Accelerated Corneal Endothelial Cell Loss after Phacoemulsification in Patients with Mildly Low Endothelial Cell Density
Abstract
:1. Introduction
2. Patients and Methods
Ethnic Declaration and Participants
3. Surgical Procedure
4. Ophthalmic Examinations
5. Statistical Analysis
6. Results
7. Demographic and Clinical Characteristics of the Preoperative Parameters
8. Intraoperative Parameters and Complications
9. Postoperative Outcomes of HCEC
10. Factors Associated with HCEC Loss after Phacoemulsification
11. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, R.R.A.; Minassian, D.C.; Dart, J.K.G.; Rosen, P.; Kaushal, S.; Wingate, N. Effect of cataract surgery on the corneal endothelium: Modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology 2004, 111, 679–685. [Google Scholar] [CrossRef]
- Traish, A.S.; Colby, K.A. Approaching Cataract Surgery in Patients with Fuchs’ Endothelial Dystrophy. Int. Ophthalmol. Clin. 2010, 50, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Yoshida, M.; Manabe, S.-I.; Hirata, A. Cataract surgery in eyes with low corneal endothelial cell density. J. Cataract Refract. Surg. 2011, 37, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, K.; Yamaguchi, T.; Hotta, K.; Satake, Y.; Konomi, K.; Den, S.; Shimazaki, J. Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. J. Cataract Refract. Surg. 2011, 37, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Mencucci, R.; Ponchietti, C.; Virgili, G.; Giansanti, F.; Menchini, U. Corneal endothelial damage after cataract surgery: Microincision versus standard technique. J. Cataract Refract. Surg. 2006, 32, 1351–1354. [Google Scholar] [CrossRef]
- Baradaran-Rafii, A.; Rahmati-Kamel, M.; Eslani, M.; Kiavash, V.; Karimian, F. Effect of hydrodynamic parameters on corneal endothelial cell loss after phacoemulsification. J. Cataract Refract. Surg. 2009, 35, 732–737. [Google Scholar] [CrossRef]
- Cameron, M.D.; Poyer, J.F.; Aust, S.D. Identification of free radicals produced during phacoemulsification. J. Cataract Refract. Surg. 2001, 27, 463–470. [Google Scholar] [CrossRef]
- Mahdy, M.A.S.; Eid, M.Z.; Mohammed, M.A.-B.; Hafez, A.; Bhatia, J. Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clin. Ophthalmol. 2012, 6, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F. Risk factors for corneal endothelial injury during phacoemulsification. J. Cataract Refract. Surg. 1996, 22, 1079–1084. [Google Scholar] [CrossRef]
- Walkow, T.; Anders, N.; Klebe, S. Endothelial cell loss after phacoemulsification: Relation to preoperative and intraoperative parameters. J. Cataract Refract. Surg. 2000, 26, 727–732. [Google Scholar] [CrossRef]
- O’Brien, P.D.; Fitzpatrick, P.; Kilmartin, D.J.; Beatty, S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J. Cataract. Refract. Surg. 2004, 30, 839–843. [Google Scholar] [CrossRef]
- Ko, Y.C.; Liu, C.J.; Lau, L.I.; Wu, C.W.; Chou, J.C.; Hsu, W.M. Factors related to corneal endothelial damage after phacoemulsification in eyes with occludable angles. J. Cataract Refract. Surg. 2008, 34, 46–51. [Google Scholar] [CrossRef]
- Su, W.-W.; Chen, P.Y.-F.; Hsiao, C.-H.; Chen, H.S.-L. Primary phacoemulsification and intraocular lens implantation for acute primary angle-closure. PLoS ONE 2011, 6, e20056. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-J.; Sun, C.-C.; Chen, H.-C. Cataract surgery in patients with corneal opacities. BMC Ophthalmol. 2018, 18, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnawska, D.; Wylegała, E. Effectiveness of the soft-shell technique in patients with Fuchs’ endothelial dystrophy. J. Cataract Refract. Surg. 2007, 33, 1907–1912. [Google Scholar] [CrossRef]
