Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review
Abstract
:1. Introduction
2. Experimental Section
2.1. Search Strategy and Search Protocol
2.2. Information Sources and Search Terms
2.3. Screening and Eligibility Process
3. Results & Highlights
3.1. Screening Assessment Based on Article Title and Abstract
3.2. Animal Models
3.3. Aspects on Imaging Modalities, Techniques, and Tracers
3.4. Use of Radionuclide Tracers for Imaging
3.5. MRI Contrast Agents
3.6. Optical Imaging
3.7. Duration of In Vivo Models and Longitudinal Imaging
3.8. Imaging and Respiratory Motion (Ventilator vs. Free Breathing)
3.9. Imaging- and Pathology Correlation
3.10. Explicit DIILD Studies
3.11. DIILD Models and Imaging Techniques
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAL | Broncho-alveolar lavage |
BOOP | bronchiolitis obliterans organizing pneumonia |
CT | computed tomography |
DAD | diffuse alveolar damage |
DIILD | drug induced interstitial lung disease |
DTPA | diethylene-triamine-pentaacetate |
HMPAO | hexamethylene-propylene amine oxime |
IBs | imaging biomarkers |
IMI | Innovative Medicines Initiative |
IPF | idiopathic pulmonary fibrosis |
i.t. | intratracheal |
i.v. | intravenous |
i.l. | intralobular |
i.n. | intranasal |
i.p. | intraperitoneal |
LPS | lipopolysaccharide |
MRI | magnetic resonance imaging |
NSIP | nonspecific interstitial pneumonia |
TRISTAN | Translational Imaging in Drug Safety Assessment |
PET | positron emission tomography |
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-analyses |
SPECT | Single-photon emission computed tomography |
s.c. | subcutaneous |
TNF-α | Tumor necrosis factor-alpha |
t.t. | transtracheal |
UIP | usual interstitial pneumonia-like pattern |
References
- Skeoch, S.; Weatherley, N.; Swift, A.J.; Oldroyd, A.; Johns, C.; Hayton, C.; Giollo, A.; Wild, J.M.; Waterton, J.C.; Buch, M.; et al. Drug-Induced Interstitial Lung Disease: A Systematic Review. J. Clin. Med. 2018, 7, 356. [Google Scholar] [CrossRef] [Green Version]
- Schwaiblmair, M.; Behr, W.; Haeckel, T.; Markl, B.; Foerg, W.; Berghaus, T. Drug induced interstitial lung disease. Open Respir. Med. J. 2012, 6, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, O. Drug-induced interstitial lung disease: Mechanisms and best diagnostic approaches. Respir. Res. 2012, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delaunay, M.; Cadranel, J.; Lusque, A.; Meyer, N.; Gounant, V.; Moro-Sibilot, D.; Michot, J.M.; Raimbourg, J.; Girard, N.; Guisier, F.; et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur. Respir. J. 2017, 50, 1700050. [Google Scholar] [CrossRef] [PubMed]
- Flieder, D.B.; Travis, W.D. Pathologic characteristics of drug-induced lung disease. Clin. Chest Med. 2004, 25, 37–45. [Google Scholar] [CrossRef]
- Drug-Toxicity Tracking Webpage Pneumotox. Available online: https://www.pneumotox.com/drug/index/:2018 (accessed on 31 July 2019).
- Travis, W.D.; Costabel, U.; Hansell, D.M.; King, T.E., Jr.; Lynch, D.A.; Nicholson, A.G.; Ryerson, C.J.; Ryu, J.H.; Selman, M.; Wells, A.U.; et al. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 2013, 188, 733–748. [Google Scholar] [CrossRef]
- Antoniou, K.M.; Margaritopoulos, G.A.; Tomassetti, S.; Bonella, F.; Costabel, U.; Poletti, V. Interstitial lung disease. Eur. Respir. Rev. 2014, 23, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaden, J.; Chan, H.-F.; Hughes, P.; Weatherly, N.; Austin, M.; Smith, L.; Lithgow, J.; Swift, A.; Renshaw, S.; Buch, M.; et al. Hyperpolarised 129-xenon diffusion-weighted MRI in interstitial lung disease. Eur. Respir. J. 2019, 54, PA3157. [Google Scholar]
- Saito, Y.; Gemma, A. Current status of DILD in molecular targeted therapies. Int. J. Clin. Oncol. 2012, 17, 534–541. [Google Scholar] [CrossRef]
- Rossi, S.E.; Erasmus, J.J.; McAdams, H.P.; Sporn, T.A.; Goodman, P.C. Pulmonary drug toxicity: Radiologic and pathologic manifestations. Radiographics 2000, 20, 1245–1259. [Google Scholar] [CrossRef]
- Cavagna, L.; Monti, S.; Grosso, V.; Boffini, N.; Scorletti, E.; Crepaldi, G.; Caporali, R. The multifaceted aspects of interstitial lung disease in rheumatoid arthritis. Biomed. Res. Int. 2013, 2013, 759760. [Google Scholar] [CrossRef] [PubMed]
- Weatherley, N.D.; Eaden, J.A.; Stewart, N.J.; Bartholmai, B.J.; Swift, A.J.; Bianchi, S.M.; Wild, J.M. Experimental and quantitative imaging techniques in interstitial lung disease. Thorax 2019, 74, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebner, L.; Kammerman, J.; Driehuys, B.; Schiebler, M.L.; Cadman, R.V.; Fain, S.B. The role of hyperpolarized (129)xenon in MR imaging of pulmonary function. Eur. J. Radiol. 2017, 86, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justet, A.; Laurent-Bellue, A.; Thabut, G.; Dieudonne, A.; Debray, M.P.; Borie, R.; Aubier, M.; Lebtahi, R.; Crestani, B. [(18)F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis. Respir. Res. 2017, 18, 74. [Google Scholar] [CrossRef] [Green Version]
- Win, T.; Lambrou, T.; Hutton, B.F.; Kayani, I.; Screaton, N.J.; Porter, J.C.; Maher, T.M.; Endozo, R.; Shortman, R.I.; Lukey, P.; et al. 18F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: Implications for future clinical trials. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 521–528. [Google Scholar] [CrossRef]
- Mammarappallil, J.G.; Rankine, L.; Wild, J.M.; Driehuys, B. New Developments in Imaging Idiopathic Pulmonary Fibrosis with Hyperpolarized Xenon Magnetic Resonance Imaging. J. Thorac. Imaging 2019, 34, 136–150. [Google Scholar] [CrossRef]
- Kubo, K.; Azuma, A.; Kanazawa, M.; Kameda, H.; Kusumoto, M.; Genma, A.; Saijo, Y.; Sakai, F.; Sugiyama, Y.; Tatsumi, K.; et al. Consensus statement for the diagnosis and treatment of drug-induced lung injuries. Respir. Investig. 2013, 51, 260–277. [Google Scholar] [CrossRef] [Green Version]
- TRISTAN Consortium. Available online: https://www.imi-tristan.eu (accessed on 31 July 2019).
