Assessing the Severity of Traumatic Brain Injury—Time for a Change?
Abstract
:1. Introduction
2. TBI Severity: What Does It Really Mean?
3. Tools to Assess TBI Severity in the Acute Setting
3.1. Loss and Level of Consciousness
3.2. Post-Traumatic Amnesia
3.3. Confounders for the Use of GCS and PTA to Assess Injury Severity
4. Tools for Predicting Long-Term Outcome after TBI
5. Severity Is Not Stable
6. Are We Fooling Ourselves?
7. A Proposal: From Severity Labels to Risk Assessment over Time?
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine. Definition of mild traumatic brain injury. J. Head Trauma Rehabil. 1993, 8, 86–87. [Google Scholar] [CrossRef]
- Nelson, L.D.; Temkin, N.R.; Dikmen, S.; Barber, J.; Giacino, J.T.; Yuh, E.; Levin, H.S.; McCrea, M.A.; Stein, M.B.; Mukherjee, P.; et al. Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. JAMA Neurol. 2019, 76, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; McGuire, L.C.; Faul, M.; Sugerman, D.E.; Pearson, W.S. Traumatic brain injury epidemiology and public health issues. In Brain Injury Medicine, 2nd ed.; Zasler, N.D., Katz, D.I., Zafonte, R.D., Eds.; Demos Medical: New York, NY, USA, 2013; pp. 84–100. [Google Scholar]
- Te Ao, B.; Brown, P.; Tobias, M.; Ameratunga, S.; Barker-Collo, S.; Theadom, A.; McPherson, K.; Starkey, N.; Dowell, A.; Jones, K.; et al. Cost of traumatic brain injury in New Zealand: Evidence from a population-based study. Neurology 2014, 83, 1645–1652. [Google Scholar] [CrossRef]
- Carroll, L.J.; Cassidy, J.D.; Holm, L.; Kraus, J.; Coronado, V.G. Methodological issues and research recommendations for mild traumatic brain injury: The WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 43, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Sharp, D.J.; Jenkins, P.O. Concussion is confusing us all. Pract. Neurol. 2015, 15, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Tagge, C.A.; Fisher, A.M.; Minaeva, O.V.; Gaudreau-Balderrama, A.; Moncaster, J.A.; Zhang, X.-L.; Wojnarowicz, M.W.; Casey, N.; Lu, H.; Kokiko-Cochran, O.N.; et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain 2018, 141, 422–458. [Google Scholar] [CrossRef]
- McCrory, P.; Feddermann-Demont, N.; Dvořák, J.; Cassidy, J.D.; McIntosh, A.; Vos, P.E.; Echemendia, R.J.; Meeuwisse, W.; Tarnutzer, A.A. What is the definition of sports-related concussion: A systematic review. Br. J. Sports Med. 2017, 51, 877–887. [Google Scholar] [CrossRef]
- Levin, H.S.; O’Donnell, V.M.; Grossman, R.G. The Galveston Orientation and Amnesia Test: A practical scale to assess cognition after head injury. J. Nerv. Ment. Dis. 1979, 167, 675–684. [Google Scholar] [CrossRef]
- Meares, S.; Shores, E.A.; Taylor, A.J.; Lammél, A.; Batchelor, J. Validation of the Abbreviated Westmead Post-traumatic Amnesia Scale: A brief measure to identify acute cognitive impairment in mild traumatic brain injury. Brain Inj. 2011, 25, 1198–1205. [Google Scholar] [CrossRef]
- Zuercher, M.; Ummenhofer, W.; Baltussen, A.; Walder, B. The use of Glasgow Coma Scale in injury assessment: A critical review. Brain Inj. 2009, 23, 371–384. [Google Scholar] [CrossRef] [PubMed]
- King, N.S.; Crawford, S.; Wenden, F.J.; Moss, N.E.; Wade, D.T.; Caldwell, F.E. Measurement of post-traumatic amnesia: How reliable is it? J. Neurol. Neurosurg. Psychiatry 1997, 62, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacino, J.T.; Fins, J.J.; Laureys, S.; Schiff, N.D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014, 10, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Foreman, B.P.; Caesar, R.R.; Parks, J.; Madden, C.; Gentilello, L.M.; Shafi, S.; Carlile, M.C.; Harper, C.R.; Diaz-Arrastia, R.R. Usefulness of the abbreviated injury score and the injury severity score in comparison to the Glasgow Coma Scale in predicting outcome after traumatic brain injury. J. Trauma 2007, 62, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Perrin, P.B.; Niemeier, J.P.; Mougeot, J.L.; Vannoy, C.H.; Hirsch, M.A.; Watts, J.A.; Rossman, W.; Grafton, L.M.; Guerrier, T.D.; Pershad, R.; et al. Measures of injury severity and prediction of acute traumatic brain injury outcomes. J. Head Trauma Rehabil. 2015, 30, 136–142. [Google Scholar] [CrossRef]