- Tsao, Y.-T.; Wu, W.-C.; Chen, K.-J.; Yeh, L.-K.; Hwang, Y.-S.; Hsueh, Y.-J.; Chen, H.-C.; Cheng, C.-M. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health. Bioeng. Transl. Med. 2020, 6, e10199. [Google Scholar] [CrossRef]
- Schulze-Bonsel, K.; Feltgen, N.; Burau, H.; Hansen, L.; Bach, M. Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1236–1240. [Google Scholar] [CrossRef]
- Holladay, J.T. Proper method for calculating average visual acuity. J. Refract. Surg. 1997, 13, 388–391. [Google Scholar] [CrossRef]
- Ianchulev, T.; Lane, S.; Masis, M.; Lass, J.H.; Benetz, B.A.; Menegay, H.J.; Price, F.W.; Lin, S. Corneal Endothelial Cell Density and Morphology After Phacoemulsification in Patients with Primary Open-Angle Glaucoma and Cataracts: 2-Year Results of a Randomized Multicenter Trial. Cornea 2019, 38, 325–331. [Google Scholar] [CrossRef]
- Giasson, C.J.; Solomon, L.D.; Polse, K.A. Morphometry of corneal endothelium in patients with corneal guttata. Ophthalmology 2007, 114, 1469–1475. [Google Scholar] [CrossRef]
- Ho, J.W.; Afshari, N.A. Advances in cataract surgery: Preserving the corneal endothelium. Curr. Opin. Ophthalmol. 2015, 26, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.B.; Lyu, B.; Yim, H.B.; Lee, N.Y. Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. J. Ophthalmol. 2015, 2015, 210716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogate, P.; Ambardekar, P.; Kulkarni, S.; Deshpande, R.; Joshi, S.; Deshpande, M. Comparison of endothelial cell loss after cataract surgery: Phacoemulsification versus manual small-incision cataract surgery: Six-week results of a randomized control trial. J. Cataract Refract. Surg. 2010, 36, 247–253. [Google Scholar] [CrossRef]
- Choi, J.Y.; Han, Y.K. Long-term (≥10 years) results of corneal endothelial cell loss after cataract surgery. Can. J. Ophthalmol. 2019, 54, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Oshika, T.; Bissen-Miyajima, H.; Fujita, Y.; Hayashi, K.; Mano, T.; Miyata, K.; Sugita, T.; Taira, Y. Prospective randomized comparison of DisCoVisc and Healon5 in phacoemulsification and intraocular lens implantation. Eye 2010, 24, 1376–1381. [Google Scholar] [CrossRef]
- Carlson, K.H.; Bourne, W.M.; McLaren, J.W.; Brubaker, R.F. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp. Eye Res. 1988, 47, 27–41. [Google Scholar] [CrossRef]
- Galgauskas, S.; Norvydaitė, D.; Krasauskaitė, D.; Stech, S.; Ašoklis, R.S. Age-related changes in corneal thickness and endothelial characteristics. Clin. Interv. Aging 2013, 8, 1445–1450. [Google Scholar] [CrossRef] [Green Version]
- Schultz, R.O.; Glasser, D.B.; Matsuda, M.; Yee, R.W.; Edelhauser, H.F. Response of the corneal endothelium to cataract surgery. Arch. Ophthalmol. 1986, 104, 1164–1169. [Google Scholar] [CrossRef]
- Tsorbatzoglou, A.; Kertész, K.; Módis, L.; Németh, G.; Máth, J.; Berta, A. Corneal endothelial function after phacoemulsification using the fluid-based system compared to conventional ultrasound technique. Eye 2007, 21, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a ten-year period. Investig. Ophthalmol. Vis. Sci. 1997, 38, 779–782. [Google Scholar]
- Lee, C.-Y.; Chen, H.-T.; Hsueh, Y.-J.; Chen, H.-C.; Huang, C.-C.; Meir, Y.-J.J.; Cheng, C.-M.; Wu, W.-C. Perioperative topical ascorbic acid for the prevention of phacoemulsification-related corneal endothelial damage: Two case reports and review of literature. World J. Clin. Cases 2019, 7, 642–649. [Google Scholar] [CrossRef]
