Diabetes, Albuminuria and the Kidney—Brain Axis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Studies on Albuminuria, Cognitive Impairment and Dementia in the General Population
3.2. Albuminuria, Mild CKD, Cognitive Impairment and Dementia in T2D
3.3. End-Stage Kidney Disease, Dialysis and Cognitive Impairment
3.4. Pathophysiology and Mechanisms
3.4.1. Similarities between Brain and Kidney
3.4.2. Albuminuria as a Marker of Endothelial Dysfunction
3.4.3. CKD and Neurodegenerative Diseases
3.5. Treatment Strategies
Author Contributions
Funding
Conflicts of Interest
References
- Zeisel, J.; Bennett, K.; Fleming, R. World Alzheimer Report 2020—Design Dignity Dementia: Dementia-Related Design and the Built Environment; Alzheimer’s Disease International: London, UK, 2020; Volume 1, p. 248. [Google Scholar]
- Fiest, K.M.; Jetté, N.; Roberts, J.I.; Maxwell, C.J.; Smith, E.E.; Black, S.E.; Blaikie, L.; Cohen, A.; Day, L.; Holroyd-Leduc, J.; et al. The Prevalence and Incidence of Dementia: A Systematic Review and Meta-Analysis. Can. J. Neurol. Sci. 2016, 43, S3–S50. [Google Scholar] [CrossRef] [PubMed]
- Fratiglioni, L.; Qiu, C. Prevention of Cognitive Decline in Ageing: Dementia as the Target, Delayed Onset as the Goal. Lancet Neurol. 2011, 10, 778–779. [Google Scholar] [CrossRef]
- Elias, M.F.; Elias, P.K.; Seliger, S.L.; Narsipur, S.S.; Dore, G.A.; Robbins, M.A. Chronic Kidney Disease, Creatinine and Cognitive Functioning. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2009, 24, 2446–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etgen, T.; Chonchol, M.; Förstl, H.; Sander, D. Chronic Kidney Disease and Cognitive Impairment: A Systematic Review and Meta-Analysis. Am. J. Nephrol. 2012, 35, 474–482. [Google Scholar] [CrossRef]
- Subclinical Vascular Disease of the Brain in Dialysis Patients—Abstract—Europe PMC. Available online: https://europepmc.org/article/med/17591520 (accessed on 17 January 2021).
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 121–132. [Google Scholar] [CrossRef]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R. For the UKPDS Study Group Risk Factors for Renal Dysfunction in Type 2 Diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Scheppach, J.B.; Coresh, J.; Wu, A.; Gottesman, R.F.; Mosley, T.H.; Knopman, D.S.; Grams, M.E.; Sharrett, A.R.; Koton, S. Albuminuria and Estimated GFR as Risk Factors for Dementia in Midlife and Older Age: Findings From the ARIC Study. Am. J. Kidney Dis. 2020, 76, 775–783. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hata, J.; Furuta, Y.; Hirabayashi, N.; Ohara, T.; Yoshida, D.; Hirakawa, Y.; Nakano, T.; Kitazono, T.; Ninomiya, T. Association of Albuminuria With White Matter Hyperintensities Volume on Brain Magnetic Resonance Imaging in Elderly Japanese—The Hisayama Study. Circ. J. Off. J. Jpn. Circ. Soc. 2020, 84, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Salinero-Fort, M.A.; Mostaza-Prieto, J.M.; Lahoz-Rallo, C.; Vicente Díez, J.I.; Cárdenas-Valladolid, J. Population-Based Cross-Sectional Study of 11 645 Spanish Nonagenarians with Type 2 Diabetes Mellitus: Cardiovascular Profile, Cardiovascular Preventive Therapies, Achievement Goals and Sex Differences. BMJ Open 2019, 9, e030344. [Google Scholar] [CrossRef] [Green Version]
- Gabin, J.M. Moderately Increased Albuminuria, Chronic Kidney Disease and Incident Dementia: The HUNT Study. BMC Nephrol. 2019, 10, 261. [Google Scholar] [CrossRef]
