Prognostic Value of Echocardiographic Right Ventricular Function Parameters in the Presence of Severe Tricuspid Regurgitation
Abstract
:1. Background
2. Methods
2.1. Study Population
2.2. Echocardiographic Assessment
2.3. Right Heart Dimensions
2.4. Tricuspid Regurgitation
2.5. Right Ventricular Function
2.5.1. Visual “Eyeballing”
2.5.2. TAPSE
2.5.3. Tissue Doppler Velocity of the Free Lateral Wall (S’)
2.5.4. Fractional Area Change (FAC)
2.5.5. Global Longitudinal Strain
2.6. Clinical Risk Factors and Laboratory Measurements
2.7. Clinical Follow-Up and Study Endpoints
2.8. Statistical Analysis
3. Results
3.1. Patient Selection
3.2. Baseline Characteristics
3.3. Tricuspid Regurgitation
3.4. Right Ventricular Function and 2-Year Survival
3.5. Interrater Variability
4. Discussion
4.1. Limitations
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Binder, T. Echocardiographic evaluation of the right heart. Wien. Klin. Wochenschr. 2018, 130, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.; Aschauer, S.; Mascherbauer, J.; Ran, H.; Binder, C.; Lang, I.; Goliasch, G.; Binder, T. Echocardiographic assessment of right ventricular function: Current clinical practice. Int. J. Cardiovasc. Imaging 2019, 35, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forfia, P.R.; Fisher, M.R.; Mathai, S.C.; Housten-Harris, T.; Hemnes, A.R.; Borlaug, B.A.; Champion, H.C.; Abraham, T.P.; Girgis, R.E.; Hassoun, P.M.; et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2006, 174, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Ghio, S.; Klersy, C.; Magrini, G.; D’Armini, A.M.; Scelsi, L.; Raineri, C.; Pasotti, M.; Serio, A.; Campana, C.; Viganò, M. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2010, 140, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Bartko, P.E.; Hülsmann, M.; Hung, J.; Pavo, N.; Levine, R.A.; Pibarot, P.; Vahanian, A.; Stone, G.W.; Goliasch, G. Secondary valve regurgitation in patients with heart failure with preserved ejection fraction, heart failure with mid-range ejection fraction, and heart failure with reduced ejection fraction. Eur. Heart J. 2020, 41, 2799–2810. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.P.; Bartko, P.E.; Krickl, A.; Gatterer, C.; Donà, C.; Nitsche, C.; Lang, I.M.; Mascherbauer, J.; Hengstenberg, C.; Goliasch, G.; et al. Adaptive development of concomitant secondary mitral and tricuspid regurgitation after transcatheter aortic valve replacement. Eur. Heart J. Cardiovasc. Imaging 2020. [Google Scholar] [CrossRef]
- Harjai, K.J.; Edupuganti, R.; Nunez, E.; Turgut, T.; Scott, L.; Pandian, N.G. Does left ventricular shape influence clinical outcome in heart failure? Clin. Cardiol. 2000, 23, 813–819. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Shernan, S.; Thavendiranathan, P.; Thomas, J.D.; Weissman, N.J.