Correlation between Visual Acuity and Optical Coherence Tomography Angiography Parameters in Unilateral Idiopathic Epiretinal Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Average Macular Thickness Assessment
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, P.; Smith, W.; Chey, T.; Wang, J.J.; Chang, A. Prevalence and associations of epiretinal membranes: The Blue Mountains Eye Study. Aust. Ophthalmol. 1997, 104, 1033–1040. [Google Scholar] [CrossRef]
- Mccarty, D.J.; Mukesh, B.N.; Chikani, V.; Wang, J.J.; Mitchell, P.; Taylor, H.R.; Mccarty, C.A. Prevalence and associations of epiretinal membranes in the visual impairment project. Am. J. Ophthalmol. 2005, 140, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Kadonosono, K. Macular diseases: Epiretinal membrane. Dev. Ophthalmol. 2004, 54, 159–163. [Google Scholar] [CrossRef]
- Nishi, Y.; Shinoda, H.; Uchida, A.; Koto, T.; Mochimaru, H.; Nagai, N.; Tsubota, K.; Ozawa, Y. Detection of early visual impairment in patients with epiretinal membrane. Acta Ophthalmol. 2013, 91, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Arimoto, S.; Nishi, O. Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology 2009, 116, 1788–1793. [Google Scholar] [CrossRef]
- Kadonosono, K.; Itoh, N.; Nomura, E.; Ohno, S. Perifoveal microcirculation in eyes with epiretinal membrane. Br. J. Ophthalmol. 1991, 83, 1329–1331. [Google Scholar] [CrossRef]
- Shinoda, K.; Kimura, I.; Eshita, T.; Kitamura, S.; Inoue, M.; Ishida, S.; Katsura, H.; Mashima, Y. Microcirculation in the macular area of eyes with an idiopathic epiretinal membrane. Graefes Arch. Clin. Exp. Ophthalmol. 2001, 239, 941–945. [Google Scholar] [CrossRef]
- Yagi, T.; Sakata, K.; Funatsu, H.; Noma, H.; Yamamoto, K.; Hori, S. Macular microcirculation in patients with epiretinal membrane before and after surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 931–934. [Google Scholar] [CrossRef]
- Scimone, C.; Alibrandi, S.; Scalinci, S.Z.; Trovato, B.E.; Angelo, R.; Sidoti, A.; Donato, L. Expression of Pro-Angiogenic Markers Is Enhanced by Blue Light in Human RPE Cells. Antioxidants 2020, 20, 1154. [Google Scholar] [CrossRef]
- Fang, I.M.; Hsu, C.C.; Chen, L.L. Correlation between visual acuity changes and optical coherence tomography morphological findings in idiopathic epiretinal membranes. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 437–444. [Google Scholar] [CrossRef]
- Watanabe, K.; Tsunoda, K.; Mizuno, Y.; Akiyama, K.; Noda, T. Outer retinal morphology and visual function in patients with idiopathic epiretinal membrane. JAMA Ophthalmol. 2013, 131, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scimone, C.; Donato, L.; Esposito, T.; Rinaldi, C.; Angelo, R.; Sidoti, A. A novel RLBP1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens. Hum. Genom. 2017, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Mitamura, Y.; Hirano, K.; Baba, T.; Yamamoto, S. Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br. J. Ophthalmol. 2009, 93, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Rii, T.; Itoh, Y.; Inoue, M.; Hirota, K.; Hirakata, A. Outer retinal morphological changes and visual function after removal of epiretinal membrane. Can. J. Ophthalmol. 2014, 49, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.I.; Schuster, A.K.; Bartsch, D.U.; Kim, J.S.; Chhablani, J.; Freeman, W.R. Restoration of retinal layers after epiretinal membrane peeling. Retina 2014, 34, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef]