- Wargny, M.; Gallini, A.; Hanaire, H.; Nourhashemi, F.; Andrieu, S.; Gardette, V. Diabetes Care and Dementia Among Older Adults: A Nationwide 3-Year Longitudinal Study. J. Am. Med. Dir. Assoc. 2018, 19, 601–606. [Google Scholar] [CrossRef]
- Takae, K.; Hata, J.; Ohara, T.; Yoshida, D.; Shibata, M.; Mukai, N.; Hirakawa, Y.; Kishimoto, H.; Tsuruya, K.; Kitazono, T.; et al. Albuminuria Increases the Risks for Both Alzheimer Disease and Vascular Dementia in Community-Dwelling Japanese Elderly: The Hisayama Study. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, C.B.; Oz Gul, O.; Cander, S.; Eroglu, A.; Hartavi, M.; Keni, N.; Bayindir, A.; Ersoy, C.; Ertürk, E.; Tuncel, E.; et al. Relationship between Glycemic Control, Microalbuminuria and Cognitive Functions in Elderly Type 2 Diabetic Patients. Ren. Fail. 2014, 36, 1258–1262. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.; Rothwell, P.M. Disentangling the Multiple Links between Renal Dysfunction and Cerebrovascular Disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, S.; Adachi, H.; Enomoto, M.; Fukami, A.; Kumagai, E.; Nakamura, S.; Nohara, Y.; Morikawa, N.; Nakao, E.; Sakaue, A.; et al. Impact of Cystatin C and Microalbuminuria on Cognitive Impairment in the Population of Community-Dwelling Japanese. Atherosclerosis 2017, 265, 71–77. [Google Scholar] [CrossRef]
- Higuchi, M.; Chen, R.; Abbott, R.D.; Bell, C.; Launer, L.; Ross, G.W.; Petrovitch, H.; Masaki, K. Mid-Life Proteinuria and Late-Life Cognitive Function and Dementia in Elderly Men: The Honolulu-Asia Aging Study. Alzheimer Dis. Assoc. Disord. 2015, 29, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Dimitriou, N.G.; Karalexi, M.A.; Mihas, C.; Nasothimiou, E.G.; Tousoulis, D.; Tsivgoulis, G.; Petridou, E.T. Albuminuria in Association with Cognitive Function and Dementia: A Systematic Review and Meta-Analysis. J. Am. Geriatr. Soc. 2017, 65, 1190–1198. [Google Scholar] [CrossRef]
- Barzilay, J.I.; Younes, N.; Pop-Busui, R.; Florez, H.; Seaquist, E.; Falck-Ytter, C.; Luchsinger, J.A. The Cross-Sectional Association of Renal Dysfunction with Tests of Cognition in Middle-Aged Adults with Early Type 2 Diabetes: The GRADE Study. J. Diabetes Complicat. 2020, 35, 107805. [Google Scholar] [CrossRef]
- Ghoshal, S.; Allred, N.D.; Freedman, B.I. The Contribution of Kidney Disease to Cognitive Impairment in Patients with Type 2 Diabetes. Curr. Diabetes Rep. 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Zhan, Y.-F.; Zhuo, Y.-Y.; Yin, D.-Z.; Li, K.-A.; Wang, Y.-F. Brain Atrophy in Middle-Aged Subjects with Type 2 Diabetes Mellitus, with and without Microvascular Complications. J. Diabetes 2018, 10, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, B.I.; Sink, K.M.; Hugenschmidt, C.E.; Hughes, T.M.; Williamson, J.D.; Whitlow, C.T.; Palmer, N.D.; Miller, M.E.; Lovato, L.C.; Xu, J.; et al. Associations of Early Kidney Disease With Brain Magnetic Resonance Imaging and Cognitive Function in African Americans With Type 2 Diabetes Mellitus. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2017, 70, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Blanquisco, L.; Abejero, J.E.; BunoIi, B.; Trajano-Acampado, L.; Cenina, A.; Santiago, D. Factors Associated with Mild Cognitive Impairment among Elderly Filipinos with Type 2 Diabetes Mellitus. J. ASEAN Fed. Endocr. Soc. 2017, 32, 145–150. [Google Scholar] [CrossRef]