- Hsiao, F.-C.; Chen, H.-T.; Chen, K.-J.; Hsueh, Y.-J.; Meir, Y.-J.J.; Lu, T.-T.; Cheng, C.-M.; Wu, W.-C.; Chen, H.-C. Accelerated corneal endothelial cell loss in two patients with granulomatosis with polyangiitis following phacoemulsification. BMC Ophthalmol. 2020, 20, 480. [Google Scholar] [CrossRef]
- Fujimoto, H.; Setoguchi, Y.; Kiryu, J. The ROCK Inhibitor Ripasudil Shows an Endothelial Protective Effect in Patients with Low Corneal Endothelial Cell Density After Cataract Surgery. Transl. Vis. Sci. Technol. 2021, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Kwon, H.G.; Joo, C.K. Microcoaxial cataract surgery outcomes: Comparison of 1.8 mm system and 2.2 mm system. J. Cataract Refract. Surg. 2009, 35, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Dewan, T.; Malik, P.K.; Kumari, R. Comparison of effective phacoemulsification time and corneal endothelial cell loss using 2 ultrasound frequencies. J. Cataract Refract. Surg. 2019, 45, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Oum, B.S.; Choi, H.Y.; Lee, J.E.; Cho, B.M. Differences in corneal thickness and corneal endothelium related to duration in Diabetes. Eye 2006, 20, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Lutty, G.A. Effects of Diabetes on the Eye. Investig. Ophthalmol. Vis. Sci. 2013, 54, ORSF81–ORSF87. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Chen, X.; Zhang, X.; Tang, Q.; Liu, S.; Yao, K. Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. Sci. Rep. 2017, 7, 14128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitz, L.; Reich, J.; Hodge, C. Posterior capsular complication rates with femtosecond laser-assisted cataract surgery: A consecutive comparative cohort and literature review. Clin. Ophthalmol. 2018, 12, 1701–1706. [Google Scholar] [CrossRef] [Green Version]
Parameter | Total | Chi-Squared Test p Value + | Group A | Group B | Group C | One-Way ANOVA p Value |
---|---|---|---|---|---|---|
Participant number | 352 | 29 | 71 | 252 | ||
Age (year) | ||||||
Mean ± SD | 69.0 ± 9.9 | 0.003 * | 68.9 ± 10.0 | 69.6 ± 10.1 | 68.9 ± 9.9 | 0.841 |
Range | 41–90 | 48–86 | 46–87 | 41–90 | N/A | |
Gender | 0.661 | |||||
Male | 143 (40.6%) | 9 (31.0%) | 26 (36.6%) | 108 (42.9%) | 0.352 | |
Female | 209 | 20 | 45 | 114 | N/A | |
Eye | 0.416 | |||||
Right | 181 (51.4%) | 17 (58.1%) | 39 (54.9%) | 125 (49.6%) | 0.528 | |
Left | 169 | 11 | 31 | 127 | N/A | |
Bilateral | 2 | 1 | 1 | 0 | ||
Preoperative IOP (mmHg) | ||||||
Mean ± SD | 15.0 ± 4.0 | 0.365 | 15.4 ± 4.2 | 14.6 ± 3.3 | 15.0 ± 4.1 | 0.570 |
Preoperative VA | ||||||
Mean logMAR ± SD | 1.05 ± 0.47 | 0.048 * | 0.93 ± 0.33 | 1.05 ± 0.45 | 1.05 ± 0.49 | 0.412 |
Cataract grade (%) | 0.005 * | 0.198 | ||||
I | 4 (1.1%) | 0 | 1 (1.4%) | 3 (1.2%) | ||
II | 320 (90.9%) | 29 (100%) | 61 (85.9%) | 230 (91.3%) | ||
III | 28 (8.0%) | 0 | 9 (12.7%) | 19 (7.5%) | ||
ACD (mm) | 2.78 ± 0.29 | 0.160 | 2.76 ± 0.38 | 2.81 ± 0.23 | 2.77 ± 0.30 | 0.551 |
Comorbidities | ||||||
Glaucoma | 12 (3.4%) | 0.766 | 0 (0%) | 3 (4.2%) | 9 (3.6%) | 0.555 |
Corneal dystrophy | 32 (9.1%) | 0.182 | 24(82.1%) | 4 (5.6%) | 4 (1.6%) | <0.001 * |
Hypertension | 133 (37.8%) | 0.326 | 11 (36.7%) | 27 (38.0%) | 95 (37.7%) | 0.999 |
Diabetes mellitus | 107(30.4%) | 0.923 | 12 (40.0%) | 23 (32.4%) | 72 (28.6%) | 0.338 |
Preoperative HCEC status | ||||||
Cell density ± SD(cell/mm2) | 2268.7 ± 679.5 | <0.001 * | 814.2 ± 119.7 | 1512.0 ± 271.4 | 2646.1 ± 288.2 | <0.001 * |
CV % | 34.2 ± 11.1 | 0.650 | 40.8 ± 13.9 | 36.4 ± 11.8 | 32.8 ± 10.2 | <0.001 * |
HEX % | 63.8 ± 10.0 | 0.215 | 58.4 ± 14.6 | 60.3 ± 11.9 | 65.3 ± 8.1 | <0.001 * |
