Management of Dyslipidemia in Women and Men with Coronary Heart Disease: Results from POLASPIRE Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristics of the Study Group
3.2. Lipid Profile at Hospitalization
3.3. Lipid Profile at Interview
3.4. The Achievement of Lipid Treatment Goals
3.5. LDL-C and Non-HDL-C Profiles, and the Lipid Goals Achievement According to 2019 ESC Guidelines on Dyslipidaemias
3.6. Lipid Lowering Therapies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistics Poland Report 2016; Statistics Poland: Warsaw, Poland, 2016.
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice constituted by representati. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Keteepe-Arachi, T.; Sharma, S. Cardiovascular Disease in Women: Understanding Symptoms and Risk Factors. Eur. Cardiol. Rev. 2017, 12, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Potts, J.; Sirker, A.; Martinez, S.C.; Gulati, M.; Alasnag, M.; Rashid, M.; Kwok, C.S.; Ensor, J.; Burke, D.L.; Riley, R.D.; et al. Persistent sex disparities in clinical outcomes with percutaneous coronary intervention: Insights from 6.6 million PCI procedures in the United States. PLOS ONE 2018, 13, e0203325. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.; Ahn, H.J.; Okajima, K.; Schoenman, K.; Seto, T.B.; Shohet, R.V.; Miyamura, J.; Sentell, T.L.; Nakagawa, K. Gender Differences in the Rate of 30-Day Readmissions after Percutaneous Coronary Intervention for Acute Coronary Syndrome. Women’s Heal. Issues 2019, 29, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Iantorno, M.; Torguson, R.; Kolm, P.; Gajanana, D.; Suddath, W.O.; Rogers, T.; Bernardo, N.L.; Ben-Dor, I.; Gai, J.; Satler, L.F.; et al. Relation of Sex and Race to Outcomes in Patients Undergoing Percutaneous Intervention With Drug-Eluting Stents. Am. J. Cardiol. 2019, 123, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Multiple Risk Factor Intervention Trial Research Group. Coronary heart disease death, nonfatal acute myocardial infarction and other clinical outcomes in the multiple risk factor intervention trial. Am. J. Cardiol. 1986, 58, 1–13. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: A randomised place-bocontrolled trial. Lancet 2002, 360, 7–22. [Google Scholar] [CrossRef]
- Simes, R.J.; Marschner, I.C.; Hunt, D.; Colquhoun, D.; Sullivan, D.; Stewart, R.A.; Hague, W.; Keech, A.; Thompson, P.; White, H.; et al. Relationship Between Lipid Levels and Clinical Outcomes in the Long-Term Intervention With Pravastatin in Ischemic Disease (LIPID) Trial. Circulation 2002, 105, 1162–1169. [Google Scholar] [CrossRef] [Green Version]