- Kawamura, T.; Umemura, T.; Umegaki, H.; Imamine, R.; Kawano, N.; Mase, H.; Mizoguchi, A.; Minatoguchi, M.; Kusama, M.; Kouchi, Y.; et al. Factors Associated with Changes in Brain Atrophy during a Three-Year Observation in Elderly Diabetic Patients: Effect of Renal Impairment on Hippocampal Atrophy. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 55–67. [Google Scholar] [CrossRef]
- Barzilay, J.I.; Morgan, T.M.; Murray, A.M.; Bryan, R.N.; Williamson, J.D.; Schnall, A.; Launer, L.J. Brain MRI Volume Findings in Diabetic Adults With Albuminuria: The ACCORD-MIND Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Deckert, T.; Feldt-Rasmussen, B.; Borch-Johnsen, K.; Jensen, T.; Kofoed-Enevoldsen, A. Albuminuria Reflects Widespread Vascular Damage. Steno Hypothesis. Diabetol. 1989, 32, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Deckers, K.; Camerino, I.; van Boxtel, M.P.J.; Verhey, F.R.J.; Irving, K.; Brayne, C.; Kivipelto, M.; Starr, J.M.; Yaffe, K.; de Leeuw, P.W.; et al. Dementia Risk in Renal Dysfunction: A Systematic Review and Meta-Analysis of Prospective Studies. Neurology 2017, 88, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Sacre, J.W.; Magliano, D.J.; Zimmet, P.Z.; Polkinghorne, K.R.; Chadban, S.J.; Anstey, K.J.; Shaw, J.E. Associations of Chronic Kidney Disease Markers with Cognitive Function: A 12-Year Follow-Up Study. J. Alzheimers Dis. 2019, 70, S19–S30. [Google Scholar] [CrossRef] [Green Version]
- Ekblad, L.L.; Toppala, S.; Johansson, J.K.; Koskinen, S.; Sundvall, J.; Rinne, J.O.; Puukka, P.; Viitanen, M.; Jula, A. Albuminuria and Microalbuminuria as Predictors of Cognitive Performance in a General Population: An 11-Year Follow-Up Study. J. Alzheimers Dis. 2018, 62, 635–648. [Google Scholar] [CrossRef]
- Joosten, H.; Izaks, G.J.; Slaets, J.P.; de Jong, P.E.; Visser, S.T.; Bilo, H.J.; Gansevoort, R.T. Association of Cognitive Function with Albuminuria and EGFR in the General Population. Clin. J. Am. Soc. Nephrol. 2011, 6, 1400–1409. [Google Scholar] [CrossRef]
- Tap, L.; Corsonello, A.; Formiga, F.; Moreno-Gonzalez, R.; Ärnlöv, J.; Carlsson, A.C.; Roller-Wirnsberger, R.; Wirnsberger, G.; Ziere, G.; Freiberger, E.; et al. Is Kidney Function Associated with Cognition and Mood in Late Life? The Screening for CKD among Older People across Europe (SCOPE) Study. BMC Geriatr. 2020, 20, 297. [Google Scholar] [CrossRef]
- Garre-Olmo, J. Epidemiology of Alzheimer’s disease and other dementias. Rev. Neurol. 2018, 66, 377–386. [Google Scholar]
- Jiménez-Balado, J.; Riba-Llena, I.; Pizarro, J.; Palasí, A.; Penalba, A.; Ramírez, C.; Maisterra, O.; Espinel, E.; Ramos, N.; Pujadas, F.; et al. Kidney Function Changes and Their Relation with the Progression of Cerebral Small Vessel Disease and Cognitive Decline. J. Neurol. Sci. 2020, 409, 116635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Roberts, R.O.; Ding, D.; Cha, R.; Guo, Q.; Meng, H.; Luo, J.; Machulda, M.M.; Shane Pankratz, V.; Wang, B.; et al. Diabetes Is Associated with Worse Executive Function in Both Eastern and Western Populations: Shanghai Aging Study and Mayo Clinic Study of Aging. J. Alzheimers Dis. 2015, 47, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Vemuri, P.; Knopman, D.S.; Jack, C.R.; Lundt, E.S.; Weigand, S.D.; Zuk, S.M.; Thostenson, K.B.; Reid, R.I.; Kantarci, K.; Slinin, Y.; et al. Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study. J. Alzheimers Dis. 2017, 55, 1069–1082. [Google Scholar] [CrossRef] [Green Version]
