Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing
Abstract
:1. Introduction
2. Methods
2.1. Chemicals
2.2. Polymer Solution Preparation
2.3. Preparation of the Randomly Porous Polybenzimidazole (RPBI) Supports by Phase Inversion
2.4. Fabrication of Supported Ionic Liquid Membranes (SILMs)
2.5. Characterization Methods
3. Results and Discussion
3.1. Fabrication of the Randomly Porous Polybenzimidazole (RPBI) Supports: Morphological Characterization
3.2. Fabrication of SILMs Based on Protic Imidazolium Ionic Liquids: Physico-Chemical Characterization
3.3. Permeation Properties of the SILMs Based on Protic Imidazolium Ionic Liquids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lokhandwala, K.A.; Pinnau, I.; He, Z.; Amo, K.D.; DaCosta, A.R.; Wijmans, J.G.; Baker, R.W. Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment. J. Membr. Sci. 2010, 346, 270–279. [Google Scholar] [CrossRef]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Ohs, B.; Lohaus, J.; Wessling, M. Optimization of membrane based nitrogen removal from natural gas. J. Membr. Sci. 2016, 498, 291–301. [Google Scholar] [CrossRef]
- Shimoyama, Y.; Komuro, S.; Jindaratsamee, P. Permeability of CO2 through ionic liquid membranes with water vapour at feed and permeate streams. J. Chem. Thermodyn. 2014, 69, 179–185. [Google Scholar] [CrossRef]
- Close, J.J.; Farmer, K.; Moganty, S.S.; Baltus, R.E. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance. J. Memb. Sci. 2012, 390–391, 201–210. [Google Scholar] [CrossRef]
- Bara, J.E.; Gabriel, C.J.; Carlisle, T.K.; Camper, D.E.; Finotello, A.; Gin, D.L.; Noble, R.D. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J. 2009, 147, 43–50. [Google Scholar] [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- Khakpay, A.; Scovazzo, P. Reverse-selective behavior of room temperature ionic liquid based membranes for natural gas processing. J. Membr. Sci. 2018, 545, 204–212. [Google Scholar] [CrossRef]
- Tome, L.C.; Marrucho, I.M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Gan, Q.; Nancarrow, P. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. J. Membr. Sci. 2014, 450, 407–417. [Google Scholar] [CrossRef]
- Althuluth, M.; Overbeek, J.P.; van Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.; Peters, C.J.; Kroon, M.C. Natural gas purification using supported ionic liquid membrane. J. Membr. Sci. 2015, 484, 80–86. [Google Scholar] [CrossRef]
- Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: Comparison to Other Ionic Liquids. Acc. Chem. Res. 2007, 40, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Finotello, A.; Bara, J.E.; Camper, D.; Noble, R.D. Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility, Selectivity. Ind. Eng. Chem. Res. 2008, 47, 3453–3459. [Google Scholar] [CrossRef]
- Liu, X.; He, M.; Nan, L.; Xu, H.; Bai, L. Selective absorption of CO2 from H2, O2 and N2 by 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate. J. Chem. Thermodyn. 2016, 97, 48–54. [Google Scholar] [CrossRef]
- Afzal, W.; Yoo, B.; Prausnitz, J.M. Inert-Gas-Stripping Method for Measuring Solubilities of Sparingly Soluble Gases in Liquids. Solubilities of Some Gases in Protic Ionic Liquid 1-Butyl, 3-Hydrogen-imidazolium Acetate. Ind. Eng. Chem. Res. 2012, 51, 4433–4439. [Google Scholar] [CrossRef]
- Sedov, I.A.; Magsumov, T.I.; Salikov, T.M.; Solomonov, B.N. Solvation of apolar compounds in protic ionic liquids: The non-synergistic effect of electrostatic interactions and hydrogen bonds. Phys. Chem. Chem. Phys. 2017, 19, 25352–25359. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, M.L.; Ferreira, P.I.S.; Pisoni, G.O.; Silva, A.K.; Cardozo-Filho, L.; Lião, L.M.; Pires, C.A.M.; Mattedi, S. High pressure vapor-liquid equilibria for binary protic ionic liquids + methane or carbon dioxide. Sep. Purif. Technol. 2018, 196, 32–40. [Google Scholar] [CrossRef]