- Kinlay, S.; Schwartz, G.G.; Olsson, A.G.; Rifai, N.; Sasiela, W.J.; Szarek, M.; Ganz, P.; Libby, P. Effect of Atorvastatin on Risk of Recurrent Cardiovascular Events After an Acute Coronary Syndrome Associated With High Soluble CD40 Ligand in the Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study. Circulation 2004, 110, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouleau, J. Improved outcome after acute coronary syndromes with an intensive versus standard lipid-lowering regimen: Results from the Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22 (PROVE IT–TIMI 22) trial. Am. J. Med. 2005, 118, 28–35. [Google Scholar] [CrossRef]
- Cannon, C.P.; Steinberg, B.A.; Murphy, S.A.; Mega, J.L.; Braunwald, E. Meta-Analysis of Cardiovascular Outcomes Trials Comparing Intensive Versus Moderate Statin Therapy. J. Am. Coll. Cardiol. 2006, 48, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, F.; Maron, D.J.; Knowles, J.W.; Virani, S.S.; Lin, S.; Heidenreich, P.A. Association Between Intensity of Statin Therapy and Mortality in Patients With Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2017, 2, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Théroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, P.; Kosior, D.A.; Sowa, P.; Szóstak-Janiak, K.; Kozieł, P.; Krzykwa, A.; Sawicka, E.; Haberka, M.; Setny, M.; Kamiński, K.; et al. Secondary prevention of coronary artery disease in Poland. Results from the POLASPIRE survey. Cardiol. J. 2020, 27, 533–540. [Google Scholar] [CrossRef]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewski, T.; Solnica, B.; Cybulska, B.; Bandosz, P.; Rutkowski, M.; Stokwiszewski, J.; Gaciong, Z.; Banach, M.; Wojtyniak, B.; Pencina, M.; et al. Prevalence of lipid abnormalities in Poland. The NATPOL 2011 survey. Kardiologia Polska 2016, 74, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, G.; Jankowski, P.; Kotseva, K.; Mirrakhimov, E.; Reiner, Ž.; Rydén, L.; Tokgözoğlu, L.; Wood, D.; de Bacquer, D. Management of dyslipidaemia in patients with coronary heart disease: Results from the ESC-EORP EUROASPIRE V survey in 27 countries. Atherosclerosis 2019, 285, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Pająk, A.; Szafraniec, K.; Polak, M.; Polakowska, M.; Kozela, M.; Piotrowski, W.; Kwaśniewska, M.; Podolecka, E.; Kozakiewicz, K.; Tykarski, A.; et al. Changes in the prevalence, treatment, and control of hypercholesterolemia and other dyslipidemias over 10 years in Poland: The WOBASZ study. Pol. Arch. Med. Wewn. 2016, 126, 642–652. [Google Scholar]
- De Smedt, D.; de Bacquer, D.; de Sutter, J.; Dallongeville, J.; Gevaert, S.; de Backer, G.; Bruthans, J.; Kotseva, K.; Reiner, Ž.; Tokgözoğlu, L.; et al. The gender gap in risk factor control: Effects of age and education on the control of cardiovascular risk factors in male and female coronary patients. The EUROASPIRE IV study by the European Society of Cardiology. Int. J. Cardiol. 2016, 209, 284–290. [Google Scholar] [CrossRef]