- Seliger, S.L.; Wendell, C.R.; Waldstein, S.R.; Ferrucci, L.; Zonderman, A.B. Renal Function and Long-Term Decline in Cognitive Function: The Baltimore Longitudinal Study of Aging. Am. J. Nephrol. 2015, 41, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Drew, D.A.; Weiner, D.E.; Tighiouart, H.; Duncan, S.; Gupta, A.; Scott, T.; Sarnak, M.J. Cognitive Decline and Its Risk Factors in Prevalent Hemodialysis Patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2017, 69, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Horiuchi, M. Clinical Interaction between Brain and Kidney in Small Vessel Disease. Cardiol. Res. Pract. 2011, 2011, 306189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Rourke, M.F.; Safar, M.E. Relationship between Aortic Stiffening and Microvascular Disease in Brain and Kidney: Cause and Logic of Therapy. Hypertension 2005, 46, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Blanco, P.J.; Muller, L.O.; Spence, J.D. Blood Pressure Gradients in Cerebral Arteries: A Clue to Pathogenesis of Cerebral Small Vessel Disease. Stroke Vasc. Neurol. 2017, 2, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Nagasawa, T.; Abe, M.; Mori, T. Strain Vessel Hypothesis: A Viewpoint for Linkage of Albuminuria and Cerebro-Cardiovascular Risk. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2009, 32, 115–121. [Google Scholar] [CrossRef]
- Vithian, K.; Hurel, S. Microvascular Complications: Pathophysiology and Management. Clin. Med. 2010, 10, 505–509. [Google Scholar] [CrossRef]
- Rensma, S.P.; van Sloten, T.T.; Ding, J.; Sigurdsson, S.; Stehouwer, C.D.A.; Gudnason, V.; Launer, L.J. Type 2 Diabetes, Change in Depressive Symptoms Over Time, and Cerebral Small Vessel Disease: Longitudinal Data of the AGES-Reykjavik Study. Diabetes Care 2020, 43, 1781. [Google Scholar] [CrossRef]
- Barrett, E.J.; Eringa, E.C. The Vascular Contribution to Insulin Resistance: Promise, Proof, and Pitfalls. Diabetes 2012, 61, 3063–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantoni, L. Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small Vessel Disease: Mechanisms and Clinical Implications. Lancet Neurol. 2019, 18. [Google Scholar] [CrossRef]
- Debette, S.; Markus, H.S. The Clinical Importance of White Matter Hyperintensities on Brain Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Balado, J.; Riba-Llena, I.; Abril, O.; Garde, E.; Penalba, A.; Ostos, E.; Maisterra, O.; Montaner, J.; Noviembre, M.; Mundet, X.; et al. Cognitive Impact of Cerebral Small Vessel Disease Changes in Patients With Hypertension. Hypertension 2019, 73, 342–349. [Google Scholar] [CrossRef]
- Stehouwer, C.D.A. Microvascular Dysfunction and Hyperglycemia: A Vicious Cycle with Widespread Consequences. Diabetes 2018, 67, 1729–1741. [Google Scholar] [CrossRef] [Green Version]
- Melsom, T.; Schei, J.; Stefansson, V.T.N.; Solbu, M.D.; Jenssen, T.G.; Mathisen, U.D.; Wilsgaard, T.; Eriksen, B.O. Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2016, 67, 841–850. [Google Scholar] [CrossRef] [Green Version]
- O’Hare, A.M.; Walker, R.; Haneuse, S.; Crane, P.K.; McCormick, W.C.; Bowen, J.D.; Larson, E.B. Relationship between Longitudinal Measures of Renal Function and Onset of Dementia in a Community Cohort of Older Adults. J. Am. Geriatr. Soc. 2012, 60, 2215–2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, S.; Georgakis, M.K.; Chung, J.; Henry, J.Q.A.; Dichgans, M.; Rosand, J.; Malik, R.; Anderson, C.D. Genetic Overlap and Causal Inferences between Kidney Function and Cerebrovascular Disease. Neurology 2020, 94, e2581–e2591. [Google Scholar] [CrossRef]
