In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Liquid Samples Doped with Magnetic Nanoparticles
2.3. Magnetic Alignment
2.4. Characterization Techniques
2.5. Simulation
3. Results
3.1. Alignment with Magnetic Field and Characterisation with Australian Synchrotron SAXS
3.2. MD Simulation
4. Retention of Aligned Nanostructure in Polymerized Films
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peck, M.; Dusserre, N.; McAllister, T.N.; L’Heureux, N. Tissue engineering by self-assembly. Mater. Today 2011, 14, 218–224. [Google Scholar] [CrossRef]
- Rajasekharan, A.K.; Bordes, R.; Sandstrom, C.; Ekh, M.; Andersson, M. Hierarchical and Heterogeneous Bioinspired Composites-Merging Molecular Self-Assembly with Additive Manufacturing. Small 2017, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Allain, V.; Bourgaux, C.; Couvreur, P. Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Res. 2012, 40, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Naziris, N.; Pippa, N.; Stellas, D.; Chrysostomou, V.; Pispas, S.; Demetzos, C.; Libera, M.; Trzebicka, B. Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures. AAPS PharmSciTech 2018. [CrossRef] [PubMed]
- Wang, Y.-C.; Huang, T.-K.; Tung, S.-H.; Wu, T.-M.; Lin, J.-J. Self-assembled clay films with a platelet-void multilayered nanostructure and flame-blocking properties. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Phillip, W.A.; O’Neill, B.; Rodwogin, M.; Hillmyer, M.A.; Cussler, E.L. Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. ACS Appl. Mater. Interfaces 2010, 2, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Garvey, C.J.; Zhao, H.; Huang, K.; Kong, L.X. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals. Membranes 2017, 7, 20. [Google Scholar] [CrossRef]
- Bahamonde-Padilla, V.E.; Martinez-Cifuentes, M.; Munoz-Masson, D.; Ruiz, A.; Ahumada, H.; Araya-Maturana, R.; Soto-Delgado, J.; Weiss-Lopez, B.E. Location, orientation and dynamics of two molecules with mitochondrial activity dissolved in anionic lyoomesophase. A H-2NMR and MD study. J. Chil. Chem. Soc. 2012, 57, 1295–1300. [Google Scholar] [CrossRef]
- DiBenedetto, S.A.; Facchetti, A.; Ratner, M.A.; Marks, T.J. Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. Adv. Mater. 2009, 21, 1407–1433. [Google Scholar] [CrossRef]
- Bohn, D.R.; Lobato, F.O.; Thill, A.S.; Steffens, L.; Raabe, M.; Donida, B.; Vargas, C.R.; Moura, D.J.; Bernardi, F.; Poletto, F. Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. J. Mat. Chem. B 2018, 6, 4920–4928. [Google Scholar] [CrossRef]
- Gautam, A.; Menkhaus, T.J. Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. J. Membr. Sci. 2014, 451, 252–265. [Google Scholar] [CrossRef]
- Clawson, J.S.; Holland, G.P.; Alam, T.M. Magnetic alignment of aqueous CTAB in nematic and hexagonal liquid crystalline phases investigated by spin-1 NMR. PCCP 2006, 8, 2635–2641. [Google Scholar] [CrossRef] [PubMed]
- Majewski, P.W.; Osuji, C.O. Controlled Alignment of Lamellar Lyotropic Mesophases by Rotation in a Magnetic Field. Langmuir 2010, 26, 8737–8742. [Google Scholar] [CrossRef] [PubMed]
- Alexe-Ionescu, A.L.; Vega, L.M.; Bonvent, J.J.; Oliveira, E.A. Surface breaking in lyotropic nematic liquid crystals induced by a magnetic field. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 1999, 60, 6847–6851. [Google Scholar] [CrossRef]
- Shen, T.Z.; Hong, S.H.; Song, J.K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 2014, 13, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.H.; Gang, H.; Sirota, E.B. Magnetic-field induced orientation and anisotropic susceptibility of normal alkanes. Phys. Rev. E 1998, 57, R6265–R6268. [Google Scholar] [CrossRef]
- Enndadi, M.; Poursamad, J.B.; Sahrai, M.; Moghaddas, F. Behaviour of nematic liquid crystals doped with ferroelectric nanoparticles in the presence of an electric field. Mol. Phys. 2018, 116, 1650–1658. [Google Scholar] [CrossRef]
- Quilliet, C.; Ponsinet, V.; Cabuil, V. Magenetically Doped Heagonal Lyotropic Phases. J. Phys. Chem. 1994, 98, 3566–3569. [Google Scholar] [CrossRef]
- Ramos, L.; Fabre, P.; Fruchter, L. Magnetic field induced instabilities of a doped lyotropic hexagonal phase. Eur. Phys. J. B 1999, 8, 67–72. [Google Scholar] [CrossRef]
- Lin, B.; Döbeli, M.; Mudie, S.; Hawley, A.; Hodgson, P.; Kong, L.; Spolenak, R.; Dumée, L.F. An in-situ small angle x ray scattering analysis of nanopore formation during thermally induced chemical dealloying of brass thin foils. Sci. Rep. 2018, 8, 15419. [Google Scholar] [CrossRef]