- Dallongevillle, J.; De Bacquer, D.; Heidrich, J.; De Backer, G.; Prugger, C.; Kotseva, K.; Montaye, M.; Amouyel, P.; On Behalf Of The Euroaspire Study Group. Gender differences in the implementation of cardiovascular prevention measures after an acute coronary event. Heart 2010, 96, 1744–1749. [Google Scholar] [CrossRef] [Green Version]
- Dodhia, H.; Kun, L.; Ellis, H.L.; Crompton, J.; Wierzbicki, A.S.; Williams, H.; Hodgkinson, A.; Balazs, J. Evaluating quality and its determinants in lipid control for secondary prevention of heart disease and stroke in primary care: A study in an inner London Borough. BMJ Open 2015, 5, e008678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Vaartjes, I.; Graham, I.; Grobbee, D.; Spiering, W.; Klipstein-Grobusch, K.; Woodward, M.; Peters, S.A. Sex differences in risk factor management of coronary heart disease across three regions. Heart 2017, 103, 1587–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, T.; Dent, R.; Blagden, M. Very low LDL-C levels may safely provide additional clinical cardiovascular benefit: The evidence to date. Int. J. Clin. Pract. 2016, 70, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Szymański, F.M.; Barylski, M.; Cybulska, B.; Wożakowska-Kapłon, B.; Krasiński, Z.; Mamcarz, A.; Widecka, K.; Płatek, A.E.; Dudek, D.; Mickiewicz, A.; et al. Recommendation for the management of dyslipidemia in Poland — Third Declaration of Sopot. Interdisciplinary Expert Position Statement endorsed by the Polish Cardiac Society Working Group on Cardiovascular Pharmacotherapy. Cardiol. J. 2018, 25, 655–665. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Woodward, M.; Vaartjes, I.; Millett, E.R.C.; Klipstein-Grobusch, K.; Hyun, K.; Carcel, C.; Peters, S.A.E. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e014742. [Google Scholar] [CrossRef]
- Peters, S.A.; Colantonio, L.D.; Zhao, H.; Bittner, V.; Dai, Y.; Farkouh, M.E.; Monda, K.L.; Safford, M.M.; Muntner, P.; Woodward, M. Sex Differences in High-Intensity Statin Use Following Myocardial Infarction in the United States. J. Am. Coll. Cardiol. 2018, 71, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.K.; Wang, T.Y.; Li, S.; Robinson, J.G.; Roger, V.L.; Goldberg, A.C.; Virani, S.S.; Louie, M.J.; Lee, L.V.; Peterson, E.D.; et al. Patient-Reported Reasons for Declining or Discontinuing Statin Therapy: Insights From the PALM Registry. J. Am. Heart Assoc. 2019, 8, e011765. [Google Scholar] [CrossRef] [Green Version]
- Nanna, M.G.; Wang, T.Y.; Xiang, Q.; Goldberg, A.C.; Robinson, J.G.; Roger, V.L.; Virani, S.S.; Wilson, P.W.; Louie, M.J.; Koren, A.; et al. Sex Differences in the Use of Statins in Community Practice. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005562. [Google Scholar] [CrossRef]