- Bonniaud, P.; Fabre, A.; Frossard, N.; Guignabert, C.; Inman, M.; Kuebler, W.M.; Maes, T.; Shi, W.; Stampfli, M.; Uhlig, S.; et al. Optimising experimental research in respiratory diseases: An ERS statement. Eur. Respir. J. 2018, 51, 1702133. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, R.G.; Moore, B.B.; Chambers, R.C.; Eickelberg, O.; Konigshoff, M.; Kolb, M.; Laurent, G.J.; Nanthakumar, C.B.; Olman, M.A.; Pardo, A.; et al. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2017, 56, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inf. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, B.; Chen, L.; Wang, X.; Zhao, Y.; Wang, Y.; Xiang, C. Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury. Int. J. Mol. Sci. 2017, 18, 689. [Google Scholar] [CrossRef] [PubMed]
- Egger, C.; Gerard, C.; Vidotto, N.; Accart, N.; Cannet, C.; Dunbar, A.; Tigani, B.; Piaia, A.; Jarai, G.; Jarman, E.; et al. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: Effects of SOM230. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L1064–L1077. [Google Scholar] [CrossRef] [Green Version]
- Bondue, B.; Castiaux, A.; Van Simaeys, G.; Mathey, C.; Sherer, F.; Egrise, D.; Lacroix, S.; Huaux, F.; Doumont, G.; Goldman, S. Absence of early metabolic response assessed by 18F-FDG PET/CT after initiation of antifibrotic drugs in IPF patients. Respir. Res. 2019, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.M.; Rafful, P.P.; Rodrigues, R.S.; Zanetti, G.; Hochhegger, B.; Souza, A.S., Jr.; Guimaraes, M.D.; Marchiori, E. Correlation between computed tomographic and magnetic resonance imaging findings of parenchymal lung diseases. Eur. J. Radiol. 2013, 82, e492–e501. [Google Scholar] [CrossRef] [PubMed]
- Young, H.M.; Eddy, R.L.; Parraga, G. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics. Clin. Biomech. (Bristol Avon) 2019, 66, 107–122. [Google Scholar] [CrossRef]
- Bianchi, A.; Tibiletti, M.; Kjorstad, A.; Birk, G.; Schad, L.R.; Stierstorfer, B.; Rasche, V.; Stiller, D. Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI. NMR Biomed. 2015, 28, 1471–1479. [Google Scholar] [CrossRef]
- Bondue, B.; Sherer, F.; Van Simaeys, G.; Doumont, G.; Egrise, D.; Yakoub, Y.; Huaux, F.; Parmentier, M.; Rorive, S.; Sauvage, S.; et al. PET/CT with 18F-FDG- and 18F-FBEM-labeled leukocytes for metabolic activity and leukocyte recruitment monitoring in a mouse model of pulmonary fibrosis. J. Nucl. Med. 2015, 56, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Scherer, P.M.; Chen, D.L. Imaging Pulmonary Inflammation. J. Nucl. Med. 2016, 57, 1764–1770. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Desogere, P.; Tapias, L.F.; Rietz, T.A.; Rotile, N.; Blasi, F.; Day, H.; Elliott, J.; Fuchs, B.C.; Lanuti, M.; Caravan, P. Optimization of a Collagen-Targeted PET Probe for Molecular Imaging of Pulmonary Fibrosis. J. Nucl. Med. 2017, 58, 1991–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desogere, P.; Tapias, L.F.; Hariri, L.P.; Rotile, N.J.; Rietz, T.A.; Probst, C.K.; Blasi, F.; Day, H.; Mino-Kenudson, M.; Weinreb, P.; et al. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci. Transl. Med. 2017, 9, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesi, S.B.; Izquierdo-Garcia, D.; Desogere, P.; Abston, E.; Liang, L.L.; Digumarthy, S.; Seethamraju, R.; Lanuti, M.; Caravan, P.; Catana, C. Type I Collagen-targeted Positron Emission Tomography Imaging in Idiopathic Pulmonary Fibrosis: First-in-Human Studies. Am. J. Respir. Crit. Care Med. 2019, 200, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Mahmutovic Persson, I.; Fransén Pettersson, N.; Liu, J.; Falk Håkansson, H.; Örbom, A.; In ’t Zandt, R.; Gidlöf, R.; Sydoff, M.; von Wachenfeldt, K.; Olsson, L.E. Longitudinal Imaging Using PET/CT with Collagen-I PET-Tracer and MRI for Assessment of Fi-brotic and Inflammatory Lesions in a Rat Lung Injury Model. J. Clin. Med. 2020, 9, 3706. [Google Scholar] [CrossRef] [PubMed]
- Suga, K.; Uchisako, H.; Nishigauchi, K.; Shimizu, K.; Kume, N.; Yamada, N.; Nakanishi, T. Technetium-99m-HMPAO as a marker of chemical and irradiation lung injury: Experimental and clinical investigations. J. Nucl. Med. 1994, 35, 1520–1527. [Google Scholar]
- Kaya, G.C.; Ertay, T.; Tuna, B.; Bekis, R.; Tasci, C.; Sayit, E.; Yilmaz, O.; Kargi, A.; Durak, H. Technetium-99m hexamethylpropylene amine oxime lung scintigraphy findings in low-dose amiodarone therapy. Lung 2006, 184, 57–61. [Google Scholar] [CrossRef]
- Suga, K.; Yuan, Y.; Ogasawara, N.; Tsukuda, T.; Matsunaga, N. Altered clearance of gadolinium diethylenetriaminepentaacetic acid aerosol from bleomycin-injured dog lungs: Initial observations. Am. J. Respir. Crit. Care Med. 2003, 167, 1704–1710. [Google Scholar] [CrossRef]
- Stephen, M.J.; Emami, K.; Woodburn, J.M.; Chia, E.; Kadlecek, S.; Zhu, J.; Pickup, S.; Ishii, M.; Rizi, R.R.; Rossman, M. Quantitative assessment of lung ventilation and microstructure in an animal model of idiopathic pulmonary fibrosis using hyperpolarized gas MRI. Acad. Radiol. 2010, 17, 1433–1443. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, Z.I.; Virgincar, R.S.; Qi, Y.; Robertson, S.H.; Degan, S.; Driehuys, B. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis. NMR Biomed. 2014, 27, 1502–1514. [Google Scholar] [CrossRef] [Green Version]
- Mansson, S.; Wolber, J.; Driehuys, B.; Wollmer, P.; Golman, K. Characterization of diffusing capacity and perfusion of the rat lung in a lipopolysaccaride disease model using hyperpolarized 129Xe. Magn. Reson. Med. 2003, 50, 1170–1179. [Google Scholar] [CrossRef]