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Ran, H.; Aschauer, S.; Binder, C.; Mascherbauer, J.; Lang, I.; Hengstenberg, C.; Goliasch, G.; Binder, T. Visual assessment of right ventricular function by echocardiography: How good are we? Int. J. Cardiovasc. Imaging 2019, 35, 2001–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goliasch, G.; Bartko, P.E.; Pavo, N.; Neuhold, S.; Wurm, R.; Mascherbauer, J.; Lang, I.M.; Strunk, G.; Hülsmann, M. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. Eur. Heart J. 2018, 39, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bartko, P.E.; Arfsten, H.; Heitzinger, G.; Pavo, N.; Toma, A.; Strunk, G.; Hengstenberg, C.; Hülsmann, M.; Goliasch, G. A Unifying Concept for the Quantitative Assessment of Secondary Mitral Regurgitation. J. Am. Coll. Cardiol. 2019, 73, 2506–2517. [Google Scholar] [CrossRef] [PubMed]
- Bannehr, M.; Kahn, U.; Liebchen, J.; Okamoto, M.; Hähnel, V.; Georgi, C.; Dworok, V.; Edlinger, C.; Lichtenauer, M.; Kücken, T.; et al. Right ventricular longitudinal strain predicts survival in patients with functional tricuspid regurgitation. Can. J. Cardiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Bartko, P.E.; Arfsten, H.; Frey, M.K.; Heitzinger, G.; Pavo, N.; Cho, A.; Strunk, G.; Hengstenberg, C.; Hülsmann, M.; Goliasch, G.; et al. Natural History of Functional Tricuspid Regurgitation: Implications of Quantitative Doppler Assessment. JACC Cardiovasc. Imaging 2019, 12, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; König, A.; Geller, W.; Dannenberg, V.; Winter, M.P.; Binder, T.; Hengstenberg, C.; Mascherbauer, J.; Goliasch, G. Severe tricuspid regurgitation: Prognostic role of right heart remodelling and pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.F.; Prihadi, E.A.; van der Bijl, P.; Goedemans, L.; Mertens, B.J.A.; Gursoy, E.; van Genderen, O.S.; Marsan, N.A.; Delgado, V.; Bax, J.J. Prognostic Implications of Right Ventricular Remodeling and Function in Patients with Significant Secondary Tricuspid Regurgitation. Circulation 2019, 140, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Addetia, K.; Muraru, D.; Badano, L.P.; Lang, R.M. New Directions in Right Ventricular Assessment Using 3-Dimensional Echocardiography. JAMA Cardiol. 2019, 4, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Mascherbauer, J. Improvement in nutritional status—A determinant of successful transcatheter tricuspid valve repair? Eur. J. Heart Fail. 2020. [Google Scholar] [CrossRef] [PubMed]
Total | 2-Year Survivors | 2-Year Non-Survivors | p-Value | |
---|---|---|---|---|
Number of patients, n (%) | 220 (100) | 157 (71) | 63 (29) | |
Age, years (IQR) | 69 (52–79) | 66 (50–76) | 77 (63–82) | <0.001 |
Female sex, n (IQR) | 132 (60) | 99 (63) | 33 (52) | 0.132 |
Creatinine, mg/dL (IQR) | 0.97 (0.8–1.3) | 0.93 (0.77–1.15) | 1.2 (0.9–1.6) | <0.001 |
NYHA class, n (%) | ||||
I, n (IQR) II, n (IQR) III, n (IQR) IV, n (IQR) | 122 (56) 24 (11) 33 (15) 9 (4) | 93 (60) 17 (11) 24 (16) 6 (4) | 29 (45) 7 (11) 9 (14) 3 (5) | 0.40 |
NT-proBNP, pg/mL (IQR) | 1910 (856–3815) | 1446 (665–2718) | 3146 (1914–5673) | <0.001 |