CCT (μm) Mean ± SD | 553.3 ± 34.0 | 0.981 | 557.8 ± 35.7 | 557.6 ± 36.1 | 551.0 ± 33.7 | 0.269 |
Parameters | Total | Chi-Square Test p Value + | Group A | Group B | Group C | One-Way ANOVA p Value |
---|---|---|---|---|---|---|
Participant number | 352 | 29 | 71 | 252 | ||
Time spent (s) | ||||||
Mean OP time | 1437.2 ± 563.1 | 0.043 * | 1553.3 ± 340.3 | 1417.1 ± 372.2 | 1429.5 ± 624.5 | 0.505 |
Mean Phaco time | 109.7 ± 77.3 | 0.001 * | 108.9 ± 43.7 | 102.6 ± 62.3 | 111.9 ± 83.9 | 0.697 |
Phaco energy (mJ) | 26.1 ± 20.0 | 21.8 ± 10.1 | 28.4 ± 17.4 | 26.0 ± 21.5 | 0.323 | |
Mean ± SD | <0.001 * | |||||
PC rupture (%) | 2 (0.6%) | 1 (3.4%) | 0 (0.0%) | 1 (0.4%) |
Characteristics | Total | Group A | Group B | Group C | p Value |
---|---|---|---|---|---|
Participant number | 352 | 29 | 71 | 252 | |
Postoperative HCEC status | |||||
Cell density ± SD cell/mm2 | 1882 ± 691.8 | 675.4 ± 112.3 | 1063.5 ± 179.2 | 2251.5 ± 405.1 | <0.001 * |
Cell variance ± SD | 37.5 ± 10.6 | 43.1 ± 13.1 | 39.5 ± 11.5 | 36.3 ± 9.7 | <0.001 * |
Cell hexagonality ± SD | 59.2 ± 11.7 | 54.5 ± 15.3 | 56.0 ± 11.9 | 60.7 ± 10.9 | 0.001 * |
CCT (μm) ± SD | 562.7± 33.9 | 558.8± 35.9 | 557.6± 36.1 | 551.5± 33.0 | 0.133 |
a ECD change (%) ± SD | −18.2 ± 12.3 | −19.9 ± 5.4 | −28.9 ± 9.2 | −15.0 ± 12.0 | <0.001 * |
b HCEC CV change | 3.3 ± 11.0 | 2.7 ± 13.2 | 3.1 ± 11.4 | 3.4 ± 10.7 | 0.941 |
c HCEC hexa. change | −4.5 ± 11.1 | −3.9 ± 17.2 | −4.4 ± 10.5 | −4.7 ± 10.5 | 0.937 |
CCT change (μm) | |||||
Mean ± SD | 9.4 ± 17.7 | 13.8 ± 14.4 | 8.3 ± 17.5 | 9.2 ± 18.0 | 0.346 |
First month postoperative logMAR change, Mean ± SD (n) | −0.58 ± 0.54 (327) | −0.54 ± 0.45 (28) | −0.52 ± 0.51 (66) | −0.60 ± 0.56 (234) | 0.557 |
Coefficients a | |||||||
---|---|---|---|---|---|---|---|
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
B | Std. Error | Beta | Tolerance | VIF | |||
Constant | −13.420 | 5.167 | −2.597 | 0.010 | |||
Age | −0.190 | 0.062 | −0.153 | −3.052 | 0.002 | 0.979 | 1.021 |
Phaco energy | −0.001 | 0.002 | −0.024 | −0.479 | 0.632 | 0.991 | 1.009 |
Preoperative logMAR | −4.495 | 1.317 | −0.171 | −3.412 | 0.001 | 0.978 | 1.022 |
Preoperative ECD | 0.006 | 0.001 | 0.318 | 6.374 | 0.000 | 0.986 | 1.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-C.; Huang, C.-W.; Yeh, L.-K.; Hsiao, F.-C.; Hsueh, Y.-J.; Meir, Y.-J.J.; Chen, K.-J.; Cheng, C.-M.; Wu, W.-C. Accelerated Corneal Endothelial Cell Loss after Phacoemulsification in Patients with Mildly Low Endothelial Cell Density. J. Clin. Med. 2021, 10, 2270. https://doi.org/10.3390/jcm10112270
Chen H-C, Huang C-W, Yeh L-K, Hsiao F-C, Hsueh Y-J, Meir Y-JJ, Chen K-J, Cheng C-M, Wu W-C. Accelerated Corneal Endothelial Cell Loss after Phacoemulsification in Patients with Mildly Low Endothelial Cell Density. Journal of Clinical Medicine. 2021; 10(11):2270. https://doi.org/10.3390/jcm10112270
Chicago/Turabian StyleChen, Hung-Chi, Chen-Wei Huang, Lung-Kun Yeh, Fang-Chi Hsiao, Yi-Jen Hsueh, Yaa-Jyuhn James Meir, Kuan-Jen Chen, Chao-Min Cheng, and Wei-Chi Wu. 2021. "Accelerated Corneal Endothelial Cell Loss after Phacoemulsification in Patients with Mildly Low Endothelial Cell Density" Journal of Clinical Medicine 10, no. 11: 2270. https://doi.org/10.3390/jcm10112270
APA StyleChen, H. -C., Huang, C. -W., Yeh, L. -K., Hsiao, F. -C., Hsueh, Y. -J., Meir, Y. -J. J., Chen, K. -J., Cheng, C. -M., & Wu, W. -C. (2021). Accelerated Corneal Endothelial Cell Loss after Phacoemulsification in Patients with Mildly Low Endothelial Cell Density. Journal of Clinical Medicine, 10(11), 2270. https://doi.org/10.3390/jcm10112270