- Rosano, G.M.; Lewis, B.; Agewall, S.; Wassmann, S.; Vitale, C.; Schmidt, H.; Drexel, H.; Patak, A.; Torp-Pedersen, C.; Kjeldsen, K.P.; et al. Gender differences in the effect of cardiovascular drugs: A position document of the Working Group on Pharmacology and Drug Therapy of the ESC: Figure 1. Eur. Heart J. 2015, 36, 2677–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 163–182. [Google Scholar] [CrossRef] [Green Version]
Parameter | Women n (%) | Men n (%) | p |
---|---|---|---|
Patients n (%) | 354 (29) | 882 (71) | |
Mean age (SD) | 66.3 (9) | 64.1 (8) | <0.001 |
Age groups n (%) | <0.001 | ||
<60 | 71 (20) | 263 (30) | |
60–70 | 157 (45) | 403 (46) | |
≥70 | 125 (35) | 214 (24) | |
Incident n (%) | 0.007 | ||
elective CABG | 8 (2) | 46 (5) | |
elective PCI | 120 (34) | 323 (37) | |
STEMI | 46 (13) | 150 (17) | |
NSTEMI | 91 (26) | 194 (22) | |
UA | 89 (25) | 169 (19) | |
Accompanying condition n (%) | |||
Hypertension | 313 (95) | 722 (93) | 0.21 |
Diabetes | 120 (41) | 286 (39) | 0.54 |
Dyslipidemia | 234 (81) | 599 (81) | 0.95 |
Active smoking | 38 (21) | 132 (23) | 0.69 |
Obesity | 141 (48) | 293 (40) | 0.034 |
Age Group | Women | Men | p | Women n (%) | Men n (%) | p |
---|---|---|---|---|---|---|
LDL-C mg/dL: mean (SD) | LDL-C ≥ 70 mg/dL | |||||
All | 107 (43) | 104 (45) | 0.22 | 224 (79) | 542 (76) | 0.32 |
<60 | 117 (49) | 116 (51) | 0.96 | 46 (84) | 167 (81) | 0.86 |
60–70 | 107 (45) | 103 (43) | 0.42 | 95 (77) | 256 (78) | 0.99 |
≥70 | 102 (37) | 93 (37) | 0.026 | 83 (80) | 119 (67) | 0.033 |
TC mg/dL: mean (SD) | TC ≥ 190 mg/dL | |||||
All | 177 (48) | 169 (49) | 0.009 | 104 (36) | 211 (29) | 0.035 |
<60 | 188 (53) | 182 (54) | 0.58 | 23 (41) | 81 (39) | 0.89 |
60–70 | 176 (49) | 168 (48) | 0.10 | 44 (35) | 96 (29) | 0.20 |
≥70 | 172 (41) | 155 (42) | <0.001 | 37 (35) | 34 (19) | 0.004 |
HDL-C mg/dL: mean (SD) | HDL-C < 40 mg/dL (M) <45 mg/dL (W) | |||||
All | 52 (17) | 47 (16) | <0.001 | 125 (44) | 260 (36) | 0.035 |
<60 | 49 (16) | 46 (14) | 0.23 | 33 (59) | 77 (38) | 0.006 |
60–70 | 52 (17) | 46 (17) | <0.001 | 51 (41) | 130 (39) | 0.78 |
≥70 | 54 (17) | 47 (14) | <0.001 | 41 (39) | 53 (30) | 0.15 |
TG mg/dL: mean (SD) | TG ≥ 150 mg/dL | |||||
All | 134 (68) | 141 (103) | 0.77 | 86 (30) | 224 (32) | 0.81 |
<60 | 153 (89) | 151 (91) | 0.85 | 21 (38) | 82 (40) | 0.85 |
60–70 | 132 (59) | 147 (119) | 0.90 | 37 (30) | 109 (33) | 0.68 |
≥70 | 127 (64) | 117 (79) | 0.024 | 28 (27) | 33 (19) | 0.15 |
non-HDL-C mg/dL: mean (SD) | non-HDL-C ≥ 100 mg/dL | |||||
All | 124 (46) | 123 (49) | 0.31 | 198 (69) | 457 (64) | 0.12 |
<60 | 138 (51) | 136 (54) | 0.86 | 43 (77) | 150 (73) | 0.70 |
60–70 | 123 (49) | 122 (48) | 0.65 | 85 (69) | 215 (65) | 0.51 |
≥70 | 118 (38) | 108 (41) | 0.008 | 70 (67) | 92 (52) | 0.022 |
Age Group | Women | Men | p | Women n (%) | Men n (%) | p |
---|---|---|---|---|---|---|
LDL-C mg/dL: mean (SD) | LDL-C ≥ 70 mg/dL | |||||
All | 90 (40) | 85 (43) | 0.026 | 197 (68) | 444 (60) | 0.037 |
<60 | 102 (55) | 90 (38) | 0.16 | 44 (77) | 136 (65) | 0.11 |