- Dumée, L.; Sears, K.; Mudie, S.; Kirby, N.; Skourtis, C.; McDonnell, J.; Lucas, S.; Schütz, J.; Finn, N.; Huynh, C.; et al. Characterization of carbon nanotube webs and yarns with small angle X-ray scattering: Revealing the yarn twist and inter-nanotube interactions and alignment. Carbon 2013, 63, 562–566. [Google Scholar] [CrossRef]
- Grant, T.D.; Luft, J.R.; Wolfley, J.R.; Tsuruta, H.; Martel, A.; Montelione, G.T.; Snell, E.H. Small Angle X-ray Scattering as a Complementary Tool for High-Throughput Structural Studies. Biopolymers 2011, 95, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Dumée, L.F.; Garvey, C.J.; Feng, C.; She, F.; Rookes, J.E.; Mudie, S.; Cahill, D.M.; Kong, L. A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by in Situ Small Angle X-ray Scattering. Langmuir 2015, 30, 8478–8487. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-S.; Chung, Y.-C.; Yang, T.-H.; Lue, S.J.; Tung, K.-L.; Lin, Y.-F. Free volume and alcohol transport properties of PDMS membranes: Insights of nano-structure and interfacial affinity from molecular modeling. J. Membr. Sci. 2012, 417, 119–130. [Google Scholar] [CrossRef]
- McGrath, K.M. Phase-behaviour of Dodecyltrimethylammonium Bromide/Water Mixtures. Langmuir 1995, 11, 1835–1839. [Google Scholar] [CrossRef]
- Hammersley, A.P. FIT2D: A multi-purpose data reduction, analysis and visualization program. J. Appl. Crystallogr. 2016, 49, 646–652. [Google Scholar] [CrossRef]
- Gujt, J.; Bešter-Rogač, M.; Spohr, E. Molecular dynamics study of stability and disintegration of long rod-like micelles: Dodecyltrimethylammonium chloride in solutions of hydroxybenzoates. J. Mol. Liq. 2017, 228, 150–159. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Hoang, M.; Hill, A.J.; Cong, W.; She, F.H.; Gao, W.; Kong, L.X. Retention of the original LLC structure in a cross-linked poly(ethylene glycol) diacrylate hydrogel with reinforcement from a silica network. Soft Matter 2014, 10, 5192–5200. [Google Scholar] [CrossRef]
- Kent, B.; Hunt, T.; Darwish, T.A.; Hauss, T.; Garvey, C.J.; Bryant, G. Localization of Trehalose in Partially Hydrated DOPC Bilayers: Insights into Cryoprotective Mechanisms. J. R. Soc. Interface 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Vallooran, J.J.; Bolisetty, S.; Mezzenga, R. Macroscopic Alignment of Lyotropic Liquid Crystals Using Magnetic Nanoparticles. Adv. Mater. 2011, 23, 3932–3937. [Google Scholar] [CrossRef] [PubMed]
- Kent, B.; Garvey, C.J.; Lenne, T.; Porcar, L.; Garamus, V.M.; Bryant, G. Measurement of glucose exclusion from the fully hydrated DOPE inverse hexagonal phase. Soft Matter 2010, 6, 1197–1202. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Hill, A.; She, F.; Thornton, A.; Hoang, M.; Kong, L. Structure retention in cross-linked poly(ethylene glycol) diacrylate hydrogel templated from a hexagonal lyotropic liquid crystal by controlling the surface tension. Soft Matter 2012, 8, 2087–2094. [Google Scholar] [CrossRef]
- Fabre, P.; Casagrande, C.; Veyssie, M.; Cabuil, V.; Massart, R. Ferrosmctics—A New Magnetic and Mesomorphic Phase. Phys. Rev. Lett. 1990, 64, 539–542. [Google Scholar] [CrossRef] [PubMed]
Sample | FWHM (°) | Thickness (µm) |
---|---|---|
17 mT | 51.1 | 60 |
60 mT | 81.5 | 50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, W.; Gao, W.; Garvey, C.J.; Dumée, L.F.; Zhang, J.; Kent, B.; Wang, G.; She, F.; Kong, L. In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures. Membranes 2018, 8, 123. https://doi.org/10.3390/membranes8040123
Cong W, Gao W, Garvey CJ, Dumée LF, Zhang J, Kent B, Wang G, She F, Kong L. In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures. Membranes. 2018; 8(4):123. https://doi.org/10.3390/membranes8040123
Chicago/Turabian StyleCong, Weiwei, Weimin Gao, Christopher J. Garvey, Ludovic F. Dumée, Juan Zhang, Ben Kent, Guang Wang, Fenghua She, and Lingxue Kong. 2018. "In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures" Membranes 8, no. 4: 123. https://doi.org/10.3390/membranes8040123
APA StyleCong, W., Gao, W., Garvey, C. J., Dumée, L. F., Zhang, J., Kent, B., Wang, G., She, F., & Kong, L. (2018). In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures. Membranes, 8(4), 123. https://doi.org/10.3390/membranes8040123