Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Ionic Liquid
2.2. Preparation of the Polymer Electrolyte and the Composite Cathode
2.3. Thermal Analysis
2.4. Cell Assembly
2.5. Electrochemical Tests
3. Results and Discussion
3.1. Ionic Liquid-Based Polymer Electrolytes
3.2. Composite Electrodes
3.3. Battery Tests at 80 °C
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Notter, D.A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H.-J. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 2010, 44, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Amiruddin, S.; Bang, H.J.; Sun, Y.K.; Prakash, J. A review of Li-ion cell chemistries and their potential use as hybrid electric vehicles. J. Ind. Eng. Chem. 2006, 12, 12–38. [Google Scholar]
- Nair, J.R.; Chiappone, A.; Destro, M.; Jabbour, L.; Meligrana, G.; Gerbaldi, C. UV-induced radical photo-polymerization: A smart tool for preparing polymer electrolyte membranes for energy storage devices. Membranes 2012, 2, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Duan, Y.; Hu, D.; Qin, B.; Zhang, J.; Wang, D.; Liu, Z.; Cui, G.; Chen, L. Rigid−flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl. Mater. Int. 2015, 7, 4720–4727. [Google Scholar] [CrossRef] [PubMed]
- Colò, F.; Bella, F.; Nair, J.R.; Gerbaldi, C. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J. Power Sources 2017, 365, 293–302. [Google Scholar] [CrossRef]
- Dyartanti, E.R.; Purwanto, A.; Widiasa, I.N.; Susanto, H. Ionic conductivity and cycling stability improvement of PVdF/nano-clay using PVP as polymer electrolyte membranes for LiFePO4 batteries. Membranes 2018, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Lia, H.; Lia, M.; Siyala, S.H.; Zhua, M.; Lana, J.-L.; Suia, G.; Yua, Y.; Zhonga, W.; Yang, X. A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries. J. Membr. Sci. 2018, 555, 169–176. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Gosselink, D.; Long Doan, T.N.; Sadhu, M.; Cheang, H.J.; Chen, P. Polymer electrolytes for lithium/sulfur batteries. Membranes 2012, 2, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hou, J. Membranes in lithium ion batteries. Membranes 2012, 2, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Abraham, D.P.; Roth, E.P.; Kostecky, R.; McCarthy, K.; MacLaren, S.; Doughty, D.H. Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sources 2006, 161, 648–657. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1–R25. [Google Scholar] [CrossRef]
- Armand, M.; Chabagno, J.M.; Duclot, M. Poly-ethers as solid electrolytes. In Fast Ion Transport in Solids. Electrodes and Electrolytes; Vashitshta, P., Mundy, J.N., Shenoy, G.K., Eds.; North Holland Publishers: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Gray, F.M. Polymer Electrolytes; Royal Society of Chemistry Monographs: Cambridge, UK, 1997. [Google Scholar]
- Lightfoot, P.; Metha, M.A.; Bruce, P.G. Crystal structure of the polymer electrolyte Poly(ethylene oxide)3: LiCF3SO3. Science 1993, 262, 883–885. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.A.; Scrosati, B. Modern Batteries. An Introduction to Electrochemical Power Sources, 2nd ed.; Arnold: London, UK, 1993. [Google Scholar]