Cardiovascular comorbidities | ||||
CAD, n (%) | 61 (28) | 42 (27) | 19 (30) | 0.83 |
DM, n (%) | 43 (20) | 32 (20) | 11 (18) | 0.45 |
HTN, n (%) | 129 (59) | 87 (55) | 42 (67) | 0.27 |
Atrial fibrillation, n (%) | 107 (49) | 76 (48) | 31 (49) | 0.70 |
Cardiac dimensions | ||||
RV size, mm (±SD) | 45 (±9.4) | 45 (±9.6) | 47 (±8.7) | 0.17 |
RA size, mm (± SD) | 68 (±9.7) | 68 (±9.5) | 68 (±10.5) | 0.87 |
LV size, mm (±SD) | 39 (±7) | 39 (±7) | 38 (±6.8) | 0.44 |
LA size, mm (IQR) | 60 (55–68) | 60 (55–68) | 60 (54–69) | 0.8 |
Pulmonary hypertension | ||||
TR Vmax, m/s (IQR) | 3.7 (3.1–4.5) | 3.6 (3–4.4) | 4 (3.2–4.6) | 0.26 |
sPAP, mmHg (IQR) | 70 (53–96) | 65 (51–95) | 77 (59–100) | 0.16 |
Tricuspid regurgitation | ||||
VC, mm (IQR) | 10 (8–12) | 9.5 (8–11) | 11 (8–12) | 0.049 |
EROA, cm2 (IQR) | 0.4 (0.25–0.54) | 0.4 (0.28–0.55) | 0.37 (0.21–0.54) | 0.14 |
RegV, mL (IQR) | 44 (34–60) | 45 (35–63) | 43 (29–58) | 0.07 |
Right ventricular function | ||||
TAPSE, mm (IQR) | 19 (15–22) | 19 (16–23) | 17 (14–21) | 0.048 |
FAC, % (IQR) | 42 (30–52) | 44 (30–52) | 40 (28–50) | 0.12 |
S’, cm/s (IQR) | 11 (8.5–12) | 11 (9–13) | 9 (8–12) | 0.72 |
GLS-RVFW, % (IQR) | −20 (−11–(−27)) | −21 (−11–(−28)) | −17 (−12–(−26)) | 0.49 |
RVF reduced (visual assessment), n (%) | 111 (50.5) | 70 (45) | 41 (65) | 0.035 |
FAC ≥ 35%, n (%) | 129 (58.6) | 96 (61) | 33 (52) | 0.93 |
TAPSE ≥ 17 mm, n (%) | 131 (59.5) | 100 (64) | 31 (49) | 0.33 |
TAPSE (Cutoff 17 mm) | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | |||||||
Increasing Age | 1.033 | 1.016 | 1.051 | <0.001 | 1.043 | 1.021 | 1.067 | <0.001 |
Female sex | 1.064 | 0.648 | 1.748 | 0.81 | 0.881 | 0.459 | 1.69 | 0.703 |
Creatinine | 1.632 | 1.358 | 1.96 | <0.001 | 2.175 | 1.511 | 3.13 | <0.001 |
TR-Vmax (continuous) | 1.144 | 0.876 | 1.493 | 0.32 | 1.268 | 0.888 | 1.81 | 0.19 |
RV diameter | 1.017 | 0.991 | 1.044 | 0.19 | 1.046 | 1.006 | 1.089 | 0.025 |
RA diameter | 1.0 | 0.975 | 1.026 | 0.97 | 0.974 | 0.94 | 1.01 | 0.15 |
TAPSE ≥ 17 mm | 0.741 | 0.426 | 1.287 | 0.29 | 0.75 | 0.396 | 1.421 | 0.38 |
TAPSE (cutoff 19 mm) | HR | 95% CI | p-value | HR | 95% CI | p-value | ||
Univariate analysis | Multivariate analysis | |||||||
Increasing Age | 1.033 | 1.016 | 1.051 | <0.001 | 1.041 | 1.019 | 1.063 | <0.001 |
Female sex | 1.064 | 0.648 | 1.748 | 0.81 | 0.842 | 0.442 | 1.607 | 0.6 |
Creatinine | 1.632 | 1.358 | 1.96 | <0.001 | 2.131 | 1.48 | 3.068 | <0.001 |
TR-Vmax (continuous) | 1.144 | 0.876 | 1.493 | 0.32 | 1.225 | 0.865 | 1.736 | 0.25 |
RV diameter | 1.017 | 0.991 | 1.044 | 0.19 | 1.045 | 1.004 | 1.087 | 0.029 |
RA diameter | 1.0 | 0.975 | 1.026 | 0.97 | 0.978 | 0.944 | 1.012 | 0.20 |
TAPSE ≥19 mm | 0.512 | 0.296 | 0.886 | 0.017 | 0.526 | 0.286 | 0.968 | 0.039 |
FAC (cutoff 35%) | ||||||||
Univariate analysis | Multivariate analysis | |||||||
Increasing Age | 1.033 | 1.016 | 1.051 | <0.001 | 1.05 | 1.026 | 1.076 | <0.001 |
Female sex | 1.064 | 0.648 | 1.748 | 0.81 | 0.724 | 0.369 | 1.42 | 0.35 |