- Toto, L.; Borrelli, E.; Mastropasqua, R.; Di Antonio, L.; Doronzo, E.; Carpineto, P.; Mastropasqua, L. Association between outer retinal alterations and microvascular changes in intermediate stage age-related macular degeneration: An optical coherence tomography angiography study. Br. J. Ophthalmol. 2017, 101, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, L.; Toto, L.; Borrelli, E.; Carpineto, P.; Antonio, L.D.; Mastropasqua, R. Optical coherence tomography angiography assessment of vascular effects occurring after aflibercept intravitreal injections in treatment-naive patients with wet AMD. Retina 2017, 37, 247–256. [Google Scholar] [CrossRef]
- Yu, Y.; Teng, Y.; Gao, M.; Liu, X.; Chen, J.; Liu, W. Quantitative Choriocapillaris Perfusion Before and After Vitrectomy in Idiopathic Epiretinal Membrane by Optical Coherence Tomography Angiography. Ophthalmic Surg. Lasers Imaging Retin. 2017, 48, 906–915. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Borrelli, E.; Carpineto, P.; Toto, L.; Di Antonio, L.; Mattei, P.A.; Mastropasqua, R. Microvascular changes after vitrectomy with internal limiting membrane peeling: An optical coherence tomography angiography study. Int. Ophthalmol. 2018, 38, 1465–1472. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, S.; Lee, J.Y.; Kim, J.G.; Yoon, Y.H. Macular capillary plexuses after epiretinal membrane surgery: An optical coherence tomography angiography study. Br. J. Ophthalmol. 2018, 102, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Lin, T.; Peng, W.; Lu, L.; Hu, J. Macular vascular circulation and retinal oxygen saturation changes for idiopathic macular epiretinal membrane after vitrectomy. Acta Ophthalmol. 2019, 97, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Tai-Chi, L.; Yu-Chien, C.; Che-Yu, L.; Fenq-Lih, L.; Shih-Jen, C. Focal Nonperfusion of Deep Retinal Capillary Plexus in Eyes with Epiretinal Membranes Revealed by Optical Coherence Tomography Angiography. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 404–409. [Google Scholar] [CrossRef]
- Chen, H.; Chi, W.; Cai, X.; Deng, Y.; Jiang, X.; Wei, Y.; Zhang, S. Macular mi crovasculature features before and after vitrectomy in idiopathic macular epiretinal membrane: An OCT angiography analysis. Eye (Lond.) 2019, 33, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Suzuma, K.; Maki, T.; Maekawa, Y.; Matsumoto, M.; Kusano, M.; Uematsu, M.; Kitaoka, T. Cyclic stretch and hypertension increase retinal succinate: Potential mechanisms for exacerbation of ocular neovascularization by mechanical stress. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4320–4326. [Google Scholar] [CrossRef] [Green Version]
- Kadonosono, K.; Itoh, N.; Nomura, E.; Ohno, S. Capillary blood flow velocity in patients with idiopathic epiretinal membranes. Retina 1999, 19, 536–539. [Google Scholar] [CrossRef]
- Suh, M.H.; Seo, J.M.; Park, K.H.; Yu, H.G. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am. J. Ophthalmol. 2009, 147, 473–480. [Google Scholar] [CrossRef]
- Rizzo, S.; Savastano, A.; Finocchio, L.; Savastano, M.C.; Khandelwal, N.; Agrawal, R. Choroidal vascularity index changes after vitreomacular surgery. Acta Ophthalmol. 2018, 96, 950–955. [Google Scholar] [CrossRef]
- Shao, L.; Xu, L.; Wei, W.B.; Chen, C.X.; Du, K.; Li, X.P.; Yang, M.; Wang, Y.X.; You, Q.; Jonas, J.B. Visual acuity and subfoveal choroidal thickness: The Beijing Eye Study. Am. J. Ophthalmol. 2014, 158, 702–709. [Google Scholar] [CrossRef]
- Nishida, Y.; Fujiwara, T.; Imamura, Y.; Lima, L.H.; Kurosaka, D.; Spaide, R.F. Choroidal thickness and visual acuity in highly myopic eyes. Retina 2012, 32, 1229–1236. [Google Scholar] [CrossRef]