- Gray, F.M.; Armand, M.; Osaka, T. Energy Storage System for Electronics; Osaka, T., Datta, M., Eds.; Gordon and Breach Science Publications: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Appetecchi, G.B.; Croce, F.; Hassoun, J.; Scrosati, B.; Salomon, M.; Cassel, F. Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes. II. All-solid, Li/LiFePO4 polymer batteries. J. Power Sources 2003, 124, 246–253. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Scaccia, S.; Passerini, S. Investigation on the stability of the lithium-polymer electrolyte interface. J. Electrochem. Soc. 2000, 147, 4448–4452. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Alessandrini, F.; Duan, R.G.; Arzu, A.; Passerini, S. Electrochemical testing of industrially produced PEO-based polymer electrolytes. J. Power Sources 2001, 101, 42–46. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Henderson, W.; Villano, P.; Berrettoni, M.; Passerini, S. PEO-LiN(SO2CF2CF3)2 polymer electrolytes. I. XRD, DSC and ionic conductivity characterization. J. Electrochem. Soc. 2001, 148, 1171–1178. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Alessandrini, F.; Carewska, M.; Caruso, T.; Prosini, P.P.; Scaccia, S.; Passerini, S. Investigation on the lithium polymer electrolyte batteries. J. Power Sources 2001, 97, 790–794. [Google Scholar] [CrossRef]
- Villano, P.; Carewska, M.; Appetecchi, G.B.; Passerini, S. PEO-LiN(SO2CF2CF3)2 polymer electrolytes. III. Tests in batteries. J. Electrochem. Soc. 2002, 149, A1282–A1285. [Google Scholar] [CrossRef]
- Passerini, S.; Montanino, M.; Appetecchi, G.B. Lithium polymer batteries based on ionic liquids. In Polymers for Energy Storage and Conversion; Mittal, V., Ed.; John Wiley and Scrivener Publishing: Beverly, MA, USA, 2013. [Google Scholar]
- Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275–297. [Google Scholar] [CrossRef]
- Rogers, J.R.D.; Seddon, K.R. Ionic Liquids: Industrial Application to Green Chemistry; ACS Symposium Series 818; American Chemical Society: Washington, DC, USA, 2002. [Google Scholar]
- Ohno, H. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Shin, J.-H.; Henderson, W.A.; Passerini, S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 2003, 5, 1016–1020. [Google Scholar] [CrossRef]
- Shin, J.-H.; Henderson, W.A.; Appetecchi, G.B.; Alessandrini, F.; Passerini, S. Recent developments in the ENEA lithium metal battery project. Electrochim. Acta 2005, 50, 3859–3865. [Google Scholar] [CrossRef]
- Shin, J.-H.; Henderson, W.A.; Tizzani, C.; Passerini, S.; Jeong, S.-S.; Kim, K.-W. Characterization of solvent-free polymer electrolytes consisting of ternary PEO-LiTFSI-PYR14TFSI. J. Electrochem. Soc. 2006, 153, A1649–A1654. [Google Scholar] [CrossRef]
- Kim, G.-T.; Appetecchi, G.B.; Alessandrini, F.; Passerini, S. Solvent-free, PYR1ATFSI ionic liquids-based ternary polymer electrolyte systems. I. Electrochemical characterization. J. Power Sources 2007, 171, 861–869. [Google Scholar] [CrossRef]
- Kim, G.-T.; Appetecchi, G.B.; Carewska, M.; Joost, M.; Balducci, A.; Winter, M.; Passerini, S. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic-liquids. J. Power Sources 2010, 195, 6130–6137. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Kim, G.-T.; Montanino, M.; Alessandrini, F.; Passerini, S. Room temperature lithium polymer batteries based on ionic liquids. J. Power Sources 2011, 196, 6703–6709. [Google Scholar] [CrossRef]
- Kim, G.-T.; Jeong, S.-S.; Xue, M.-Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G.B. Development of ionic liquid-based lithium battery prototypes. J. Power Sources 2012, 199, 239–246. [Google Scholar] [CrossRef]
- Montanino, M.; Alessandrini, F.; Passerini, S.; Appetecchi, G.B. Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochim. Acta 2013, 96, 124–133. [Google Scholar] [CrossRef]
- De Francesco, M.; Simonetti, E.; Giorgi, G.; Appetecchi, G.B. About purification route of hydrophobic ionic liquids. Challenges 2017, 8, 11. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Carewska, M.; Alessandrini, F.; Prosini, P.P.; Passerini, S. Characterization of PEO-based composite cathodes. I. Morphological, thermal, mechanical and electrical properties. J. Electrochem. Soc. 2000, 147, 451–459. [Google Scholar] [CrossRef]