Creatinine | 1.632 | 1.358 | 1.96 | <0.001 | 2.49 | 1.725 | 3.594 | <0.001 |
TR-Vmax (continuous) | 1.144 | 0.876 | 1.493 | 0.32 | 1.37 | 0.936 | 2.0 | 0.11 |
RV diameter | 1.017 | 0.991 | 1.044 | 0.19 | 1.049 | 1.004 | 1.097 | 0.032 |
RA diameter | 1.0 | 0.975 | 1.026 | 0.97 | 0.974 | 0.94 | 1.008 | 0.13 |
FAC ≥35% | 0.944 | 0.527 | 1.689 | 0.85 | 0.845 | 0.383 | 1.867 | 0.68 |
FAC (cutoff 42%) | ||||||||
Univariate analysis | Multivariate analysis | |||||||
Increasing Age | 1.033 | 1.016 | 1.051 | <0.001 | 1.054 | 1.028 | 1.08 | <0.001 |
Female sex | 1.064 | 0.648 | 1.748 | 0.81 | 0.737 | 0.372 | 1.458 | 0.38 |
Creatinine | 1.632 | 1.358 | 1.96 | <0.001 | 2.336 | 1.62 | 3.367 | <0.001 |
TR-Vmax (continuous) | 1.144 | 0.876 | 1.493 | 0.32 | 1.208 | 0.813 | 1.793 | 0.35 |
RV diameter | 1.017 | 0.991 | 1.044 | 0.19 | 1.041 | 0.997 | 1.087 | 0.07 |
RA diameter | 1.0 | 0.975 | 1.026 | 0.97 | 0.974 | 0.94 | 1.01 | 0.15 |
FAC ≥42% | 0.528 | 0.299 | 0.931 | 0.027 | 0.495 | 0.222 | 1.103 | 0.08 |
Eyeballing | ||||||||
Univariate analysis | Multivariate analysis | |||||||
Increasing Age | 1.033 | 1.016 | 1.051 | <0.001 | 1.051 | 1.027 | 1.075 | <0.001 |
Female sex | 1.064 | 0.648 | 1.748 | 0.81 | 0.858 | 0.454 | 1.619 | 0.64 |
Creatinine | 1.632 | 1.358 | 1.96 | <0.001 | 2.043 | 1.424 | 2.931 | <0.001 |
TR-Vmax (continuous) | 1.144 | 0.876 | 1.493 | 0.32 | 1.143 | 0.78 | 1.673 | 0.49 |
RV diameter | 1.017 | 0.991 | 1.044 | 0.19 | 1.026 | 0.983 | 1.071 | 0.24 |
RA diameter | 1.0 | 0.975 | 1.026 | 0.97 | 0.97 | 0.936 | 1.005 | 0.09 |
Eyeballing | 1.341 | 1.045 | 1.722 | 0.021 | 1.631 | 1.101 | 2.416 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, M.; Dannenberg, V.; König, A.; Geller, W.; Binder, T.; Hengstenberg, C.; Goliasch, G. Prognostic Value of Echocardiographic Right Ventricular Function Parameters in the Presence of Severe Tricuspid Regurgitation. J. Clin. Med. 2021, 10, 2266. https://doi.org/10.3390/jcm10112266
Schneider M, Dannenberg V, König A, Geller W, Binder T, Hengstenberg C, Goliasch G. Prognostic Value of Echocardiographic Right Ventricular Function Parameters in the Presence of Severe Tricuspid Regurgitation. Journal of Clinical Medicine. 2021; 10(11):2266. https://doi.org/10.3390/jcm10112266
Chicago/Turabian StyleSchneider, Matthias, Varius Dannenberg, Andreas König, Welf Geller, Thomas Binder, Christian Hengstenberg, and Georg Goliasch. 2021. "Prognostic Value of Echocardiographic Right Ventricular Function Parameters in the Presence of Severe Tricuspid Regurgitation" Journal of Clinical Medicine 10, no. 11: 2266. https://doi.org/10.3390/jcm10112266
APA StyleSchneider, M., Dannenberg, V., König, A., Geller, W., Binder, T., Hengstenberg, C., & Goliasch, G. (2021). Prognostic Value of Echocardiographic Right Ventricular Function Parameters in the Presence of Severe Tricuspid Regurgitation. Journal of Clinical Medicine, 10(11), 2266. https://doi.org/10.3390/jcm10112266