long-term field test. Desalination 2006, 191, 328–333. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Rahimpour, A. Effect of type of solvent and non-solvents on morphology and performance of polysulfone and polyethersulfone ultrafiltration membranes for milk concentration. Polym. Adv. Technol. 2005, 16, 717–724. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Velu, S.; Muruganandam, L. Performance enhancement of polysulfone ultrafiltration membrane by blending with polyurethane hydrophilic polymer. J. Polym. Eng. 2011, 31, 125–131. [Google Scholar] [CrossRef]
- Wienk, I.M.; Boom, R.M.; Beerlage, M.A.M.; Bulte, A.M.W.; Smolders, C.A.; Strathmann, H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 1996, 113, 361–371. [Google Scholar] [CrossRef]
- Antelmi, D.; Cabane, B.; Meireles, M.; Aimar, P. Cake Collapse in Pressure Filtration. Langmuir 2001, 17, 7137–7144. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, J.; Ding, L.; Jaffrin, M.Y. A Review on Flux Decline Control Strategies in Pressure-Driven Membrane Processes. Ind. Eng. Chem. Res. 2015, 54, 2843–2861. [Google Scholar] [CrossRef]
Properties | NMP | DMAc | PolarClean |
---|---|---|---|
CAS-No | 872-50-4 | 127-19-5 | 1174627-68-9 |
Formula | C5H9NO | C4H9NO | C9H17NO3 |
MW (g·mol−1) | 99.133 | 87.122 | 187.239 |
Density (g·mL−1) | 1.03 | 0.94 | 1.043 |
Flash point (°C) | 95 | 69 | 144–146 |
Boiling point (°C) | 202 | 165 | 278–282 |
Solubility in water (%) | miscible | miscible | miscible |
Signal | Danger | Danger | Warning |
Toxicity | Reproductive toxicity | Reproductive toxicity |
Molecular Weight (kDa) | Hydrodynamic Radius (nm) |
---|---|
PEG 200 | 0.49 |
PEG 400 | 0.65 |
PEG 1000 | 0.93 |
PEG 4000 | 1.60 |
PEG 10,000 | 2.29 |
PEG 20,000 | 3.01 |
PEG 40,000 | 3.95 |
Polymer | (MPa1/2) | (MPa1/2) | (MPa1/2) | Ro (MPa1/2) | |
---|---|---|---|---|---|
PSf | 19.7 | 8.3 | 8.3 | 8.00 | |
Solvents | (MPa1/2) | (MPa1/2) | (MPa1/2) | Ra (MPa1/2) | RED |
NMP | 18 | 12.3 | 7.2 | 5.36 | 0.67 |
DMAc | 16.8 | 11.5 | 10.2 | 6.89 | 0.86 |
PolarClean | 15.8 | 10.7 | 9.2 | 8.21 | 1.03 |
Water | 15.5 | 16 | 42.4 | 35.95 | 4.49 |
Polymer | Solvent | Polymer (wt %) | Pressure (Bar) | Pure Water Flux (LMH) | Pure Water Permeability (LMH per Bar) | Feed Solution | Rejection | Source |
---|---|---|---|---|---|---|---|---|
PSf | PolarClean | 17 | 4 | 2423 | 605.75 | 1 g/L BSA | 99% | This study |
PSf | DMAc | 17 | 4 | 63 | 15.75 | 1 g/L BSA | 96% | This study |
PSf | DMAc | 16 | 4 | 21 | 5.25 | milk | 98% of protein | [90] |
PSf | DMAc | 18 | 4 | 36.7 | 9.175 | unreported | unreported | [91] |
PSf | DMAc | 17.5 | 4 | 41.2 | 10.3 | 1 g/L BSA | 90% | [92] |
PSf | unreported | - | 4 | 133 | 33.25 | 2.5 g/L Dextran (MW 18 k) | 88.80% | [93] |
PSf | unreported | - | 3.8 | 1500–2400 | 394.74–631.58 | 10 kDa | 90% | [2] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Al-Jumaily, A.; Escobar, I.C. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes 2018, 8, 23. https://doi.org/10.3390/membranes8020023
Dong X, Al-Jumaily A, Escobar IC. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes. 2018; 8(2):23. https://doi.org/10.3390/membranes8020023
Chicago/Turabian StyleDong, Xiaobo, Amna Al-Jumaily, and Isabel C. Escobar. 2018. "Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes" Membranes 8, no. 2: 23. https://doi.org/10.3390/membranes8020023
APA StyleDong, X., Al-Jumaily, A., & Escobar, I. C. (2018). Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes. Membranes, 8(2), 23. https://doi.org/10.3390/membranes8020023