- MacDonald, J.R. Impedance Spectroscopy; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Boukamp, B.A. A package for impedance/admittance data analysis. Solid State Ion. 1986, 18, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Boukamp, B.A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31–44. [Google Scholar] [CrossRef]
- Simonetti, E.; Carewska, M.; Di Carli, M.; Moreno, M.; De Francesco, M.; Appetecchi, G.B. Towards improvement of the electrochemical properties of ionic liquid-containing polyethylene oxide-based electrolytes. Electrochim. Acta 2017, 235, 323–331. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Montanino, M.; Carewska, M.; Moreno, M.; Alessandrini, F.; Passerini, S. Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide anion-based ionic liquids. Electrochim. Acta 2011, 56, 1300–1307. [Google Scholar] [CrossRef]
- Henderson, W.A.; Passerini, S. Phase behavior of ionic liquid—LiX mixtures: pyrrolidinium cations and TFSI- anions. Chem. Mater. 2004, 16, 2881–2885. [Google Scholar] [CrossRef]
- Passerini, S.; Scrosati, B. Characterization of nonstoichiometric nickel oxide thin-film electrodes. J. Electrochem. Soc. 1994, 141, 889–895. [Google Scholar] [CrossRef]
- Randstrom, S.; Montanino, M.; Appetecchi, G.B.; Lagergren, C.; Moreno, A.; Passerini, S. Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim. Acta 2008, 53, 6397–6401. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Wang, C.; Hong, J. Ionic/electronic conducting characteristics of LiFePO4 cathode materials. The determining factors for high rate performance. J. Electrochem. Soc. 2007, 10, A65–A69. [Google Scholar] [CrossRef]
Polymer Electrolyte Sample | Ionic Conductivity/S·cm−1 | |||
---|---|---|---|---|
−20 °C | 20 °C | 50 °C | 80 °C | |
P(EO)1(LiTFSI)0.1 (*) | 1.1 × 10−9 | 1.3 × 10−6 | 2.2 × 10−4 | 8.4 × 10−4 |
P(EO)1(LiTFSI)0.1(PYR14TFSI)0.1 (*) | 9.7 × 10−7 | 1.1 × 10−4 | 7.9 × 10−4 | 1.9 × 10−3 |
Li/PE Interfacial Resistance/cm2 | ||||
P(EO)1(LiTFSI)0.1 | n.a. | 830 ± 80 | 82 ± 8 | 7.0 ± 0.7 |
P(EO)1(LiTFSI)0.1(PYR14TFSI)0.1 | n.a. | 750 ± 70 | 65 ± 6 | 6.3 ± 0.6 |
Polymer Electrolyte Sample | Battery System | T/°C | Current Density/mA·cm−2 | Percent of Theoretical Capacity/% |
---|---|---|---|---|
P(EO)1(LiCF3SO3)0.05 (a) | Li/Cu0.1V2O5 | 90 | 0.1 (0.2C) | 96 (1st) → 60 (100th) |
P(EO)1(LiBETI)0.05 (b) | Li/V2O5 | 90 | 0.24 (0.33C) | 70 (1st) → 45 (100th) |
P(EO)1(LiBETI)0.05 (b) | Li/V2O5 | 90 | 0.72 (1C) | 14 (1st) |
P(EO)1(LiCF3SO3)0.03 + 5 wt. % SiO2 (c) | Li/LiFePO4 | 100 | 0.2 (0.2C) | 82 (1st) → 47 (100th) |
P(EO)1(LiCF3SO3)0.03 + 5 wt. % SiO2 (c) | Li/LiFePO4 | 100 | 0.8 (0.8C) | 8 (1st) |
P(EO)1(LiTFSI)0.1(PYR14TFSI)0.1 (d) | Li/LiFePO4 | 80 | 0.7 (1C) | 94.1 (1st) → 93.6 (100th) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-T.; Passerini, S.; Carewska, M.; Appetecchi, G.B. Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes 2018, 8, 41. https://doi.org/10.3390/membranes8030041
Kim G-T, Passerini S, Carewska M, Appetecchi GB. Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes. 2018; 8(3):41. https://doi.org/10.3390/membranes8030041
Chicago/Turabian StyleKim, Guk-Tae, Stefano Passerini, Maria Carewska, and Giovanni Battista Appetecchi. 2018. "Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries" Membranes 8, no. 3: 41. https://doi.org/10.3390/membranes8030041
APA StyleKim, G. -T., Passerini, S., Carewska, M., & Appetecchi, G. B. (2018). Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes, 8(3), 41. https://doi.org/10.3390/membranes8030041