- Alcantara, M.L.; Santos, J.P.; Loreno, M.; Ferreira, P.I.S.; Paredes, M.L.L.; Cardozo-Filho, L.; Silva, A.K.; Lião, L.M.; Pires, C.A.M.; Mattedi, S. Low viscosity protic ionic liquid for CO2/CH4 separation: Thermophysical and high-pressure phase equilibria for diethylammonium butanoate. Fluid Phase Equilib. 2018, 459, 30–43. [Google Scholar] [CrossRef]
- Lemus, J.; Eguizábal, A.; Pina, M.P. UV polymerization of room temperature ionic liquids for high temperature PEMs: Study of ionic moieties and crosslinking effects. Inter. J. Hydrog. Energy 2015, 40, 5416–5424. [Google Scholar] [CrossRef]
- Lemus, J.; Eguizábal, A.; Pina, M.P. Endurance strategies for the preparation of high temperature polymer electrolyte membranes by UV polymerization of 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide for fuel cell applications. Inter. J. Hydrog. Energy 2016, 41, 3981–3993. [Google Scholar] [CrossRef]
- Eguizábal, A.; Lemus, J.; Roda, V.; Urbiztondo, M.; Barreras, F.; Pina, M.P. Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: Preparation, characterization and MEA testing. Inter. J. Hydrog. Energy 2012, 37, 7221–7234. [Google Scholar] [CrossRef]
- Kallem, P.E.A.; Mallada, R.; Pina, M.P. Constructing straight Poly-ionic liquid microchannels for fast anhydrous proton transport straight. ACS Appl. Mater. Interfaces 2016, 8, 35377–35389. [Google Scholar] [CrossRef] [PubMed]
- Kallem, P.; Drobek, M.; Julbe, A.; Vriezekolk, E.J.; Mallada, R.; Pina, M.P. Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Appl. Mater. Interfaces 2017, 9, 14844–14857. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.; Scovazzo, P. Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids: Data and Correlations. Ind. Eng. Chem. Res. 2007, 46, 1369–1374. [Google Scholar] [CrossRef]
- Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J. Membr. Sci. 2009, 327, 41–48. [Google Scholar] [CrossRef]
- Neves, L.A.; Crespo, J.G.; Coelhoso, I.M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci. 2010, 357, 160–170. [Google Scholar] [CrossRef]
- Cserjési, P.; Nemestóthy, N.; Bélafi-Bakó, K. Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J. Memb. Sci. 2010, 349, 6–11. [Google Scholar] [CrossRef]
- Tomé, L.C.; Mecerreyes, D.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. J. Membr. Sci. 2013, 428, 260–266. [Google Scholar] [CrossRef]
- Borjigin, H.; Stevens, K.A.; Liu, R.; Moon, J.D.; Shaver, A.T.; Swinnea, S.; Freeman, B.D.; Riffle, J.S.; McGrath, J.E. Synthesis and characterization of polybenzimidazoles derived from tetraaminodiphenylsulfone for high temperature gas separation membranes. Polymer 2015, 71, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Han, S.H.; Lee, J.E.; Lee, K.-J.; Park, H.B.; Lee, Y.M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. J. Membr. Sci. 2010, 357, 143–151. [Google Scholar] [CrossRef]
- Pesiri, D.R.; Jorgensen, B.; Dye, R.C. Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. J. Membr. Sci. 2003, 218, 11–18. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, M.; Guo, R.; Luo, J.; Li, J. CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes. J. Mater. Sci. 2014, 50, 104–111. [Google Scholar] [CrossRef]
- Hu, X.D.; Tang, J.B.; Blasig, A.; Shen, Y.Q.; Radosz, M. CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J. Membr. Sci. 2006, 281, 130–138. [Google Scholar] [CrossRef]
- Cera-Manjares, A.; Salavera, D.; Coronas, A. Vapour pressure measurements of ammonia/ionic liquids mixtures as suitable alternative working fluids for absorption refrigeration technology. Fluid Phase Equilib. 2018, in press. [Google Scholar] [CrossRef]
- Charmette, C.; Sanchez, J.; Gramain, P.; Rudatsikira, A. Gas transport properties of poly(ethylene oxide-co-epichlorohydrin) membranes. J. Membr. Sci. 2004, 230, 161–169. [Google Scholar] [CrossRef]
- Howlett, P.C.; Brack, N.; Hollenkamp, A.F.; Forsyth, M.; MacFarlane, D.R. Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes. J. Electrochem. Soc. 2006, 153, A595. [Google Scholar] [CrossRef]