- Barker, M.D.; Whyte, J.; Pretz, C.R.; Sherer, M.; Temkin, N.; Hammond, F.M.; Saad, Z.; Novack, T. Application and clinical utility of the Glasgow Coma Scale over time: A study employing the NIDRR traumatic brain injury model systems database. J. Head Trauma Rehabil. 2014, 29, 400–406. [Google Scholar] [CrossRef]
- Königs, M.; de Kieviet, J.F.; Oosterlaan, J. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1048–1055. [Google Scholar] [CrossRef]
- Marshman, L.A.; Jakabek, D.; Hennessy, M.; Quirk, F.; Guazzo, E.P. Post-traumatic amnesia. J. Clin. Neurosci. 2013, 20, 1475–1481. [Google Scholar] [CrossRef]
- De Simoni, S.; Grover, P.J.; Jenkins, P.O.; Honeyfield, L.; Quest, R.A.; Ross, E.; Scott, G.; Wilson, M.H.; Majewska, P.; Waldman, A.D.; et al. Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia. Brain 2016, 139, 3137–3150. [Google Scholar] [CrossRef]
- Metting, Z.; Rödiger, L.A.; de Jong, B.M.; Stewart, R.E.; Kremer, B.P.; van der Naalt, J. Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. J. Neurotrauma 2010, 27, 2183–2189. [Google Scholar] [CrossRef]
- Friedland, D.; Swash, M. Post-traumatic amnesia and confusional state: Hazards of retrospective assessment. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.M.; Spitz, G.; Ponsford, J.L. Comparing Prospectively Recorded Posttraumatic Amnesia Duration with Retrospective Accounts. J. Head Trauma Rehabil. 2016, 31, E71–E77. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, R. Head injury for neurologists. J. Neurol. Neurosurg. Psychiatry 2002, 73 (Suppl. 1), i8–i16. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Machamer, J.; Temkin, N. Mild head injury: Facts and artifacts. J. Clin. Exp. Neuropsychol. 2001, 23, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Cota, M.; Moses, A.; Jikaria, N.; Bittner, K.C.; Diaz-Arrastia, R.R.; Latour, L.L.; Turtzo, L.C. Discordance between Documented Criteria and Documented Diagnosis of Traumatic Brain Injury in the Emergency Department. J. Neurotrauma 2019, 36, 1335–1342. [Google Scholar] [CrossRef]
- Van Eijck, M.M.; Schoonman, G.G.; van der Naalt, J.; de Vries, J.; Roks, G. Diffuse axonal injury after traumatic brain injury is a prognostic factor for functional outcome: A systematic review and meta-analysis. Brain Inj. 2018, 32, 395–402. [Google Scholar] [CrossRef]
- Amyot, F.; Arciniegas, D.B.; Brazaitis, M.P.; Curley, K.C.; Diaz-Arrastia, R.; Gandjbakhche, A.; Herscovitch, P.; Hinds, S.R., 2nd; Manley, G.T.; Pacifico, A.; et al. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1693–1721. [Google Scholar] [CrossRef] [Green Version]
- Sasse, N.; Gibbons, H.; Wilson, L.; Martinez-Olivera, R.; Schmidt, H.; Hasselhorn, M.; von Wild, K.; von Steinbüchel, N. Self-awareness and health-related quality of life after traumatic brain injury. J. Head Trauma Rehabil. 2013, 28, 464–472. [Google Scholar] [CrossRef]
- MRC CRASH Trial Collaborators; Perel, P.; Arango, M.; Clayton, T.; Edwards, P.; Komolafe, E.; Poccock, S.; Roberts, I.; Shakur, H.; Steyerberg, E.; et al. Predicting outcome after traumatic brain injury: Practical prognostic models based on large cohort of international patients. BMJ 2008, 336, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Steyerberg, E.W.; Mushkudiani, N.; Perel, P.; Butcher, I.; Lu, J.; McHugh, G.S.; Murray, G.D.; Marmarou, A.; Roberts, I.; Habbeba, J.D.; et al. Predicting outcome after traumatic brain injury: Development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008, 5, e165. [Google Scholar] [CrossRef] [Green Version]
- Roozenbeek, B.; Lingsma, H.F.; Lecky, F.E.; Lu, J.; Weir, J.; Butcher, I.; McHugh, G.S.; Murray, G.D.; Perel, P.; Maas, A.I.; et al. Prediction of outcome after moderate and severe traumatic brain injury: External validation of the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation After Significant Head injury (CRASH) prognostic models. Crit. Care Med. 2012, 40, 1609–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, A.I.; Lingsma, H.F.; Roozenbeek, B. Predicting outcome after traumatic brain injury. Handb. Clin. Neurol. 2015, 128, 455–474. [Google Scholar] [CrossRef] [PubMed]
