Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Cohort
2.2. Magnetic Resonance Spectroscopy
2.2.1. Image Acquisition
2.2.2. Image Processing
2.3. Statistical Analysis
3. Results
3.1. Amygdala and the Anterior Hippocampus
3.2. Lateral Parietal Cortex
3.3. Post Hoc Analyses of Age of Onset of GD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Mueller, S.C.; De Cuypere, G.; T’Sjoen, G. Transgender Research in the 21st Century: A Selective Critical Review from a Neurocognitive Perspective. Am. J. Psychiatry 2017, 174, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- T’Sjoen, G.; Radix, A.; Motmans, J. Language & Ethics in Transgender Health. J. Sex. Med. 2020, 17, 1585–1586. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A.L.; Beek, T.F.; Dhondt, K.; de Vet, H.C.; Cohen-Kettenis, P.T.; Steensma, T.D.; Kreukels, B.P. Reliability and Clinical Utility of Gender Identity-Related Diagnoses: Comparisons Between the ICD-11, ICD-10, DSM-IV, and DSM-5. LGBT Health 2021, 8, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Heylens, G.; Elaut, E.; Kreukels, B.P.C.; Paap, M.C.S.; Cerwenka, S.; Richter-Appelt, H.; Cohen-Kettenis, P.T.; Haraldsen, I.R.; De Cuypere, G. Psychiatric characteristics in transsexual individuals: Multicentre study in four European countries. Br. J. Psychiatry 2014, 204, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Coleman, E.; Bockting, W.; Botzer, M.; Cohen-Kettenis, P.; De Cuypere, G.; Feldman, J.; Fraser, L.; Green, J.; Knudson, G.; Meyer, W.J.; et al. Standards of Care for the Health of Transsexual, Transgender, and Gender-Nonconforming People, Version 7. Int. J. Transgenderism Health 2012, 13, 165–232. [Google Scholar] [CrossRef]
- Ruigrok, A.N.; Salimi-Khorshidi, G.; Lai, M.-C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Luders, E.; Steinmetz, H.; Jancke, L. Brain size and grey matter volume in thehealthy human brain. Neuroreport 2002, 13, 2371–2374. [Google Scholar] [CrossRef]
- Rushton, J.P.; Ankney, C.D. Whole Brain Size and General Mental Ability: A Review. Int. J. Neurosci. 2009, 119, 691–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. Evolving Knowledge of Sex Differences in Brain Structure, Function, and Chemistry. Biol. Psychiatry 2007, 62, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Berglund, H.; Lindström, P.; Dhejne-Helmy, C.; Savic, I. Male-to-female transsexuals show sex-atypical hypothalamus activation when smelling odorous steroids. Cereb. Cortex 2008, 18, 1900–1908. [Google Scholar] [CrossRef] [Green Version]
- Burke, S.M.; Kreukels, B.P.; Cohen-Kettenis, P.T.; Veltman, D.J.; Klink, D.T.; Bakker, J. Male-typical visuospatial functioning in gynephilic girls with gender dysphoria—Organizational and activational effects of testosterone. J. Psychiatry Neurosci. 2016, 41, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillamon, A.; Junque, C.; Gómez-Gil, E. A Review of the Status of Brain Structure Research in Transsexualism. Arch. Sex. Behav. 2016, 45, 1615–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.S.; Junger, J.; Derntl, B.; Habel, U. The transsexual brain—A review of findings on the neural basis of transsexualism. Neurosci. Biobehav. Rev. 2015, 59, 251–266. [Google Scholar] [CrossRef]
- Kiyar, M.; Collet, S.; T’Sjoen, G.; Mueller, S.C. Neuroscience in transgender people: An update. Neuroforum 2020, 26, 85–92. [Google Scholar] [CrossRef]
- Savic, I.; Arver, S. Sex Dimorphism of the Brain in Male-to-Female Transsexuals. Cereb. Cortex 2011, 21, 2525–2533. [Google Scholar] [CrossRef] [Green Version]
- Zubiaurre-Elorza, L.; Junque, C.; Gómez-Gil, E.; Segovia, S.; Carrillo, B.; Rametti, G.; Guillamon, A. Cortical Thickness in Untreated Transsexuals. Cereb. Cortex 2013, 23, 2855–2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, S.M.; Cohen-Kettenis, P.T.; Veltman, D.J.; Klink, D.T.; Bakker, J. Hypothalamic response in gender dysphoric children and adolecsents. Endocrinology 2014, 5, 1–10. [Google Scholar]