- Carlisle, T.K.; Bara, J.E.; Gabriel, C.J.; Noble, R.D.; Gin, D.L. Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach. Ind. Eng. Chem. Res. 2008, 47, 7005–7012. [Google Scholar] [CrossRef]
- Young, J.S.; Long, G.S.; Espinoza, B.F. Cross-Linked Polybenzimidazole Membrane for Gas Separation. Google Patents US6946015B2, 20 September 2005. [Google Scholar]
- Moschovi, A.M.; Ntais, S.; Dracopoulos, V.; Nikolakis, V. Vibrational spectroscopic study of the protic ionic liquid 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Vib. Spectrosc. 2012, 63, 350–359. [Google Scholar] [CrossRef]
- Camper, D.; Bara, J.; Koval, C.; Noble, R. Bulk-Fluid Solubility and Membrane Feasibility of Rmim-Based Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2006, 45, 6279–6283. [Google Scholar] [CrossRef]
- Condemarin, R.; Scovazzo, P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem. Eng. J. 2009, 147, 51–57. [Google Scholar] [CrossRef]
- Scovazzo, P.; Kieft, J.; Finan, D.; Koval, C.; Dubois, D.; Noble, R. Gas separations using non-hexafluorophosphate [PF6]−anion supported ionic liquid membranes. J. Membr. Sci. 2004, 238, 57–63. [Google Scholar] [CrossRef]
SILM | Ionic liquid (IL) Loading (wt%) | ||
---|---|---|---|
Theoretical 1 | Experimental 2 | TGA | |
RPBI-IL | 73.5 | 82.4 | 70.4 |
RPBI-MIL | 77.0 | 86.0 | 83.1 |
RPBI-PIL | 82.5 | 86.5 | 78.6 |
Aprotic Ionic Liquids | T (K) | H N2 (atm) | H CH4 (atm) | Ideal Sel CH4/N2 | Ref. |
---|---|---|---|---|---|
1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide | 298 | 1000 ± 8 | 350 ± 1 | 2.8 | [14] |
313 | 830 ± 6 | 350 ± 2 | 2.4 | ||
328 | 720 ± 11 | 340 ± 4 | 2.1 | ||
343 | 660 ± 12 | 340 ± 0.4 | 1.9 | ||
1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide | 333 | 970 ± 30 | 420 ± 10 | 2.3 | [38] |
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide | 298 | 1400 ± 17 | 580 ± 4 | 2.9 | [14] |
313 | 1200 ± 27 | 560 ± 3 | 2.1 | ||
328 | 1000 ± 19 | 540 ± 1 | 1.85 | ||
343 | 910 ± 0.3 | 530 ± 0.4 | 1.7 |
Protic Ionic Liquids | T (K) | H N2 (atm) | H CH4 (atm) | Ideal Sel CH4/N2 | Ref. |
---|---|---|---|---|---|
1-butyl-3-H-imidazolium acetate | 308 | 1840 ± 147 | 90 ± 4.5 * 85 ± 3.4 ** | 20.4 * 21.6 ** | [16] |
1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide | 333 | n.a. | 172 ± 16 | n.a. | This work |
Ionic Liquid | Support | Temperature (K) | N2 (Barrer) | CH4 (Barrer) | PermSel CH4/N2 |
---|---|---|---|---|---|
1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide | RPBI | 333 | 112 | 285 | 2.5 |
1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide | RPBI | 333 | 169 | 725 | 4.3 |
poly [1-(3H-imidazolium) ethylene] bis (trifluoromethanesulfonyl)imide | RPBI | 333 | 50 | 235 | 4.7 |
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide | PVDF * | 303 | 17 | 32 | 1.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallem, P.; Charmette, C.; Drobek, M.; Julbe, A.; Mallada, R.; Pina, M.P. Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing. Membranes 2018, 8, 75. https://doi.org/10.3390/membranes8030075
Kallem P, Charmette C, Drobek M, Julbe A, Mallada R, Pina MP. Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing. Membranes. 2018; 8(3):75. https://doi.org/10.3390/membranes8030075
Chicago/Turabian StyleKallem, Parashuram, Christophe Charmette, Martin Drobek, Anne Julbe, Reyes Mallada, and Maria Pilar Pina. 2018. "Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing" Membranes 8, no. 3: 75. https://doi.org/10.3390/membranes8030075
APA StyleKallem, P., Charmette, C., Drobek, M., Julbe, A., Mallada, R., & Pina, M. P. (2018). Exploring the Gas-Permeation Properties of Proton-Conducting Membranes Based on Protic Imidazolium Ionic Liquids: Application in Natural Gas Processing. Membranes, 8(3), 75. https://doi.org/10.3390/membranes8030075