- Van der Naalt, J.; Timmerman, M.E.; de Koning, M.E.; van der Horn, H.J.; Scheenen, M.E.; Jacobs, B.; Hageman, G.; Yilmaz, T.; Roks, G.; Spikman, J.M. Early predictors of outcome after mild traumatic brain injury (UPFRONT): An observational cohort study. Lancet Neurol. 2017, 16, 532–540. [Google Scholar] [CrossRef]
- Iverson, G.; Silverberg, N.; Lange, R.T.; Zasler, N.D. Conceptualizing Outcome From Mild Traumatic Brain Injury. In Brain Injury Medicine, 2nd ed.; Zasler, N.D., Katz, D.I., Zafonte, R.D., Eds.; Demos Medical: New York, NY, USA, 2013; pp. 470–497. [Google Scholar]
- Cnossen, M.C.; van der Naalt, J.; Spikman, J.M.; Nieboer, D.; Yue, J.K.; Winkler, E.A.; Manley, G.T.; von Steinbüchel, N.; Polinder, S.; Steyerberg, E.W.; et al. Prediction of Persistent Post-Concussion Symptoms Following Mild Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Dams-O’Connor, K.; Spielman, L.; Singh, A.; Gordon, W.A.; Lingsma, H.F.; Maas, A.I.; Manley, G.T.; Mukherjee, P.; Okonkwo, D.O.; Puccio, A.M.; et al. The impact of previous traumatic brain injury on health and functioning: A TRACK-TBI study. J. Neurotrauma 2013, 30, 2014–2020. [Google Scholar] [CrossRef] [Green Version]
- Henry, L.C.; Tremblay, S.; De Beaumont, L. Long-Term Effects of Sports Concussions: Bridging the Neurocognitive Repercussions of the Injury with the Newest Neuroimaging Data. Neuroscientist 2017, 23, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Sariaslan, A.; Sharp, D.J.; D’Onofrio, B.M.; Larsson, H.; Fazel, S. Long-Term Outcomes Associated with Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide Range of Medical and Social Outcomes. PLoS Med. 2016, 13, e1002103. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017, 16, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Voormolen, D.C.; Cnossen, M.C.; Polinder, S.; von Steinbuechel, N.; Vos, P.E.; Haagsma, J.A. Divergent Classification Methods of Post-Concussion Syndrome after Mild Traumatic Brain Injury: Prevalence Rates, Risk Factors, and Functional Outcome. J. Neurotrauma 2018, 35, 1233–1241. [Google Scholar] [CrossRef]
- Yamamoto, S.; Levin, H.S.; Prough, D.S. Mild, moderate and severe: Terminology implications for clinical and experimental traumatic brain injury. Curr. Opin. Neurol. 2018, 31, 672–680. [Google Scholar] [CrossRef]
- Tosetti, P.; Hicks, R.R.; Theriault, E.; Phillips, A.; Koroshetz, W.; Draghia-Akli, R. Toward an international initiative for traumatic brain injury research. J. Neurotrauma 2013, 30, 1211–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravesteijn, B.; Sewalt, C.; Ercole, A.; Akerlund, C.; Nelson, D.; Maas, A.I.R.; Menon, D.; Lingsma, H.F.; Steyerberg, E.W. Toward a new multidimensional classification of traumatic brain injury: A CENTER-TBI study. J. Neurotrauma 2020, 37, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Majdan, M.; Brazinova, A.; Rusnak, M.; Leitgeb, J. Outcome Prediction after Traumatic Brain Injury: Comparison of the Performance of Routinely Used Severity Scores and Multivariable Prognostic Models. J. Neurosci. Rural Pract. 2017, 8, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Orešič, M.; Posti, J.P.; Kamstrup-Nielsen, M.H.; Takala, R.S.K.; Lingsma, H.F.; Mattila, I.; Jäntti, S.; Katila, A.J.; Carpenter, K.L.H.; Ala-Seppälä, H.; et al. Human Serum Metabolites Associate with Severity and Patient Outcomes in Traumatic Brain Injury. EBioMedicine 2016, 12, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thelin, E.; Al Nimer, F.; Frostell, A.; Zetterberg, H.; Blennow, K.; Nyström, H.; Svensson, M.; Bellander, B.M.; Piehl, F.; Nelson, D.W. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J. Neurotrauma 2019, 36, 2850–2862. [Google Scholar] [CrossRef] [Green Version]
Acute risk of death/mortality |
Quantifying brain biomarker efflux |
Risk/need for neurosurgical measures |
Level/intensity of treatment needed (home, ED 1, ward, ICU 2) |
Duration of hospital stay |
Outcome at the end of hospital care |
Quantification of brain tissue injury |