- Capa Kaya, G.; Bekis, R.; Kirimca, F.; Ertay, T.; Kargi, A.; Gure, A.; Durak, H. Use of technetium-99m HMPAO scintigraphy for the detection of amiodarone lung toxicity in a rabbit model. Eur. J. Nucl. Med. 2001, 28, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Goo, J.M.; Kim, N.R.; Kim, M.A.; Chung, D.H.; Son, K.R.; Kim, H.C.; Lee, C.H.; Park, C.M.; Chun, E.J.; et al. Semiquantitative measurement of murine bleomycin-induced lung fibrosis in in vivo and postmortem conditions using microcomputed tomography: Correlation with pathologic scores—initial results. Investig. Radiol. 2008, 43, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Shofer, S.; Badea, C.; Qi, Y.; Potts, E.; Foster, W.M.; Johnson, G.A. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury. J. Appl. Physiol. (1985) 2008, 105, 669–677. [Google Scholar] [CrossRef]
- Withana, N.P.; Ma, X.; McGuire, H.M.; Verdoes, M.; van der Linden, W.A.; Ofori, L.O.; Zhang, R.; Li, H.; Sanman, L.E.; Wei, K.; et al. Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Sci. Rep. 2016, 6, 19755. [Google Scholar] [CrossRef] [PubMed]
- Tielemans, B.; Dekoster, K.; Verleden, S.E.; Sawall, S.; Leszczynski, B.; Laperre, K.; Vanstapel, A.; Verschakelen, J.; Kachelriess, M.; Verbeken, E.; et al. From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics (Basel) 2020, 10, 636. [Google Scholar] [CrossRef]
- Jin, G.Y.; Bok, S.M.; Han, Y.M.; Chung, M.J.; Yoon, K.H.; Kim, S.R.; Lee, Y.C. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores. Eur. J. Radiol. 2012, 81, 1901–1906. [Google Scholar] [CrossRef]
- Babin, A.L.; Cannet, C.; Gérard, C.; Wyss, D.; Page, C.P.; Beckmann, N. Noninvasive assessment of bleomycin-induced lung injury and the effects of short-term glucocorticosteroid treatment in rats using MRI. J. Magn. Reson. Imaging 2011, 33, 603–614. [Google Scholar] [CrossRef]
- Ruscitti, F.; Ravanetti, F.; Essers, J.; Ridwan, Y.; Belenkov, S.; Vos, W.; Ferreira, F.; KleinJan, A.; Van Heijningen, P.; Van Holsbeke, C.; et al. Longitudinal assessment of bleomycin-induced lung fibrosis by Micro-CT correlates with histological evaluation in mice. Multidiscip. Respir. Med. 2017, 12, 8. [Google Scholar] [CrossRef]
- Ackermann, M.; Kim, Y.O.; Wagner, W.L.; Schuppan, D.; Valenzuela, C.D.; Mentzer, S.J.; Kreuz, S.; Stiller, D.; Wollin, L.; Konerding, M.A. Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis 2017, 20, 359–372. [Google Scholar] [CrossRef]
- Hubner, R.H.; Gitter, W.; El Mokhtari, N.E.; Mathiak, M.; Both, M.; Bolte, H.; Freitag-Wolf, S.; Bewig, B. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 2008, 44, 507–517. [Google Scholar] [CrossRef]
- De Langhe, E.; Vande Velde, G.; Hostens, J.; Himmelreich, U.; Nemery, B.; Luyten, F.P.; Vanoirbeek, J.; Lories, R.J. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS ONE 2012, 7, e43123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleveland, Z.I.; Zhou, Y.M.; Akinyi, T.G.; Dunn, R.S.; Davidson, C.R.; Guo, J.; Woods, J.C.; Hardie, W.D. Magnetic resonance imaging of disease progression and resolution in a transgenic mouse model of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 312, L488–L499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caravan, P.; Yang, Y.; Zachariah, R.; Schmitt, A.; Mino-Kenudson, M.; Chen, H.H.; Sosnovik, D.E.; Dai, G.; Fuchs, B.C.; Lanuti, M. Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am. J. Respir. Cell Mol. Biol. 2013, 49, 1120–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vande Velde, G.; De Langhe, E.; Poelmans, J.; Dresselaers, T.; Lories, R.J.; Himmelreich, U. Magnetic resonance imaging for noninvasive assessment of lung fibrosis onset and progression: Cross-validation and comparison of different magnetic resonance imaging protocols with micro-computed tomography and histology in the bleomycin-induced mouse model. Investig. Radiol. 2014, 49, 691–698. [Google Scholar]
- Durmus-Altun, G.; Altun, A.; Sami Salihoglu, Y.; Altaner, S.; Berkada, S.; Ozbay, G. Value of technetium-99m diethyltriamine pentaaceticacid radioaerosol inhalation lung scintigraphy for the stage of amiodarone-induced pulmonary toxicity. Int. J. Cardiol. 2004, 95, 193–197. [Google Scholar] [CrossRef]
- Komissarov, A.A.; Florova, G.; Azghani, A.O.; Buchanan, A.; Bradley, W.M.; Schaefer, C.; Koenig, K.; Idell, S. The time course of resolution of adhesions during fibrinolytic therapy in tetracycline-induced pleural injury in rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L562–L572. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.J.; Kim, H.J.; Jeong, Y.J.; Lee, C.H.; Kim, K.I.; Kim, Y.D.; Lee, J.H. Direct lipiodol injection used for a radio-opaque lung marker: Stability and histopathologic effects. Exp. Lung Res. 2011, 37, 310–317. [Google Scholar] [CrossRef]
- Della Latta, V.; Cecchettini, A.; Del Ry, S.; Morales, M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharm. Res. 2015, 97, 122–130. [Google Scholar] [CrossRef]
- Balazs, G.; Noma, S.; Khan, A.; Eacobacci, T.; Herman, P.G. Bleomycin-induced fibrosis in pigs: Evaluation with CT. Radiology 1994, 191, 269–272. [Google Scholar] [CrossRef]
- Guo, Y.; Ying, S.; Zhao, X.; Liu, J.; Wang, Y. Increased expression of lung TRPV1/TRPA1 in a cough model of bleomycin-induced pulmonary fibrosis in Guinea pigs. BMC Pulm. Med. 2019, 19, 27. [Google Scholar] [CrossRef]
- Haslett, C.; Shen, A.S.; Feldsien, D.C.; Allen, D.; Henson, P.M.; Cherniack, R.M. 111Indium-labeled neutrophil migration into the lungs of bleomycin-treated rabbits assessed noninvasively by external scintigraphy. Am. Rev. Respir. Dis. 1989, 140, 756–763. [Google Scholar] [CrossRef]
