Exercise Induced Worsening of Mechanical Heterogeneity and Diastolic Impairment in Long QT Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Exercise Protocol
2.3. The Electrocardiogram (ECG)
2.4. Echocardiography
2.4.1. Conventional and Doppler Echocardiography
2.4.2. LV Two-Dimensional Speckle-Tracking Echocardiography (STE)
2.5. Statistical Analysis
2.6. Ethics Approval
3. Results
3.1. Baseline Characteristics
3.2. Exercise Response
ECG and Symptoms During Exercise
3.3. Electromechanical Response to Exercise
3.3.1. QTc
3.3.2. LV Longitudinal Contraction Function
3.3.3. LV Longitudinal Diastolic Function
3.3.4. LV Mechanical Dyssynchrony
3.3.5. Stroke Volume
3.4. Electromechanical Correlations
3.5. Symptomatic vs. Asymptomatic LQTS Patients
Discriminating Previous Clinical Events
3.6. Treatment with B-Blockers
3.7. Exercise Response According to LQTs Genotype
3.8. Measurements Reproducibility
4. Discussion
4.1. Findings
4.2. Data Interpretation
4.2.1. Electromechanical Response to Exercise
4.2.2. Effects of B-Blocker Therapy
4.2.3. LQTS Genotype and Exercise Response
4.3. Clinical Implications
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwartz, P.J.; Ackerman, M.J. The long QT syndrome: A transatlantic clinical approach to diagnosis and therapy. Eur. Heart J. 2013, 34, 3109–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, S.G.; Napolitano, C.; Diehl, L.; Schwartz, P.J. Dispersion of the QT interval. A marker of therapeutic efficacy in the idiopathic long QT syndrome. Circulation 1994, 89, 1681–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leren, I.S.; Hasselberg, N.E.; Saberniak, J.; Håland, T.F.; Kongsgård, E.; Smiseth, O.A.; Edvardsen, T.; Haugaa, K.H. Cardiac Mechanical Alterations and Genotype Specific Differences in Subjects with Long QT Syndrome. JACC Cardiovasc. Imaging 2015, 8, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charisopoulou, D.; Koulaouzidis, G.; Rydberg, A.; Henein, M.Y. Exercise worsening of electromechanical disturbances: A predictor of arrhythmia in long qt syndrome. Clin. Cardiol. 2018, 42, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugaa, K.H.; Amlie, J.P.; Berge, K.E.; Leren, T.P.; Smiseth, O.A.; Edvardsen, T. Transmural differences in myocardial contraction in long-QT syndrome: Mechanical consequences of ion channel dysfunction. Circulation 2010, 122, 1355–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugaa, K.H.; Edvardsen, T.; Leren, T.P.; Gran, J.M.; Smiseth, O.A.; Amlie, J.P. Left ventricular mechanical dispersion by tissue Doppler imaging: A novel approach for identifying high-risk individuals with long QT syndrome. Eur. Heart J. 2009, 30, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelsayed, M.; Bytyc, I.; Rydberg, A.; Henein, M.Y. Left ventricular contraction duration is the most powerful predictor of cardiac events in LQTS: A systematic review and meta-analysis. J. Clin. Med. 2020, 9, 2820. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.A.; Pérez, A.V.; Blaschke, F.; Eichstädt, H.; Ozcelik, C.; Haverkamp, W. Myocardial systolic and diastolic consequences of left ventricular mechanical dyssynchrony in heart failure with normal left ventricular ejection fraction. Eur. Hear. J. Cardiovasc. Imaging 2012, 13, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Brado, J.; DeChant, M.J.; Menza, M.; Komancsek, A.; Lang, C.N.; Bugger, H.; Foell, D.; Jung, B.A.; Stiller, B.; Bode, C.; et al. Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome. Heart Rhythm. 2017, 14, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Charisopoulou, D.; Koulaouzidis, G.; Rydberg, A.; Henein, M.Y. Abnormal ventricular repolarization in long QT syndrome carriers is related to short left ventricular filling time and attenuated stroke volume response during exercise. Echocardiography 2018, 35, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Eur. J. Echocardiogr. 2008, 10, 165–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.I.; Buckberg, G.D. Pathophysiology of subendocardial ischaemia. Br. Med. J. 1975, 1, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Schwartz, P.J.; Crampton, R.S.; Benhorin, J.; Vincent, G.M.; Locati, E.H.; Priori, S.G.; Napolitano, C.; et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 2000, 101, 616–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sy, R.W.; Chattha, I.S.; Klein, G.J.; Gula, L.J.; Skanes, A.C.; Yee, R.; Bennett, M.T.; Krahn, A.D. Repolarization dynamics during exercise discriminate between LQT1 and LQT and LQT2 genotypes. J. Cardiovasc. Electrophysiol. 2010, 21, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-H.; Kodama, I. Two components of delayed rectifier K+ current in heart: Molecular basis, functional diversity, and contribution to repolarization. Acta Pharmacol. Sin. 2004, 25, 137–145. [Google Scholar] [PubMed]
Rest | Peak | Recovery | |||||||
---|---|---|---|---|---|---|---|---|---|
LQT | Control | p Value | LQT | Control | p Value | LQT | Control | p Value | |
QTc, ms | 453 ± 42 | 413 ± 17 | <0.0001 | 499 ± 45 | 390 ± 19 | 0.0001 | 479 ± 35 | 414 ± 20 | 0.0001 |
LV Contraction Parameters | |||||||||
LV EF,% | 69 ± 4 | 70 ± 6 | 0.9 | 74 ± 5 | 78 ± 6 | 0.7 | 70 ± 3 | 72 ± 5 | 0.6 |
GLS,% | 17 ± 4 | 19 ± 1.2 | 0.005 | 19 ± 3 | 23 ± 11 | 0.0001 | 17.1 ± 5 | 20 ± 2 | 0.0006 |
tGLS, % | 47 ± 7 | 42 ± 6.3 | 0.0001 | 59 ± 10 | 40 ± 6 | <0.0001 | 49 ± 6 | 40 ± 6 | <0.0001 |
LV Diastole Parameters | |||||||||
E/A | 1.1 ± 0.13 | 1.2 ± 0.35 | 0.11 | 0.94 ± 0.2 | 1.2 ± 0.1 | <0.03 | 1.12 ± 0.16 | 1.19 ± 0.24 | 0.15 |
E DT, ms | 220 ± 58 | 169 ± 18 | <0.0001 | 138 ± 42 | 101 ± 18 | <0.0001 | 227 ± 81 | 170 ± 16 | <0.0001 |
E/E’ lateral | 9.2 ± 4.6 | 6 ± 1.2 | 0.0002 | 12.6 ± 5 | 6.3 ± 1.7 | 0.0026 | 9.3 ± 4.6 | 6.4 ± 1.31 | <0.0001 |
E/E’ septal | 12.4 ± 8 | 6.6 ± 1.30 | 0.0004 | 14.7 ± 9 | 6.5 ± 1.18 | <0.0001 | 12.2 ± 8.4 | 6.9 ± 0.6 | 0.0005 |
ESR, s−1 | 1 ± 0.3 | 2 ± 0.3 | <0.0001 | 1.1 ± 0.4 | 2.8 ± 0.4 | <0.0001 | 0.95 ± 0.3 | 1.9 ± 0.5 | <0.0001 |
tESR, % | 61 ± 7 | 58 ± 4 | 0.03 | 70 ± 6 | 56 ± 3 | <0.0001 | 65 ± 7 | 57 ± 1 | <0.0001 |
FT,% | 44 ± 7 | 51 ± 0.9 | <0.0001 | 34 ± 4 | 52 ± 2 | <0.0001 | 41 ± 8 | 50 ± 5 | <0.0001 |
LV Mechanical Discoordination | |||||||||
SD TGLS, ms | 58 ± 8 | 31 ± 8 | <0.0001 | 61 ± 8 | 24 ± 10 | < 0.0001 | 60 ± 10 | 26 ± 10 | <0.0001 |
t (E-ESR), ms | −8 ± 22 | 19 ± 7 | <0.0001 | −21 ± 25 | 17 ± 6 | <0.0001 | −9 ± 25 | 20 ± 6 | <0.0001 |
Myocardial Function Result | |||||||||
SV, mL | 70 ± 6 | 69 ± 9 | 0.5 | 68 ± 10 | 96 ± 11 | <0.0001 | 68 ± 8 | 71 ± 11 | 0.1 |
REST | PEAK | RECOVERY | |||||||
---|---|---|---|---|---|---|---|---|---|