- Rensma, S.P.; van Sloten, T.T.; Houben, A.J.H.M.; Köhler, S.; van Boxtel, M.P.J.; Berendschot, T.T.J.M.; Jansen, J.F.A.; Verhey, F.R.J.; Kroon, A.A.; Koster, A.; et al. Microvascular Dysfunction Is Associated With Worse Cognitive Performance: The Maastricht Study. Hypertension 2020, 75, 237–245. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular Pathways to Neurodegeneration in Alzheimer’s Disease and Other Disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef]
- Neuwelt, E.A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O’Donnell, M.E.; Povlishock, J.T.; et al. Engaging Neuroscience to Advance Translational Research in Brain Barrier Biology. Nat. Rev. Neurosci. 2011, 12, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; et al. Pericytes Regulate the Blood-Brain Barrier. Nature 2010, 468, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.H.; Miller, S.L.; Castillo-Melendez, M.; Malhotra, A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front. Neurosci. 2020, 13, 1452. [Google Scholar] [CrossRef]
- Faraco, G.; Iadecola, C. Hypertension: A Harbinger of Stroke and Dementia. Hypertension 2013, 62, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.P.; Tuohy, C.; Doody, A.; Jackson, S.; Canavan, R.J.; Slattery, D.; Twomey, P.J.; McKenna, M.J.; le Roux, C.W.; Docherty, N.G. Parallel Assessment of Albuminuria and Plasma STNFR1 in People with Type 2 Diabetes and Advanced Chronic Kidney Disease Provides Accurate Prognostication of the Risks of Renal Decline and Death. Sci. Rep. 2020, 10, 14852. [Google Scholar] [CrossRef]
- Auriel, E.; Kliper, E.; Shenhar-Tsarfaty, S.; Molad, J.; Berliner, S.; Shapira, I.; Ben-Bashat, D.; Shopin, L.; Tene, O.; Rosenberg, G.A.; et al. Impaired Renal Function Is Associated with Brain Atrophy and Poststroke Cognitive Decline. Neurology 2016, 86, 1996–2005. [Google Scholar] [CrossRef]
- Ikram, M.A.; Vernooij, M.W.; Hofman, A.; Niessen, W.J.; van der Lugt, A.; Breteler, M.M. Kidney Function Is Related to Cerebral Small Vessel Disease. Stroke 2008, 39, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Vilar-Bergua, A.; Riba-Llena, I.; Nafria, C.; Bustamante, A.; Llombart, V.; Delgado, P.; Montaner, J. Blood and CSF Biomarkers in Brain Subcortical Ischemic Vascular Disease: Involved Pathways and Clinical Applicability. J. Cereb. Blood Flow Metab. 2016, 36, 55–71. [Google Scholar] [CrossRef]
- Satizabal, C.L.; Zhu, Y.C.; Mazoyer, B.; Dufouil, C.; Tzourio, C. Circulating IL-6 and CRP Are Associated with MRI Findings in the Elderly: The 3C-Dijon Study. Neurology 2012, 78, 720–727. [Google Scholar] [CrossRef]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between Albuminuria, Kidney Function, and Inflammatory Biomarker Profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Fornage, M.; Chiang, Y.A.; O’Meara, E.S.; Psaty, B.M.; Reiner, A.P.; Siscovick, D.S.; Tracy, R.P.; Longstreth, W.T.J. Biomarkers of Inflammation and MRI-Defined Small Vessel Disease of the Brain: The Cardiovascular Health Study. Stroke 2008, 39, 1952–1959. [Google Scholar] [CrossRef] [Green Version]
- Van der Kant, R.; Goldstein, L.S.B.; Ossenkoppele, R. Amyloid-β-Independent Regulators of Tau Pathology in Alzheimer Disease. Nat. Rev. Neurosci. 2020, 21, 21–35. [Google Scholar] [CrossRef]