- Kersjes, W.; Hildebrandt, G.; Cagil, H.; Schunk, K.; Von Zitzewitz, H.; Schild, H. Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin. Investig. Radiol. 1999, 34, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.A.; Schofield, J.B.; Krausz, T.; Boobis, A.R.; Haslett, C. Pulmonary fibrosis correlates with duration of tissue neutrophil activation. Am. J. Respir. Crit. Care Med. 1998, 158, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.A.; Clark, R.J.; Rhodes, C.G.; Schofield, J.B.; Krausz, T.; Haslett, C. In vivo measurement of neutrophil activity in experimental lung inflammation. Am. J. Respir. Crit. Care Med. 1994, 149, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Gunther, A.; Lubke, N.; Ermert, M.; Schermuly, R.T.; Weissmann, N.; Breithecker, A.; Markart, P.; Ruppert, C.; Quanz, K.; Ermert, L.; et al. Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am. J. Respir. Crit. Care Med. 2003, 168, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirose, N.; Lynch, D.A.; Cherniack, R.M.; Doherty, D.E. Correlation between high resolution computed tomography and tissue morphometry of the lung in bleomycin-induced pulmonary fibrosis in the rabbit. Am. Rev. Respir. Dis. 1993, 147, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.A.; Hirose, N.; Cherniack, R.M.; Doherty, D.E. Bleomycin-induced lung disease in an animal model: Correlation between computed tomography-determined abnormalities and lung function. Acad. Radiol. 1997, 4, 102–107. [Google Scholar] [CrossRef]
- Nagatani, Y.; Nitta, N.; Otani, H.; Mukaisho, K.; Sonoda, A.; Nitta-Seko, A.; Takahashi, M.; Murata, K. Quantitative Measurement of Bleomycin-induced Lung Fibrosis in Rabbits Using Sequential in vivo Regional Analysis and High-Resolution Computed Tomography: Correlation with Pathologic Findings. Acad. Radiol. 2011, 18, 672–681. [Google Scholar] [CrossRef]
- Sonoda, A.; Nitta, N.; Tsuchiya, K.; Otani, H.; Watanabe, S.; Mukaisho, K.; Tomozawa, Y.; Nagatani, Y.; Ohta, S.; Takahashi, M.; et al. Asialoerythropoietin ameliorates bleomycin-induced acute lung injury in rabbits by reducing inflammation. Exp. Ther. Med. 2014, 8, 1443–1446. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Nitta, N.; Sonoda, A.; Nitta-Seko, A.; Ohta, S.; Tsuchiya, K.; Otani, H.; Tomozawa, Y.; Nagatani, Y.; Mukaisho, K.; et al. Inhibition of fibrosis and inflammation by triple therapy with pirfenidone, edaravone and erythropoietin in rabbits with drug-induced lung injury: Comparison of CT imaging and pathological findings. Exp. Ther. Med. 2013, 6, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Weiner, R.E.; Sasso, D.E.; Gionfriddo, M.A.; Syrbu, S.I.; Smilowitz, H.M.; Vento, J.; Thrall, R.S. Early detection of bleomycin-induced lung injury in rat using indium- 111-labeled antibody directed against intercellular adhesion molecule-1. J. Nucl. Med. 1998, 39, 723–728. [Google Scholar] [PubMed]
- Couch, M.J.; Fox, M.S.; Viel, C.; Gajawada, G.; Li, T.; Ouriadov, A.V.; Albert, M.S. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR Biomed. 2016, 29, 545–552. [Google Scholar] [CrossRef]
- Jacob, R.E.; Amidan, B.G.; Soelberg, J.; Minard, K.R. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J. Magn. Reson. Imaging 2010, 31, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Karmouty-Quintana, H.; Cannet, C.; Zurbruegg, S.; Blé, F.X.; Fozard, J.R.; Page, C.P.; Beckmann, N. Bleomycin-induced lung injury assessed noninvasively and in spontaneously breathing rats by proton MRI. J. Magn. Reson. Imaging 2007, 26, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Nie, D.; Liu, S.; Ma, H.; Su, S.; Sun, A.; Zhao, J.; Zhang, Z.; Xiang, X.; Tang, G. Apoptotic PET Imaging of Rat Pulmonary Fibrosis with [18F]ML-8. Crit. Care 2018, 22, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Nie, D.; Liu, S.; Ma, H.; Su, S.; Sun, A.; Zhao, J.; Zhang, Z.; Xiang, X.; Tang, G. Apoptotic PET Imaging of Rat Pulmonary Fibrosis with Small-Molecule Radiotracer. Mol. Imaging Biol. 2019, 21, 491–499. [Google Scholar] [CrossRef]
- Chamorro, V.; Morales-Cano, D.; Milara, J.; Barreira, B.; Moreno, L.; Callejo, M.; Mondejar-Parreño, G.; Esquivel-Ruiz, S.; Cortijo, J.; Cogolludo, Á.; et al. Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventilation/perfusion matching. PLoS ONE 2018, 24, e0191239. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A. Imaging techniques for small animal imaging models of pulmonary disease: Micro-CT. Toxicol. Pathol. 2007, 35, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Mi, L.; Long, T. Efficacies of rosiglitazone and retinoin on bleomycin-induced pulmonary fibrosis in rats. Exp. Ther. Med. 2017, 14, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.C.; Tian, L.Y.; Cheng, W. Efficacy study of edaravone and acetylcysteine towards bleomycin-induced rat pulmonary fibrosis. Int. J. Clin. Exp. Med. 2015, 8, 8730–8739. [Google Scholar]
- Chagnon, F.; Fournier, C.; Charette, P.G.; Moleski, L.; Payet, M.D.; Dobbs, L.G.; Lesur, O. In vivo intravital endoscopic confocal fluorescence microscopy of normal and acutely injured rat lungs. Lab. Investig. 2010, 90, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Egger, C.; Cannet, C.; Gérard, C.; Dunbar, A.; Tigani, B.; Beckmann, N. Hyaluronidase modulates bleomycin-induced lung injury detected noninvasively in small rodents by radial proton MRI. J. Magn. Reson. Imaging 2015, 41, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Egger, C.; Cannet, C.; Gérard, C.; Jarman, E.; Jarai, G.; Feige, A.; Suply, T.; Micard, A.; Dunbar, A.; Tigani, B.; et al. Administration of Bleomycin via the Oropharyngeal Aspiration Route Leads to Sustained Lung Fibrosis in Mice and Rats as Quantified by UTE-MRI and Histology. PLoS ONE 2013, 8, e63432. [Google Scholar] [CrossRef] [Green Version]
- Babin, A.L.; Cannet, C.; Gerard, C.; Saint-Mezard, P.; Page, C.P.; Sparrer, H.; Matsuguchi, T.; Beckmann, N. Bleomycin-induced lung injury in mice investigated by MRI: Model assessment for target analysis. Magn. Reson. Med. 2012, 67, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Egger, C.; Cannet, C.L.; Gérard, C.; Suply, T.; Ksiazek, I.; Jarman, E.; Beckmann, N. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur. J. Pharmacol. 2017, 809, 64–72. [Google Scholar] [CrossRef]