- Donato, L.; Angelo, R.; Alibrandi, S.; Rinaldi, C.; Sidoti, A.; Scimone, C. Effects of A2E-Induced Oxidative Stress on Retinal Epithelial Cells: New Insights on Differential Gene Response and Retinal Dystrophies. Antioxidants 2020, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, L.; Scimone, C.; Alibrandi, S.; Nicocia, G.; Rinaldi, C.L.; Sidoti, A.; Angelo, R. Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa. Antioxidants 2020, 9, 416. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.; Scimone, C.; Alibrandi, S.; Nicocia, G.; Rinaldi, C.; Sidoti, A.; Angelo, R. Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to Oxidative Stress and Retinitis Pigmentosa. Antioxidants 2020, 9, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
iERM (n = 61) | Normal (n = 61) | p | |
---|---|---|---|
SE (diopter) | −2.12 ± 0.76 | −2.25 ± 0.83 | 0.76 |
BCVA (LogMAR) | 0.23 ± 0.22 | 0.10 ± 0.11 | 0.001 * |
SCP flow area (mm2) | 5.006 ± 0.501 | 5.28 ± 0.75 | 0.037 * |
DCP flow area (mm2) | 4.90 ± 1.11 | 5.26 ± 1.08 | 0.054 |
CCP flow area (mm2) | 7.287 ± 0.214 | 7.663 ± 0.201 | 0.011 * |
Inner retinal thickness (μm) | 324.87 ± 32.01 | 112.72 ± 10.66 | <0.001 * |
Outer retinal thickness (μm) | 201.91 ± 21.84 | 180.95 ± 10.86 | <0.001 * |
Full retinal thickness (μm) | 324.87 ± 32.01 | 293.48 ± 20.11 | <0.001 * |
Choroid thickness (μm) | 270.79 ± 59.61 | 300.05 ± 76.53 | 0.042 * |
BCVA (LogMAR) | ||||
---|---|---|---|---|
iERM | Normal Fellow | |||
r | p | r | p | |
SCP flow area | −0.22 | 0.095 | −0.13 | 0.45 |
DCP flow area | −0.21 | 0.11 | −0.053 | 0.75 |
CCP flow area | −0.33 | 0.012 * | −0.24 | 0.16 |
Inner retinal thickness | 0.039 | 0.74 | 0.075 | 0.68 |
Outer retinal thickness | 0.038 | 0.78 | 0.17 | 0.35 |
Full retinal thickness | 0.16 | 0.23 | 0.13 | 0.46 |
Choroid thickness | 0.069 | 0.62 | 0.26 | 0.12 |
Presence of Foveal Concavity | Loss of Foveal Concavity | p | |
---|---|---|---|
Number of eyes | 32 | 29 | |
age (years) | 67.76 ± 8.65 | 63.82 ± 8.21 | 0.13 |
gender (female; %) | 0.29 ± 0.46 | 0.32 ± 0.48 | 0.82 |
SE (diopter) | 2.28 ± 0.86 | 2.06 ± 0.93 | 0.73 |
BCVA (LogMAR) | 0.20 ± 0.16 | 0.26 ± 0.28 | 0.31 |
SCP flow area (mm2) | 5.28 ± 0.64 | 5.03 ± 0.63 | 0.30 |
DCP flow area (mm2) | 4.90 ± 1.16 | 4.77 ± 1.01 | 0.67 |
CCP flow area (mm2) | 7.41 ± 0.21 | 7.41 ± 0.20 | 0.54 |
Inner retinal thickness (μm) | 126.26 ± 14.28 | 119.25 ± 8.39 | 0.025 * |
Outer retinal thickness (μm) | 203.63 ± 22.73 | 184.36 ± 17.03 | <0.001 * |
Full retinal thickness (μm) | 330.86 ± 34.42 | 301.91 ± 21.26 | <0.001 * |
Choroid thickness (μm) | 261.68 ± 60.91 | 283.68 ± 54.77 | 0.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, I.-M.; Hsu, H.-Y.; Chiang, W.-L.; Shih, Y.-L.; Han, C.-L. Correlation between Visual Acuity and Optical Coherence Tomography Angiography Parameters in Unilateral Idiopathic Epiretinal Membrane. J. Clin. Med. 2021, 10, 26. https://doi.org/10.3390/jcm10010026
Fang I-M, Hsu H-Y, Chiang W-L, Shih Y-L, Han C-L. Correlation between Visual Acuity and Optical Coherence Tomography Angiography Parameters in Unilateral Idiopathic Epiretinal Membrane. Journal of Clinical Medicine. 2021; 10(1):26. https://doi.org/10.3390/jcm10010026
Chicago/Turabian StyleFang, I-Mo, Hsin-Yi Hsu, Wan-Ling Chiang, Yi-Ling Shih, and Chia-Ling Han. 2021. "Correlation between Visual Acuity and Optical Coherence Tomography Angiography Parameters in Unilateral Idiopathic Epiretinal Membrane" Journal of Clinical Medicine 10, no. 1: 26. https://doi.org/10.3390/jcm10010026
APA StyleFang, I. -M., Hsu, H. -Y., Chiang, W. -L., Shih, Y. -L., & Han, C. -L. (2021). Correlation between Visual Acuity and Optical Coherence Tomography Angiography Parameters in Unilateral Idiopathic Epiretinal Membrane. Journal of Clinical Medicine, 10(1), 26. https://doi.org/10.3390/jcm10010026