- Bloom, G.S. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulakis, K.; Pereira, J.B.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.; Lovestone, S.; Simmons, A.; Wahlund, L.O.; et al. Heterogeneous Patterns of Brain Atrophy in Alzheimer’s Disease. Neurobiol. Aging 2018, 65, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Bu, X.-L.; Liu, Y.-H.; Zhu, C.; Shen, L.-L.; Jiao, S.-S.; Zhu, X.-Y.; Giunta, B.; Tan, J.; Song, W.-H.; et al. Physiological Amyloid-Beta Clearance in the Periphery and Its Therapeutic Potential for Alzheimer’s Disease. Acta Neuropathol. 2015, 130, 487–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasoff-Conway, J.M.; Carare, R.O.; Osorio, R.S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.V.; et al. Clearance Systems in the Brain-Implications for Alzheimer Disease. Nat. Rev. Neurol. 2015, 11, 457–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased Clearance of CNS Beta-Amyloid in Alzheimer’s Disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef] [Green Version]
- Gronewold, J.; Klafki, H.-W.; Baldelli, E.; Kaltwasser, B.; Seidel, U.K.; Todica, O.; Volsek, M.; Haußmann, U.; Wiltfang, J.; Kribben, A.; et al. Factors Responsible for Plasma β-Amyloid Accumulation in Chronic Kidney Disease. Mol. Neurobiol. 2016, 53, 3136–3145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Xiang, Y.; Wang, Y.R.; Jiao, S.S.; Wang, Q.H.; Bu, X.L.; Zhu, C.; Yao, X.Q.; Giunta, B.; Tan, J.; et al. Association Between Serum Amyloid-Beta and Renal Functions: Implications for Roles of Kidney in Amyloid-Beta Clearance. Mol. Neurobiol. 2015, 52, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Lin, C.-C.; Tsai, C.-F.; Yang, W.-C.; Wang, S.-J.; Lin, F.-H.; Fuh, J.-L. Cognitive Impairment and Hippocampal Atrophy in Chronic Kidney Disease. Acta Neurol. Scand. 2017, 136, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Chen, Y.-F.; Tsai, P.-H.; Chiou, J.-M.; Lai, L.-C.; Chen, T.-F.; Hung, H.; Chen, J.-H.; Chen, Y.-C. Impacts of Kidney Dysfunction and Cerebral Cortical Thinning on Cognitive Change in Elderly Population. J. Alzheimers Dis. 2020, 76, 225–236. [Google Scholar] [CrossRef]
- Drew, D.A.; Weiner, D.E.; Sarnak, M.J. Cognitive Impairment in CKD: Pathophysiology, Management, and Prevention. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2019, 74, 782–790. [Google Scholar] [CrossRef]
- Barzilay, J.I.; Gao, P.; O’Donnell, M.; Mann, J.F.E.; Anderson, C.; Fagard, R.; Probstfield, J.; Dagenais, G.R.; Teo, K.; Yusuf, S. Albuminuria and Decline in Cognitive Function: The ONTARGET/TRANSCEND Studies. Arch. Intern. Med. 2011, 171, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, P.G. The Coming of Age of the Angiotensin Hypothesis in Alzheimer’s Disease: Progress Toward Disease Prevention and Treatment? J. Alzheimers Dis. 2018, 62, 1443–1466. [Google Scholar] [CrossRef] [Green Version]
- Williamson, J.D.; Pajewski, N.M.; Auchus, A.P.; Bryan, R.N.; Chelune, G.; Cheung, A.K.; Cleveland, M.L.; Coker, L.H.; Crowe, M.G.; Cushman, W.C.; et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA 2019, 321, 553–561. [Google Scholar] [CrossRef]
- AreosaSastre, A.; Vernooij, R.W.; González-ColaçoHarmand, M.; Martínez, G. Effect of the Treatment of Type 2 Diabetes Mellitus on the Development of Cognitive Impairment and Dementia. Cochrane Database Syst. Rev. 2017, 6, CD003804. [Google Scholar] [CrossRef]