- Hodono, S.; Shimokawa, A.; Stewart, N.J.; Yamauchi, Y.; Nishimori, R.; Yamane, M.; Ima, H.; Fujiwara, H.; Kimura, A. Ethyl Pyruvate Improves Pulmonary Function in Mice with Bleomycin-induced Lung Injury as Monitored with Hyperpolarized 129Xe MR Imaging. Magn. Reson. Med. Sci. 2018, 17, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.S.; Probst, C.K.; Brazee, P.L.; Rotile, N.J.; Blasi, F.; Weinreb, P.H.; Black, K.E.; Sosnovik, D.E.; Van Cott, E.M.; Violette, S.M.; et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017, 2, e86608. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, P.A.; Jones, M.C.M.; Rotile, N.J.; Koerner, S.K.; Ferreira, D.S.; Chen, H.H.; Probst, C.K.; Tager, A.M.; Caravan, P. Molecular Magnetic Resonance Imaging of Lung Fibrogenesis with an Oxyamine-Based Probe. Angew. Chem. Int. Ed. Engl. 2017, 56, 9825–9828. [Google Scholar] [CrossRef] [PubMed]
- Tassali, N.; Bianchi, A.; Lux, F.; Raffard, G.; Sanchez, S.; Tillement, O.; Crémillieux, Y. MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles. Contrast Media Mol. Imaging 2016, 11, 396–404. [Google Scholar] [CrossRef] [Green Version]
- John, A.E.; Luckett, J.C.; Tatler, A.L.; Awais, R.O.; Desai, A.; Habgood, A.; Ludbrook, S.; Blanchard, A.D.; Perkins, A.C.; Jenkins, R.G.; et al. Preclinical SPECT/CT imaging of alphavbeta6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J. Nucl. Med. 2013, 54, 2146–2152. [Google Scholar] [CrossRef] [Green Version]
- Schniering, J.; Benešová, M.; Brunner, M.; Haller, S.; Cohrs, S.; Frauenfelder, T.; Vrugt, B.; Feghali-Bostwick, C.A.; Schibli, R.; Distler, O.; et al. Visualisation of interstitial lung disease by molecular imaging of integrin αvβ3 and somatostatin receptor 2. Ann. Rheum. Dis. 2019, 78, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schniering, J.; Guo, L.; Brunner, M.; Schibli, R.; Ye, S.; Distler, O.; Béhé, M.; Maurer, B. Evaluation of 99mTc-rhAnnexin V-128 SPECT/CT as a diagnostic tool for early stages of interstitial lung disease associated with systemic sclerosis. Arthritis Res. Ther. 2018, 20, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelderhouse, L.E.; Robins, M.T.; Rosenbalm, K.E.; Hoylman, E.K.; Mahalingam, S.; Low, P.S. Prediction of Response to Therapy for Autoimmune/Inflammatory Diseases Using an Activated Macrophage-Targeted Radioimaging Agent. Mol. Pharm. 2015, 12, 3547–3555. [Google Scholar] [CrossRef] [PubMed]
- Schniering, J.; Borgna, F.; Siwowska, K.; Benesova, M.; Cohrs, S.; Hasler, R.; van der Meulen, N.P.; Maurer, B.; Schibli, R.; Müller, C. In Vivo Labeling of Plasma Proteins for Imaging of Enhanced Vascular Permeability in the Lungs. Mol. Pharm. 2018, 15, 4995–5004. [Google Scholar] [CrossRef] [PubMed]
- Jailkhani, N.; Ingram, J.R.; Rashidian, M.; Rickelt, S.; Tian, C.; Mak, H.; Jiang, Z.; Ploegh, H.L.; Hynes, R.O. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl. Acad. Sci. USA 2019, 116, 14181–14190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruscitti, F.; Ravanetti, F.; Donofrio, G.; Ridwan, Y.; van Heijningen, P.; Essers, J.; Villetti, G.; Cacchioli, A.; Vos, W.; Stellari, F.F. A Multimodal Imaging Approach Based on Micro-CT and Fluorescence Molecular Tomography for Longitudinal Assessment of Bleomycin-Induced Lung Fibrosis in Mice. J. Vis. Exp. 2018, 13, 56443. [Google Scholar] [CrossRef]
- Kelderhouse, L.E.; Mahalingam, S.; Low, P.S. Predicting Response to Therapy for Autoimmune and Inflammatory Diseases Using a Folate Receptor-Targeted Near-Infrared Fluorescent Imaging Agent. Mol. Imaging Biol. 2016, 18, 201–208. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, L.; Zhang, F.; Niu, G.; Lee, S.; Kimura, S.; Chen, X. Noninvasive monitoring of pulmonary fibrosis by targeting matrix metalloproteinases (MMPs). Mol. Pharm. 2013, 10, 2237–2247. [Google Scholar] [CrossRef] [Green Version]
- Stellari, F.F.; Ruscitti, F.; Pompilio, D.; Ravanetti, F.; Tebaldi, G.; Macchi, F.; Verna, A.E.; Villetti, G.; Donofrio, G. Heterologous matrix metalloproteinase gene promoter activity allows in vivo real-time imaging of bleomycin-induced lung fibrosis in transiently transgenized mice. Front. Immunol. 2017, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, L.; Fan, W.; Chen, Y.; Tian, J.; Ma, L.; Liu, B.; Li, Y.; Wang, S.; Fu, Q.; et al. Luciferase expression is driven by the promoter of fibroblast activation protein-α in murine pulmonary fibrosis. Biotechnol. Lett. 2015, 37, 1757–1763. [Google Scholar]
- Buonfiglio, L.G.; Bagegni, M.; Borcherding, J.A.; Sieren, J.C.; Caraballo, J.C.; Reger, A.; Andrew Reger, A.; Zabner, J.; Li, X.; Comellas, A.P. Protein Kinase Czeta Inhibitor Promotes Resolution of Bleomycin-Induced Acute Lung Injury. Am. J. Respir. Cell Mol. Biol. 2016, 55, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanaugh, D.; Travis, E.L.; Price, R.E.; Gladish, G.; White, R.A.; Wang, M.; Cody, D.D. Quantification of bleomycin-induced murine lung damage in vivo with micro-computed tomography. Acad. Radiol. 2006, 13, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Jin, G.Y.; Bok, S.M.; Han, Y.M.; Lee, Y.S.; Jung, M.J.; Kwon, K.S. Serial micro-CT assessment of the therapeutic effects of rosiglitazone in a bleomycin-induced lung fibrosis mouse model. Korean J. Radiol. 2014, 15, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Nojiri, T.; Hosoda, H.; Shintani, Y.; Inoue, M.; Miyazato, M.; Okumura, M.; Kangawa, K. Exacerbation of bleomycin-induced injury by lipopolysaccharide in mice: Establishment of a mouse model for acute exacerbation of interstitial lung diseases. Eur. J. Cardiothorac. Surg. 2015, 48, e85–e91. [Google Scholar] [CrossRef] [Green Version]