60–70 | 85 (36) | 85 (45) | 0.80 | 85 (64) | 210 (62) | 0.64 |
≥70 | 89 (35) | 78 (44) | 0.002 | 68 (67) | 98 (53) | 0.037 |
TC mg/dL: mean (SD) | TC ≥ 190 mg/dL | |||||
All | 170 (45) | 153 (41) | <0.001 | 72 (25) | 121 (16) | 0.003 |
<60 | 178 (60) | 161 (46) | 0.02 | 13 (23) | 47 (22) | 1 |
60–70 | 164 (40) | 153 (41) | 0.002 | 33 (25) | 53 (16) | 0.024 |
≥70 | 172 (42) | 144 (35) | <0.001 | 26 (25) | 21 (11) | 0.003 |
HDL-C mg/dL: mean (SD) | HDL-C < 40 mg/dL (M) < 45 mg/dL (W) | |||||
All | 58 (16) | 50 (21) | <0.001 | 86 (30) | 189 (26) | 0.24 |
<60 | 52 (15) | 48 (13) | 0.056 | 29 (51) | 63 (30) | 0.006 |
60–70 | 57 (14) | 50 (27) | <0.001 | 38 (29) | 91 (27) | 0.73 |
≥70 | 62 (16) | 51 (14) | <0.001 | 19 (19) | 35 (19) | 1 |
TG mg/dL: mean (SD) | TG ≥ 150 mg/dL | |||||
All | 133 (65) | 130 (94) | 0.003 | 81 (28) | 200 (27) | 0.91 |
<60 | 142 (58) | 146 (95) | 0.56 | 19 (33) | 78 (37) | 0.68 |
60–70 | 135 (61) | 135 (108) | 0.05 | 45 (34) | 98 (29) | 0.30 |
≥70 | 126 (74) | 104 (48) | <0.001 | 17 (17) | 24 (13) | 0.50 |
non-HDL-C mg/dL: mean (SD) | non-HDL-C ≥ 100 mg/dL | |||||
All | 112 (45) | 103 (40) | 0.003 | 158 (54) | 331 (45) | 0.009 |
<60 | 126 (59) | 113 (44) | 0.14 | 39 (68) | 108 (52) | 0.035 |
60–70 | 107 (39) | 103 (40) | 0.30 | 65 (49) | 162 (48) | 0.81 |
≥70 | 111 (42) | 92 (31) | <0.001 | 54 (53) | 61 (33) | 0.0017 |
Women n (%) | Men n (%) | p | |
---|---|---|---|
LDL-C goal in age groups | |||
All | 45 (20) | 147 (25) | 0.13 |
<60 | 5 (10) | 33 (19) | 0.24 |
60–70 | 24 (24) | 68 (25) | 0.89 |
≥70 | 16 (21) | 46 (33) | 0.08 |
Non-HDL goal in age groups | |||
All | 133 (46) | 403 (55) | 0.009 |
<60 | 18 (32) | 101 (48) | 0.035 |
60–70 | 67 (51) | 179 (52) | 0.81 |
≥70 | 48 (47) | 123 (67) | 0.0017 |
Women n (%) | Men n (%) | p | |
---|---|---|---|
Hospitalization | |||
LDL-C ≥ 55 mg/dL | 260 (92) | 636 (89) | 0.23 |
non-HDL-C ≥ 85 mg/dL | 235 (82) | 551 (77) | 0.08 |
Interview | |||
LDL-C ≥ 55 mg/dL | 246 (85) | 588 (80) | 0.12 |
non-HDL-C ≥ 85 mg/dL | 223 (77) | 476 (65) | <0.001 |
Lipid goal attainment | |||
LDL-C | 17 (7) | 46 (8) | 0.95 |
non-HDL-C | 68 (23) | 258 (35) | <0.001 |
Women n (%) | Men n (%) | p | |
---|---|---|---|
Statins prescription | |||
Any statins | |||
All | 321 (91) | 843 (96) | 0.001 |
<60 | 58 (89) | 233 (95) | 0.2 |
60–70 | 146 (93) | 388 (96) | 0.2 |
≥70 | 117 (89) | 222 (96) | 0.011 |
High intensity statins | |||
All | 217 (61) | 622 (71) | 0.002 |
<60 | 47 (72) | 184 (75) | 0.8 |
60–70 | 96 (61) | 298 (74) | 0.005 |
≥70 | 74 (56) | 140 (61) | 0.5 |
Use of statins | |||
Any statins | |||
All | 252 (87) | 665 (90) | 0.17 |
<60 | 46 (84) | 190 (91) | 0.19 |
60–70 | 114 (87) | 312 (90) | 0.36 |
≥70 | 92 (89) | 163 (90) | 1 |
High intensity statins | |||
All | 152 (53) | 448 (61) | 0.02 |
<60 | 32 (58) | 145 (69) | 0.16 |
60–70 | 72 (55) | 208 (60) | 0.34 |
≥70 | 48 (47) | 95 (52) | 0.43 |