- Rapp, S.R.; Luchsinger, J.A.; Baker, L.D.; Blackburn, G.L.; Hazuda, H.P.; Demos-McDermott, K.E.; Jeffery, R.W.; Keller, J.N.; McCaffery, J.M.; Pajewski, N.M.; et al. Effect of a Long-Term Intensive Lifestyle Intervention on Cognitive Function: Action for Health in Diabetes Study. J. Am. Geriatr. Soc. 2017, 65, 966–972. [Google Scholar] [CrossRef] [Green Version]
- Luchsinger, J.A.; Ma, Y.; Christophi, C.A.; Florez, H.; Golden, S.H.; Hazuda, H.; Crandall, J.; Venditti, E.; Watson, K.; Jeffries, S.; et al. Metformin, Lifestyle Intervention, and Cognition in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2017, 40, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; et al. Increased Risk of Cognitive Impairment in Patients with Diabetes Is Associated with Metformin. Diabetes Care 2013, 36, 2981–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cukierman-Yaffe, T.; Bosch, J.; Diaz, R.; Dyal, L.; Hancu, N.; Hildebrandt, P.; Lanas, F.; Lewis, B.S.; Marre, M.; Yale, J.-F.; et al. Effects of Basal Insulin Glargine and Omega-3 Fatty Acid on Cognitive Decline and Probable Cognitive Impairment in People with Dysglycaemia: A Substudy of the ORIGIN Trial. Lancet Diabetes Endocrinol. 2014, 2, 562–572. [Google Scholar] [CrossRef]
- Weinstein, G.; Davis-Plourde, K.L.; Conner, S.; Himali, J.J.; Beiser, A.S.; Lee, A.; Rawlings, A.M.; Sedaghat, S.; Ding, J.; Moshier, E.; et al. Association of Metformin, Sulfonylurea and Insulin Use with Brain Structure and Function and Risk of Dementia and Alzheimer’s Disease: Pooled Analysis from 5 Cohorts. PLoS ONE 2019, 14, e0212293. [Google Scholar] [CrossRef]
- Chalichem, N.S.S.; Gonugunta, C.; Krishnamurthy, P.T.; Duraiswamy, B. DPP4 Inhibitors Can Be a Drug of Choice for Type 3 Diabetes: A Mini Review. Am. J. Alzheimers Dis. Other Demen. 2017, 32, 444–451. [Google Scholar] [CrossRef]
- Biessels, G.J.; Verhagen, C.; Janssen, J.; van den Berg, E.; Wallenstein, G.; Zinman, B.; Espeland, M.A.; Johansen, O.E. Effects of Linagliptin vs Glimepiride on Cognitive Performance in Type 2 Diabetes: Results of the Randomised Double-Blind, Active-Controlled CAROLINA-COGNITION Study. Diabetologia 2021, 64. [Google Scholar] [CrossRef]
- Lu, C.-H.; Yang, C.-Y.; Li, C.-Y.; Hsieh, C.-Y.; Ou, H.-T. Lower Risk of Dementia with Pioglitazone, Compared with Other Second-Line Treatments, in Metformin-Based Dual Therapy: A Population-Based Longitudinal Study. Diabetologia 2018, 61, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.F.E.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiciński, M.; Wódkiewicz, E.; Górski, K.; Walczak, M.; Malinowski, B. Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer’s Disease and Ischemia-Related Brain Injury. Pharmaceuticals 2020, 13, 379. [Google Scholar] [CrossRef] [PubMed]
Authors | Sample; Mean Age, year; Follow-Up, year | Main Outcome | Cognitive Function and Cognitive Impairment Diagnosis | New Inputs |
---|---|---|---|---|
Sacre et al. 2019 [31] | Population-based AusDiab Study (n = 4128); ≥25; 12 years | Cognitive function | CVLT, SDMT | Albuminuria is related to memory impairment, while the effect of albuminuria on processing speed was only derived from cardiovascular risk factors |
Cognitive impairment when >60 years | MMSE when >60 years | |||
Ekblad et al. 2018 [32] | Finnish health community (n = 3687); ≥30; 11 years | Cognitive function | Verbal fluency, word-list learning, word-list delayed recall, simple and visual choice reaction time tests | Levels below microalbuminuria cut-off relate to cognitive function |