- Shofer, S.; Badea, C.; Auerbach, S.; Schwartz, D.A.; Johnson, G.A. A micro-computed tomography-based method for the measurement of pulmonary compliance in healthy and bleomycin-exposed mice. Exp. Lung Res. 2007, 33, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Vande Velde, G.; Poelmans, J.; De Langhe, E.; Hillen, A.; Vanoirbeek, J.; Himmelreich, U.; Loris, R.J. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis. Model. Mech. 2016, 9, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Zheng, Y.; Dong, X.; Wang, L.; Jiang, C.G. Activation of cannabinoid receptor type 2 by JWH133 alleviates bleomycin-induced pulmonary fibrosis in mice. Oncotarget 2017, 8, 103486–103498. [Google Scholar] [CrossRef] [Green Version]
- Shao, R.; Wang, F.J.; Lyu, M.; Yang, J.; Zhang, P.; Zhu, Y. Ability to Suppress TGF-beta-Activated Myofibroblast Differentiation Distinguishes the Anti-pulmonary Fibrosis Efficacy of Two Danshen-Containing Chinese Herbal Medicine Prescriptions. Front. Pharmacol. 2019, 10, 412. [Google Scholar] [CrossRef]
- Arora, A.; Bhuria, V.; Hazari, P.P.; Pathak, U.; Mathur, S.; Roy, B.G.; Soni, R.; Dwarakanath, B.S.; Bhatt, A.N. Amifostine analog, DRDE-30, attenuates bleomycin-induced pulmonary fibrosis in mice. Front. Pharmacol. 2018, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Povedano, J.M.; Martinez, P.; Serrano, R.; Tejera, A.; Gómez-López, G.; Bobadilla, M.; Flores, J.M.; Bosch, F.; Blasco, M.A. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. Elife 2018, 7, e31299. [Google Scholar] [CrossRef]
- Hellbach, K.; Yaroshenko, A.L.; Willer, K.; Conlon, T.M.; Braunagel, M.B.; Auweter, S.; Yildirim, A.Ö.; Eickelberg, O.; Pfeiffer, F.; Reiser, M.F.; et al. X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model. Sci. Rep. 2017, 7, 340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, T.A. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 2011, 208, 1339–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, T.R.; Erler, J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis. Model. Mech. 2011, 4, 165–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thannickal, V.J.; Toews, G.B.; White, E.S.; Lynch, J.P., 3rd; Martinez, F.J. Mechanisms of pulmonary fibrosis. Annu. Rev. Med. 2004, 55, 395–417. [Google Scholar] [CrossRef]
- Das, D.K.; Steinberg, H.; Bandyopadhyay, D.; Hoory, S. Potential use of indium-111-labeled polymorphonuclear leukocytes for the detection of lung microvascular injury. J. Nucl. Med. 1988, 29, 657–662. [Google Scholar]
- Hill, L.L.; Chen, D.L.; Kozlowski, J.; Schuster, D.P. Neutrophils and neutrophil products do not mediate pulmonary hemodynamic effects of endotoxin on oleic acid-induced lung injury. Anesth. Analg. 2004, 98, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Richard, J.C.; Pouzot, C.; Gros, A.; Tourevieille, C.; Lebars, D.; Lavenne, F.; Frerichs, I.; Guerin, C. Electrical impedance tomography compared to positron emission tomography for the measurement of regional lung ventilation: An experimental study. Crit. Care 2009, 13, R82. [Google Scholar] [CrossRef] [Green Version]
- Medhora, M.; Haworth, S.; Liu, Y.; Narayanan, J.; Gao, F.; Zhao, M.; Audi, S.; Jacobs, E.R.; Fish, B.L.; Clough, A.V. Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging. J. Nucl. Med. 2016, 57, 1296–1301. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, K.E.; Costa, D.L.; Hatch, G.; Henderson, R.; Oberdorster, G.; Salem, H.; Schlesinger, R.B. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol. Sci. 2000, 55, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Vande Velde, G.; De Langhe, E.; Poelmans, J.; Bruyndonckx, P.; d’Agostino, E.; Verbeken, E.; Bogaerts, R.; Lories, R.; Himmelreich, U. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L271–L279. [Google Scholar] [CrossRef]
- Barbayianni, I.; Ninou, I.; Tzouvelekis, A.; Aidinis, V. Bleomycin Revisited: A Direct Comparison of the Intratracheal Micro-Spraying and the Oropharyngeal Aspiration Routes of Bleomycin Administration in Mice. Front. Med. (Lausanne) 2018, 5, 269. [Google Scholar] [CrossRef] [PubMed]
- Luzina, I.G.; Todd, N.W.; Sundararajan, S.; Atamas, S.P. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015, 74, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Gauldie, J.; Kolb, M. Animal models of pulmonary fibrosis: How far from effective reality? Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L151. [Google Scholar] [CrossRef] [PubMed]
- Mahmutovic Persson, I.; Falk Hakansson, H.; Orbom, A.; Liu, J.; von Wachenfeldt, K.; Olsson, L.E. Imaging Biomarkers and Pathobiological Profiling in a Rat Model of Drug-Induced Interstitial Lung Disease Induced by Bleomycin. Front. Physiol. 2020, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Koo, L.C.; Clark, J.A.; Quesenberry, C.P.; Higenbottam, T.; Nyberg, F.; Wolf, M.K.; Steinberg, M.H.; Forsythe, B.H. National differences in reporting ‘pneumonia’ and ‘pneumonia interstitial’: An analysis of the WHO International Drug Monitoring Database on 15 drugs in nine countries for seven pulmonary conditions. Pharm. Drug Saf. 2005, 14, 775–787. [Google Scholar] [CrossRef] [PubMed]
Mouse Strain | Number of Studies | Percentage (%) |
---|---|---|
C57BL/6 | 66 | 74.2 |
Balb/c | 14 | 15.7 |
FVB/N | 2 | 2.3 |
129S6/SvEvTac | 1 | 1.1 |
B6-/-129S6 | 1 | 1.1 |
Outbred strain | 1 | 1.1 |
FRA2-transgenic | 1 | 1.1 |
ddY strain | 1 | 1.1 |
Hairless SKH-1 | 1 | 1.1 |
C3H/HeN | 1 | 1.1 |
Total | 89 | 100 |
Rat Strain | Number of Studies | Percentage (%) |
Sprague-Dawley | 25 | 50.0 |
Wistar | 13 | 26.0 |
Brown Norway | 5 | 10.0 |
Fisher | 4 | 8.0 |
Lewis | 1 | 2.0 |
Long Evans | 1 | 2.0 |
WAG/RijCmcr | 1 | 2.0 |
Total | 50 | 100 |
Injury Agent or Source | Occurrence | Percentage (%) |
---|---|---|
Bleomycin | 72 | 33.8 |
LPS | 22 | 10.3 |
Irradiation | 18 | 8.5 |
Oxygen | 13 | 6.1 |
Infection | 12 | 5.6 |
Oleic acid | 12 | 5.6 |
Spontaneous | 11 | 5.2 |
Elastase | 10 | 4.7 |
Mechanical lung injury | 7 | 3.3 |