Incident | Women n (%) | Men n (%) | p |
---|---|---|---|
Any statins prescription | |||
elective CABG | 7 (88) | 45 (98) | 0.68 |
elective PCI | 115 (96) | 313 (97) | 0.79 |
STEMI | 40 (87) | 144 (96) | 0.06 |
NTEMI | 80 (88) | 182 (94) | 0.14 |
UA | 77 (87) | 157 (93) | 0.15 |
High intensity statins prescription | |||
elective CABG | 4 (50) | 29 (63) | 0.76 |
elective PCI | 75 (63) | 228 (71) | 0.13 |
STEMI | 33 (72) | 135 (90) | 0.004 |
NSTEMI | 61 (67) | 151 (78) | 0.07 |
UA | 44 (49) | 79 (47) | 0.78 |
Use of any statins | |||
elective CABG | 7 (100) | 32 (89) | 0.83 |
elective PCI | 88 (90) | 265 (94) | 0.25 |
STEMI | 32 (89) | 110 (87) | 0.94 |
NSTEMI | 63 (88) | 134 (89) | 0.86 |
UA | 62 (82) | 122 (87) | 0.44 |
Use of high intensity statins | |||
elective CABG | 3 (43) | 20 (56) | 0.84 |
elective PCI | 50 (51) | 185 (66) | 0.015 |
STEMI | 23 (64) | 91 (72) | 0.49 |
NSTEMI | 44 (61) | 93 (62) | 0.98 |
UA | 31 (41) | 58 (41) | 0.92 |
Women n (%) | Men n (%) | |
---|---|---|
Reason for interruption | ||
Intolerance | 5 (42) | 8 (21) |
Patient’s refusal | 3 (25) | 10 (26) |
Doctor’s recommendation | 4 (33) | 14 (36) |
Others | 0 (0) | 2 (5) |
Uncertain/I do not know | 0 (0) | 5 (13) |
Reason for dose reduction | ||
Intolerance | 3 (21) | 6 (12) |
Doctor’s recommendation | 7 (50) | 31 (62) |
Other | 1 (7) | 2 (4) |
Uncertain/I do not know | 3 (21) | 11 (22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setny, M.; Jankowski, P.; Krzykwa, A.; Kamiński, K.A.; Gąsior, Z.; Haberka, M.; Czarnecka, D.; Pająk, A.; Kozieł, P.; Szóstak-Janiak, K.; et al. Management of Dyslipidemia in Women and Men with Coronary Heart Disease: Results from POLASPIRE Study. J. Clin. Med. 2021, 10, 2594. https://doi.org/10.3390/jcm10122594
Setny M, Jankowski P, Krzykwa A, Kamiński KA, Gąsior Z, Haberka M, Czarnecka D, Pająk A, Kozieł P, Szóstak-Janiak K, et al. Management of Dyslipidemia in Women and Men with Coronary Heart Disease: Results from POLASPIRE Study. Journal of Clinical Medicine. 2021; 10(12):2594. https://doi.org/10.3390/jcm10122594
Chicago/Turabian StyleSetny, Małgorzata, Piotr Jankowski, Agnieszka Krzykwa, Karol A. Kamiński, Zbigniew Gąsior, Maciej Haberka, Danuta Czarnecka, Andrzej Pająk, Paweł Kozieł, Karolina Szóstak-Janiak, and et al. 2021. "Management of Dyslipidemia in Women and Men with Coronary Heart Disease: Results from POLASPIRE Study" Journal of Clinical Medicine 10, no. 12: 2594. https://doi.org/10.3390/jcm10122594
APA StyleSetny, M., Jankowski, P., Krzykwa, A., Kamiński, K. A., Gąsior, Z., Haberka, M., Czarnecka, D., Pająk, A., Kozieł, P., Szóstak-Janiak, K., Sawicka, E., Stachurska, Z., & Kosior, D. A. (2021). Management of Dyslipidemia in Women and Men with Coronary Heart Disease: Results from POLASPIRE Study. Journal of Clinical Medicine, 10(12), 2594. https://doi.org/10.3390/jcm10122594