Scheppach et al. 2020 [11] | Population from the ARIC study (n = 4626); 45–64; 5 to 20 years | Dementia | Neuropsychological battery, informant interviews, TICSm, surveillance based on prior discharge hospitalization ICD-9 or death certificate code for dementia | Consistent association of microalbuminuria and dementia in both midlife and late life |
Gabin et al. 2019 [14] | Data from the HUNT 2 Study and the Health and Memory Study (n = 48,508); ≥20; 16 years | AD, VaD, AD/VaD and other | ICD-10 criteria based on clinical examination, patient, caregiver history and diagnostic imaging | Positive association between microalbuminuria and subtypes of dementia (AD, VaD, a mixture of AD/VaD and another dementia, including DLB and FTD |
Takae K et al. 2018 [16] | Community-dwelling Japanese population (n = 1562); ≥60, 10 years | All-cause dementia and its subtypes (AD and VaD) | Clinical diagnosis: Guidelines of the Diagnostic and Statistical Manual of Mental Disorders (3rd Ed), NINCDS, ADRDA and NINDS-AIRENNeuroimaging: MRI and CTAutopsy | UACR is associated with increased cumulative incidence of all-cause dementia (pathologically confirmed), especially VaD |
Tap L et al. 2020 [34] | SCOPE study cohort (n = 2252); ≥75; 2 years | Cognitive disfunction and cognitive impairment | MMSE | No relation between kidney disease and late life cognitionPossible lack of end stage kidney disease population and survival bias |
Blanquisco et al. 2017 [26] | General population from the General Medicine and Diabetes Clinics of the Philippine General Hospital (n = 133); ≥60 years; cross-sectional | Mild Cognitive Impairment | MoCA-P | Positive association between albuminuria and mild cognitive impairment with poor results in language and recall in patients with T2D |
Barzilay JI et al., 2020 [22] | GRADE study (n = 4998); ≥20; 4 to 7 years | Cognitive function | Spanish English Verbal Learning Test, Letter and Animal fluency tests, Digit Symbol Substitution Test | Middle-aged adults with kidney disease and T2D have cognitive decline even in short duration diabetes |
Freedman et al., 2017 [25] | Cohort from the AA-DHS MIND (n = 512) and ACCORD (n = 484) cross-sectional | Cognitive performance | MMSE, Digit Symbol Coding Stroop Test and Rey Auditory Verbal Learning Test.MRI | Possible differentiation based on upon ancestry on albuminuria and cognition results in patients with T2D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariton, D.M.; Jiménez-Balado, J.; Maisterra, O.; Pujadas, F.; Soler, M.J.; Delgado, P. Diabetes, Albuminuria and the Kidney—Brain Axis. J. Clin. Med. 2021, 10, 2364. https://doi.org/10.3390/jcm10112364
Ariton DM, Jiménez-Balado J, Maisterra O, Pujadas F, Soler MJ, Delgado P. Diabetes, Albuminuria and the Kidney—Brain Axis. Journal of Clinical Medicine. 2021; 10(11):2364. https://doi.org/10.3390/jcm10112364
Chicago/Turabian StyleAriton, Diana Maria, Joan Jiménez-Balado, Olga Maisterra, Francesc Pujadas, María José Soler, and Pilar Delgado. 2021. "Diabetes, Albuminuria and the Kidney—Brain Axis" Journal of Clinical Medicine 10, no. 11: 2364. https://doi.org/10.3390/jcm10112364
APA StyleAriton, D. M., Jiménez-Balado, J., Maisterra, O., Pujadas, F., Soler, M. J., & Delgado, P. (2021). Diabetes, Albuminuria and the Kidney—Brain Axis. Journal of Clinical Medicine, 10(11), 2364. https://doi.org/10.3390/jcm10112364