Acid aspiration | 5 | 2.4 |
Monocrotaline | 4 | 1.9 |
Amiodarone | 3 | 1.4 |
Silica | 3 | 1.4 |
OVA | 3 | 1.4 |
Cigarette smoke | 2 | 0.9 |
White smoke exposure | 2 | 0.9 |
Nanoparticles | 2 | 0.9 |
Lipiodol | 1 | 0.5 |
Tetracycline | 1 | 0.5 |
Endotoxin | 1 | 0.5 |
Asbestos | 1 | 0.5 |
Bone marrow and spleen cells | 1 | 0.5 |
Cyanide | 1 | 0.5 |
NO2 inhalation | 1 | 0.5 |
Blocking agent | 1 | 0.5 |
Gastric acid | 1 | 0.5 |
Ablation (high power microwaves) | 1 | 0.5 |
Capsaicin | 1 | 0.5 |
Vascular leak agent | 1 | 0.5 |
Total | 213 | 100 |
Administration Rout | Occurrence | Percentage (%) |
---|---|---|
Intratracheal (i.t.) | 82 | 41.0 |
Inhalation | 23 | 11.5 |
Intra venous (i.v.) | 18 | 9.0 |
Irradiation | 18 | 9.0 |
Intranasal (i.n.) | 12 | 6.0 |
Intralobular (i.l.) | 10 | 5.0 |
Spontaneous | 9 | 4.5 |
Intraperitoneal (i.p.) | 7 | 3.5 |
Oropharyngeal | 6 | 3.0 |
Endotracheal | 3 | 1.5 |
Subcutaneous (s.c.) | 3 | 1.5 |
Gavage | 2 | 1.0 |
Transtracheal (t.t.) | 1 | 0.5 |
Intra-atrium | 1 | 0.5 |
Intrapleural | 1 | 0.5 |
Bronchoalveolar lavage | 1 | 0.5 |
External insult | 1 | 0.5 |
Retro-pharyngeal | 1 | 0.5 |
Unspecified | 1 | 0.5 |
Total | 200 | 100 |
Intervention Study | Number of Articles | Percentage (%) |
---|---|---|
No | 103 | 56.6 |
Yes | 79 | 43.4 |
Total | 182 | 100 |
Reversibility of Disease | Number of Articles | Percentage (%) |
No | 17 | 21.5 |
Partly | 28 | 35.4 |
Yes | 34 | 43.1 |
Total | 79 | 100 |
Readout and Imaging Data Presentation | Number of Articles | Percentage (%) |
Quantification using units or algorithms | 114 | 62.6 |
Score system | 13 | 7.1 |
Arbitrary units | 26 | 14.3 |
No quantification, only images presented | 29 | 15.9 |
Total | 182 | 100 |
Imaging Technique | Tracer | Occurrence | Percentage (%) |
---|---|---|---|
PET | 18F-FDG | 11 | 17 |
18F-FBEM (-4-fluorobenzamido-Nethylamino-maleimide) -leukocyte tracer | 1 | 2 | |
18F-ML8 (apoptosis marker) | 2 | 3 | |
15O2 | 2 | 3 | |
64Cu-CBP8 (tracking newly synthesized Collagen I) | 1 | 2 | |
68Ga-CBP8 (tracking newly synthesized Collagen I) | 1 | 2 | |
64Cu-NJB2 | 1 | 2 | |
18F-FTHA (fatty acid uptake) | 1 | 2 | |
18F-FEDAC (translocator protein) | 1 | 2 | |
11C-R-PK11195 (Specific macrophage binding molecule) | 1 | 2 | |
44Sc-PPB-03 (binding to albumin) | 1 | 2 | |
15H2O | 2 | 3 | |
67Ga-citrate | 1 | 2 | |
64Cu/Al18F/68Ga-BMV101 (binding activated macrophages) | 1 | 2 | |
13N-N2 (ventilation imaging) | 1 | 2 | |
SPECT | 99mTc-MAA (micro-aggregated albumin) | 3 | 5 |
99mTc-NaTc04 | 1 | 2 | |
99mTc-AnnexinV | 3 | 5 | |
99mTc-DTPA (avB6) | 1 | 2 | |
99mTc-EC2 (folate receptor) | 1 | 2 | |
99mTc-pertechnate | 1 | 2 | |
99mTc-Duramycin | 1 | 2 | |
111In-nanoparticles | 1 | 2 | |
177Lu-DOTA-NOC (binding to somostatin receptor 2) | 1 | 2 | |
177Lu-DOTA-RGD (binding to avB3) | 1 | 2 | |
177Lu-PPB-01 (binding to albumin) | 1 | 2 | |
Gamma | 99mTc-Duramycin | 2 | 3 |
scintigraphy | 99mTc-Tobramycin | 1 | 2 |
99mTc-HMPAO | 4 | 6 | |
99mTc-MAA (micro-aggregated albumin) | 1 | 2 | |
99mTc-DTPA | 1 | 2 | |
99mTc-HSA (human serum albumin) | 1 | 2 | |
111In-RSA (rat serum albumin) | 1 | 2 | |
111In-ICAM-1 | 2 | 3 | |
111In-IgG | 3 | 5 | |
111In-PMNs | 4 | 6 | |
67Ga-citrate | 2 | 3 | |
Total | 65 | 100 |
Longitudinal Imaging | Number of Articles | Percentage (%) |
---|---|---|
No | 65 | 35.7 |
Yes | 117 | 64.3 |
Total | 182 | 100 |
Number of Longitudinal Imaging Sessions | Number of Articles | Percentage (%) |
2 | 25 | 21.4 |
3 | 24 | 20.5 |
4 | 23 | 19.7 |
5 | 7 | 5.9 |
>5 | 38 | 32.5 |
Total | 117 | 100 |
Assays and Methods Performed in Addition to Imaging | Occurrence | Percentage (%) |
---|---|---|
BAL | 47 | 14.9 |
No additional analysis besides imaging | 42 | 13.3 |
Protein expression * | 39 | 12.4 |
Hydroxyproline | 30 | 9.5 |
Lung function | 19 | 6.0 |
PCR | 17 | 5.4 |
Blood gas | 15 | 4.8 |
Tracer/signal distribution in organs/lung | 12 | 3.8 |
Heart rate or ECG | 11 | 3.5 |
Serum markers | 11 | 3.5 |
Edema measures wet/dry-weight of lungs | 10 | 3.2 |
Apoptosis assays | 9 | 2.9 |
Blood pressure | 7 | 2.2 |
FACS | 7 | 2.2 |
WBC count | 7 | 2.2 |
MPO | 6 | 1.9 |
Breathing rate | 6 | 1.9 |
Oxidative stress marker | 4 | 1.3 |
Alveolar parenchyma (wall thickness) | 4 | 1.3 |
Cardiac output | 4 | 1.3 |
Diff quick | 3 | 1.0 |
Giemsa stain of immune cells | 2 | 0.6 |
Lung PO2 | 2 | 0.6 |
Oxygen consumption | 1 | 0.3 |
Total | 315 | 100 |
Lung Tissue Staining Techniques Post Mortem | Occurrence | Percentage (%) |
H&E | 109 | 40.5 |
NO additional histological analysis besides imaging | 38 | 14.1 |
Masson’s Trichrome stain | 37 | 13.8 |
Immunohistochemistry | 26 | 9.7 |
Sirius Red | 20 | 7.4 |
Unspecified what type of tissue staining | 9 | 3.4 |
Van Gieson staining | 6 | 2.2 |
TUNEL | 5 | 1.9 |
PAS | 5 | 1.9 |
Bioluminescence, immunofluorescence | 4 | 1.5 |
Reticulin staining | 4 | 1.5 |
Acid-Fichin-Orange-G (AFOG) staining | 2 | 0.7 |
Verhoeff-reaction staining | 1 | 0.4 |
Pentachrome staining | 1 | 0.4 |
Prussian blue | 1 | 0.4 |
Ziehl-Nielsen staining | 1 | 0.4 |
Total | 269 | 100 |
Imaging- Histopathology Correlations | |||
---|---|---|---|
Imaging Technique | Occurrence of Imaging (Total) | Total Number of Studies with Correlation | Percentage (%) |
MRI | 37 | 30 | 81 |
CT | 97 | 63 | 65 |
PET | 23 | 14 | 61 |
SPECT | 12 | 7 | 58 |
Optical | 19 | 11 | 58 |
Gamma scintigraphy | 13 | 7 | 54 |
Ultrasound | 6 | 3 | 50 |
X-ray | 13 | 5 | 38 |
Electrical Impedance Tomography | 5 | 0 | 0 |
225 | 140 | - | |
Comparing all Studies with H&E | |||
Imaging Technique | Occurrence of Imaging (total) | Total Number of Studies with Correlation | Percentage (%) |
MRI | 23 | 22 | 96 |
CT | 65 | 43 | 56 |
PET | 12 | 6 | 50 |
SPECT | 9 | 6 | 67 |
Optical | 8 | 5 | 63 |
Gamma scintigraphy | 8 | 6 | 75 |
Ultrasound | 4 | 2 | 50 |
X-ray | 8 | 5 | 63 |