Functional/vocational recovery |
Independency as outcome |
Subjective symptoms as outcome |
Quality of life as outcome |
Confounders for GCS 1 | Confounders for PTA 2 |
---|---|
CNS-active medications (sedatives, opiates) Hearing deficits Hypovolemia Hypoxia Inebriation (alcohol, drugs), intoxication Language problems Orbital injuries Psychic shock Seizures Sensory/motor loss (hemiparesis, SCI 3) Sleep deprivation Surgical measures | CNS-active medications (sedatives, opiates) False memories Inebriation (alcohol, drugs), intoxication Islands of memory 4 Language problems Psychic shock Psychogenic amnesia Sleep Surgical measures |
Underestimation | Overestimation | |
---|---|---|
Patient | Potentially fatal injuries remain undetected (e.g., EDH 1) Secondary injuries remain untreated Risk for new injuries due to TBI-related problems Returning to work/play too early, prolonged recovery Secondary psychiatric problems due to poor performance (burnout, depression) Social problems due to misunderstood poor performance or neuropsychiatric symptoms Firing from work, economical losses Lack of insurance compensation, litigation | Treatments withheld due to pessimistic prognosis Risk for overtreatment and hazardous measures Unnecessary hospital care and examinations Economical losses due to prolonged sick leave Non-TBI related disorders remain undiagnosed and untreated Psychosocial sequelae due to wrong label, unnecessary psychic stress for the proxies Loss of self-esteem, fear of future Adoption of unnecessary illness behavior |
Healthcare | Unnecessary new or secondary injuries Complex problems due to delayed diagnoses, loss of resources (in diagnostics and treatment) Involvement in litigation Lower confidence in healthcare | Waste of resources Poor treatment results due to wrong or overtreatment |
Acute Risk 1 | Long-Term Risk 2 | |
---|---|---|
Patient-related | Age 3 | Age 3 |
Pre-injury somatic health | Pre-injury psychiatric or brain health | |
Anticoagulant use | Earlier TBIs | |
Genetics 4 | Education | |
Alcohol or drug abuse | ||
Psychological factors Physical activity | ||
Genetics 4 | ||
Injury-related | Other injuries 5 | Other injuries 5 |
Treatment delays | Injury details 6 | |
Clinical assessments | Pupils | Duration of lowered consciousness |
GCS * (lowering-rising) | Duration of PTA *** | |
Hypotension | Symptom severity 7 | |
Hypoxia | ||
Elevated ICP ** | ||
Treatment efforts | Craniotomy | Duration of hospital care |
Decompressive craniectomy | Patient education | |
ICP lowering treatments 8 | ||
Imaging | Type of lesions | Number of lesions |
Volume of intracranial bleeding | Depth of lesions | |
Volume of contusions | Volume change 9 | |
Midline shift | DTI metrics 10 | |
Status of basal cisterns | ||
Signs of herniation | ||
Brainstem lesions | ||
Biomarkers11 | Levels of glial markers | Levels of axonal markers |
Levels of neuronal markers | ||
Complications | Seizures | Brain ischemia/hypoxia |
Brain ischemia | ||
Serious infections | ||
Cardiopulmonary complications |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenovuo, O.; Diaz-Arrastia, R.; Goldstein, L.E.; Sharp, D.J.; van der Naalt, J.; Zasler, N.D. Assessing the Severity of Traumatic Brain Injury—Time for a Change? J. Clin. Med. 2021, 10, 148. https://doi.org/10.3390/jcm10010148
Tenovuo O, Diaz-Arrastia R, Goldstein LE, Sharp DJ, van der Naalt J, Zasler ND. Assessing the Severity of Traumatic Brain Injury—Time for a Change? Journal of Clinical Medicine. 2021; 10(1):148. https://doi.org/10.3390/jcm10010148
Chicago/Turabian StyleTenovuo, Olli, Ramon Diaz-Arrastia, Lee E. Goldstein, David J. Sharp, Joukje van der Naalt, and Nathan D. Zasler. 2021. "Assessing the Severity of Traumatic Brain Injury—Time for a Change?" Journal of Clinical Medicine 10, no. 1: 148. https://doi.org/10.3390/jcm10010148
APA StyleTenovuo, O., Diaz-Arrastia, R., Goldstein, L. E., Sharp, D. J., van der Naalt, J., & Zasler, N. D. (2021). Assessing the Severity of Traumatic Brain Injury—Time for a Change? Journal of Clinical Medicine, 10(1), 148. https://doi.org/10.3390/jcm10010148