Symptom. | Asymptom. | p Value | Symptom. | Asymptom. | p Value | Symptom. | Asymptom. | p Value | |
HR, b/min | 65 ± 8 | 70 ± 14 | 0.1 | 121 ± 18 | 128 ± 20 | 0.2 | 76 ± 12 | 80 ± 16 | 0.3 |
QTc, ms | 479 ± 43 | 447 ± 36 | 0.02 | 504 ± 41 | 479 ± 14 | 0.003 | 495 ± 39 | 469 ± 16 | 0.002 |
LV Contraction Parameters | |||||||||
GLS,% | 15 ± 2 | 19 ± 3 | <0.0001 | 17 ± 5 | 21 ± 5 | 0.01 | 14.6 ± 3 | 18.4 ± 4 | <0.0002 |
tGLS, % | 52.3 ± 6.5 | 43 ± 5 | <0.0001 | 64 ± 8.7 | 54.5 ± 8.8 | 0.0005 | 53.7 ± 6.7 | 45.8 ± 4 | <0.0001 |
LV Diastole Parameters | |||||||||
ESR, s−1 | 0.92 ± 0.23 | 1.12 ± 0.3 | 0.01 | 0.92 ± 0.23 | 1.26 ± 0.36 | 0.0006 | 0.75 ± 0.19 | 1.04 ± 0.25 | 0.0001 |
tESR, % | 64.58 ± 6.9 | 57.14 ± 3.6 | 0.0001 | 73.32 ± 4.3 | 67.1 ± 5.6 | 0.0002 | 69.75 ± 6.3 | 60.87 ± 60.4 | <0.0001 |
FT, % | 40 ± 3.2 | 47 ± 4.8 | <0.0001 | 31 ± 4 | 39 ± 1.7 | <0.0001 | 37.5 ± 4 | 44 ± 6 | 0.0001 |
LV Mechanical Discoordination | |||||||||
SD TGLS, ms | 62 ± 6 | 54 ± 8 | 0.0008 | 66 ± 8 | 54 ± 5 | <0.0001 | 66 ± 8 | 56 ± 9 | 0.0004 |
t(E-ESR), ms | 10 ± 5 | 33 ± 20 | 0.0007 | 18 ± 11 | 40 ± 24 | 0.003 | 13 ± 9 | 33 ± 28 | 0.0009 |
Myocardial Function Result | |||||||||
SV, mL | 63.8 ± 2.7 | 76 ± 6 | <0.0001 | 65.9 ± 6.5 | 82 ± 7.7 | <0.0001 | 61 ± 4 | 72 ± 10 | <0.0001 |
REST | PEAK | RECOVERY | |||||||
---|---|---|---|---|---|---|---|---|---|
B-Blockers | Untreated | p Value | B-Blocker | Untreated | p Value | B-Blocker | Untreated | p Value | |
QTc, ms | 452 ± 46 | 454 ± 37 | 0.8 | 491 ± 37 | 509 ± 52 | 0.1 | 481 ± 38 | 477 ± 33 | 0.7 |
GLS, % | 20 ± 8 | 16 ± 3 | 0.03 | 20 ± 4 | 16 ± 5 | 0.003 | 19 ± 8 | 16 ± 3 | 0.03 |
tGLS, % | 43 ± 11 | 50 ± 6 | 0.01 | 54 ± 9 | 63.8 ± 8 | 0.0008 | 47 ± 6 | 50 ± 5 | 0.01 |
SD TGLS, ms | 53 ± 7 | 63 ± 5 | 0.001 | 54 ± 3 | 65 ± 8 | <0.0001 | 57 ± 10 | 64 ± 8 | 0.01 |
ESR, s−1 | 1.45 ± 1.2 | 0.8 ± 0.3 | 0.02 | 1.23 ± 0.3 | 0.99 ± 0.3 | 0.009 | 1.35 ± 1 | 0.75 ± 0.25 | 0.01 |
tESR, % | 57 ± 6 | 65 ± 6 | 0.002 | 67 ± 4 | 73 ± 6 | 0.0002 | 58 ± 6 | 65 ± 9 | 0.002 |
FT, % | 47.5 ± 6 | 40 ± 6 | 0.003 | 35 ± 4 | 31 ± 3 | <0.0004 | 47 ± 6 | 40 ± 6 | 0.003 |
SV, mL | 75 ± 13 | 76 ± 15 | 0.8 | 73 ± 15 | 60 ± 17 | <0.01 | 76 ± 18 | 63 ± 17 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charisopoulou, D.; Koulaouzidis, G.; Law, L.F.; Rydberg, A.; Henein, M.Y. Exercise Induced Worsening of Mechanical Heterogeneity and Diastolic Impairment in Long QT Syndrome. J. Clin. Med. 2021, 10, 37. https://doi.org/10.3390/jcm10010037
Charisopoulou D, Koulaouzidis G, Law LF, Rydberg A, Henein MY. Exercise Induced Worsening of Mechanical Heterogeneity and Diastolic Impairment in Long QT Syndrome. Journal of Clinical Medicine. 2021; 10(1):37. https://doi.org/10.3390/jcm10010037
Chicago/Turabian StyleCharisopoulou, Dafni, George Koulaouzidis, Lucy F. Law, Annika Rydberg, and Michael Y. Henein. 2021. "Exercise Induced Worsening of Mechanical Heterogeneity and Diastolic Impairment in Long QT Syndrome" Journal of Clinical Medicine 10, no. 1: 37. https://doi.org/10.3390/jcm10010037
APA StyleCharisopoulou, D., Koulaouzidis, G., Law, L. F., Rydberg, A., & Henein, M. Y. (2021). Exercise Induced Worsening of Mechanical Heterogeneity and Diastolic Impairment in Long QT Syndrome. Journal of Clinical Medicine, 10(1), 37. https://doi.org/10.3390/jcm10010037