Electrical Impedance Tomography | 0 | 0 | 0 |
137 | 95 | - |
DIILD Related Studies | |||||
---|---|---|---|---|---|
Lung Injury Inducing Agent | Pathology | Animal Species | Imaging Modality | Correlation Imaging to Pathology | Reference |
Amiodarone | Inflammation | Rabbit | Gamma scintigraphy | P | Capa Kaya, 2001 [43] |
Inflammation | Rabbit | Gamma scintigraphy | P | Durmus-Altun, 2004 [57] | |
Inflammation | Rabbit | Gamma scintigraphy | N | Kaya, 2006 [38] | |
Tetracycline | Lung injury | Rabbit | Ultrasound & CT | Y | Komissarov, 2015 [58] |
Lipiodol | Lung injury | Rat | Optical Imaging | P | Kwon, 2011 [59] |
Bleomycin | Fibrosis | Pig | CT | Y | Balazs, 1994 [61] |
Lung injury, ILD | Dog | MRI, CT | Y | Suga, 2003 [39] | |
Cough | Guinea Pig | CT | Y | Guo Y., 2019 [62] | |
Inflammation, Vascular leak | Rabbit | Gamma scintigraphy | Y | Haslett, 1989 [63] | |
IPF | Rabbit | MRI | Y | Kersjes, 1999 [64] | |
Lung injury | Rabbit | PET | Y | Jones, 1998 [65] | |
ILD | Rabbit | PET | P | Jones, 1994 [66] | |
Fibrosis, ILD | Rabbit | CT | N | Gunther, 2003 [67] | |
Fibrosis, ILD | Rabbit | CT | P | Hirose, 1993 [68] | |
Lung injury | Rabbit | CT | Y | Lynch, 1997 [69] | |
Fibrosis, ILD | Rabbit | CT | Y | Nagatani, 2011 [70] | |
Lung injury, Inflammation | Rabbit | CT | P | Sonoda, 2014 [71] | |
Fibrosis, ILD | Rabbit | CT | Y | Watanabe, 2013 [72] | |
Lung injury, Inflammation | Rat | Gamma scintigraphy | Y | Weiner, 1998 [73] | |
Inflammation, Fibrosis, ILD | Rat | MRI | Y | Cleveland, 2014 [41] | |
Inflammation, Fibrosis, ILD | Rat | MRI | Y | Babin, 2011 [49] | |
Fibrosis, ILD | Rat | MRI | Y | Couch, 2016 [74] | |
Fibrosis | Rat | MRI | P | Jacob, 2010 [75] | |
Fibrosis | Rat | MRI | P | Karmouty-Quintana, 2007 [76] | |
ILD | Rat | MRI | Y | Stephen, 2010 [40] | |
Fibrosis, ILD | Rat | CT, PET | Y | Xiong Y., 2018 [77] | |
Fibrosis, ILD | Rat | CT, PET | Y | Xiong Y., 2019 [78] | |
Fibrosis, ILD | Rat | CT, SPECT | N | Chamorro, 2018 [79] | |
Fibrosis, ILD | Rat | CT | Y | Hubner, 2008 [52] | |
Lung injury, Fibrosis | Rat | CT | Y | Johnson, 2007 [80] | |
IPF | Rat | CT | Y | Yu, 2017 [81] | |
Fibrosis | Rat | CT | P | Yu, 2015 [82] | |
Lung injury, ARDS | Rat | Optical | Y | Chagnon, 2010 [83] | |
Fibrosis, ILD | Rat & Mouse | MRI | N | Egger C., 2015 [84] | |
IPF | Rat & Mouse | MRI | Y | Egger C., 2014 [25] | |
Lung injury | Rat & Mouse | MRI | Y | Egger C., 2013 [85] | |
Lung injury | Mouse | MRI | Y | Babin, 2012 [86] | |
Inflammation, Fibrosis, ILD | Mouse | MRI | Y | Caravan, 2013 [55] | |
Lung injury | Mouse | MRI | Y | Egger C., 2017 [87] | |
ILD, Vascular leak | Mouse | MRI | Y | Hodono, 2018 [88] | |
Fibrosis | Mouse | MRI | Y | Shea S.B., 2017 [89] | |
Inflammation, Fibrosis, ILD | Mouse | MRI | Y | Waghorn, 2017 [90] | |
IPF | Mouse | MRI, CT | Y | Vande Velde, 2014 [56] | |
IPF | Mouse | MRI, SPECT | Y | Tassali, 2016 [91] | |
ILD | Mouse | SPECT, CT | Y | John, 2013 [92] | |
ILD | Mouse | SPECT, CT | Y | Schniering J., 2019 [93] | |
Fibrosis | Mouse | SPECT, CT | P | Schniering J., 2018 [94] | |
Lung injury, Vascular leak | Mouse | SPECT | Y | Kelderhouse, 2015 [95] | |
Fibrosis | Mouse | SPECT, PET, CT | P | Schniering J., 2018 [96] | |
Fibrosis, ILD | Mouse | PET, CT | Y | Bondue, 2015 [30] | |
Fibrosis, Vascular leak | Mouse | PET, CT | P | Desogere P., 2017 [33] | |
IPF | Mouse | PET, CT | Y | Desogere P., 2017 [34] | |
Fibrosis | Mouse | PET, CT | N | Bondue, 2019 [26] | |
Fibrosis | Mouse | PET, CT | Y | Jailkhani, 2019 [97] | |
Fibrosis | Mouse | PET, CT, Optical imaging | P | Withana, 2016 [46] | |
IPF, Fibrosis | Mouse | CT, Optical imaging | Y | Ruscitti, 2018 [98] | |
Fibrosis | Mouse | Optical | N | Kelderhouse, 2016 [99] | |
Fibrosis | Mouse | Optical | Y | Cai, 2013 [100] | |
IPF | Mouse | Optical | Y | Stellari, 2017 [101] | |
Inflammation, Fibrosis, ILD | Mouse | Optical | Y | LI, 2015 [102] | |
Lung injury | Mouse | CT | Y | Ackermann, 2017 [51] | |
Lung injury, Fibrosis | Mouse | CT | Y | Buonfiglio, 2016 [103] | |
Fibrosis | Mouse | CT | Y | Cavanaugh, 2006 [104] | |
Fibrosis | Mouse | CT | Y | Choi, 2014 [105] | |
Fibrosis | Mouse | CT | Y | de Langhe, 2012 [53] | |
IPF | Mouse | CT | Y | Jin, 2012 [48] | |
ILD | Mouse | CT | P | Kimura, 2015 [106] | |
IPF | Mouse | CT | Y | Lee, 2008 [44] | |
Fibrosis | Mouse | CT | Y | Ruscitti, 2017 [50] | |
IPF | Mouse | CT | N | Shofer, 2007 [107] | |
Fibrosis | Mouse | CT | P | Shofer, 2008 [45] | |
ILD | Mouse | CT | P | Vande Velde, 2016 [108] | |
Fibrosis | Mouse | CT | Y | Fu, 2017 [109] | |
Fibrosis | Mouse | CT | Y | Shao, 2019 [110] | |
IPF | Mouse | CT | Y | Arora, 2018 [111] | |
IPF | Mouse | CT | Y | Povedano, 2018 [112] | |
Fibrosis | Mouse | X-ray | N | Hellbach, 2017 [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmutovic Persson, I.; von Wachenfeldt, K.; Waterton, J.C.; Olsson, L.E.; on behalf of the TRISTAN Consortium. Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. J. Clin. Med. 2021, 10, 107. https://doi.org/10.3390/jcm10010107
Mahmutovic Persson I, von Wachenfeldt K, Waterton JC, Olsson LE, on behalf of the TRISTAN Consortium. Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. Journal of Clinical Medicine. 2021; 10(1):107. https://doi.org/10.3390/jcm10010107
Chicago/Turabian StyleMahmutovic Persson, Irma, Karin von Wachenfeldt, John C. Waterton, Lars E. Olsson, and on behalf of the TRISTAN Consortium. 2021. "Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review" Journal of Clinical Medicine 10, no. 1: 107. https://doi.org/10.3390/jcm10010107
APA StyleMahmutovic Persson, I., von Wachenfeldt, K., Waterton, J. C., Olsson, L. E., & on behalf of the TRISTAN Consortium. (2021). Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. Journal of Clinical Medicine, 10(1), 107. https://doi.org/10.3390/jcm10010107