- Zhou, J.; Hofman, M.; Gooren, L.J.; Swaab, D.F. A sex difference in the human brain and its relation to transsexuality. Nature 1995, 378, 68–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranz, G.S.; Hahn, A.; Kaufmann, U.; Küblböck, M.; Hummer, A.; Ganger, S.; Seiger, R.; Winkler, D.; Swaab, D.F.; Windischberger, C.; et al. White matter microstructure in transsexualsandcontrols investigated by diffusion tensor imaging. J Neurosci. 2014, 34, 15466–15475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöning, S.; Engelien, A.; Bauer, C.; Kugel, H.; Kersting, A.; Roestel, C.; Zwitserlood, P.; Pyka, M.; Dannlowski, U.; Lehmann, W.; et al. Neuroimaging differences in spatial cognition between men and male-to-female transsexuals before and during hormone therapy. J. Sex. Med. 2010, 7, 1858–1867. [Google Scholar] [CrossRef]
- Mueller, S.C. The neuroanatomy of transgender identity: Mega-analytic findings from the ENIGMA transgender persons working group. J. Sex. Med. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Soleman, R.S.; Schagen, S.E.; Veltman, D.J.; Kreukels, B.P.; Cohen-Kettenis, P.T.; Lambalk, C.B.; Wouters, F.; de Waal, H.A.D.-V. Sex Differences in Verbal Fluency during Adolescence: A Functional Magnetic Resonance Imaging Study in Gender Dysphoric and Control Boys and Girls. J. Sex. Med. 2013, 10, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Manzouri, A.; Savic, I. Possible Neurobiological Underpinnings of Homosexuality and Gender Dysphoria. Cereb. Cortex 2018, 29, 2084–2101. [Google Scholar] [CrossRef]
- Luders, E.; Sánchez, F.J.; Tosun, D.; Shattuck, D.W.; Gaser, C.; Vilain, E.; Toga, A.W. Increased Cortical Thickness in Male-to-Female Transsexualism. J. Behav. Brain Sci. 2012, 2, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Kranz, G.S.; Küblböck, M.; Kaufmann, U.; Ganger, S.; Hummer, A.; Seiger, R.; Spies, M.; Winkler, D.; Kasper, S.; et al. Structural Connectivity Networks of Transgender People. Cereb. Cortex 2014, 25, 3527–3534. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Munsaka, S.M.; Kraft-Terry, S.; Ernst, T. Magnetic Resonance Spectroscopy to Assess NeuroInflammation and Neuropathic Pain. J. Neuroimmune Pharmacol. 2013, 8, 576–593. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Ross, B.; Lin, A. Magnetic Resonance Spectroscopy in Neurological Diagnosis. Neurol. Clin. 2009, 27, 21–60. [Google Scholar] [CrossRef]
- Mader, I.; Rauer, S.; Gall, P.; Klose, U. 1H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur. J. Radiol. 2008, 67, 250–257. [Google Scholar] [CrossRef]
- Hamakawa, H.; Kato, T.; Shioiri, T.; Inubushi, T.; Kato, N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol. Med. 1999, 29, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Charles, H.; Lazeyras, F.; Krishnan, K.R.; Boyko, O.B.; Patterson, L.J.; Doraiswamy, P.; Mcdonald, W.M. Proton spectroscopy of human brain: Effects of age and sex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1994, 18, 995–1004. [Google Scholar] [CrossRef]
- Maudsley, A.; Domenig, C.; Govind, V.; Darkazanli, A.; Studholme, C.; Arheart, K.; Bloomer, C. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn. Reson. Med. 2009, 61, 548–559. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, I.; Paley, M.; Miszkiel, K.; Hall-Craggs, M.; Kendall, B.; Chinn, R.; Harrison, M. Cerebral volumes and spectroscopic proton metabolites on MR: Is sex important? Magn. Reson. Imaging 1997, 15, 243–248. [Google Scholar] [CrossRef]
- Pouwels, P.J.W.; Frahm, J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn. Reson. Med. 1998, 39, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Grachev, I.D.; Apkarian, A.V. Chemical Heterogeneity of the Living Human Brain: A Proton MR Spectroscopy Study on the Effects of Sex, Age, and Brain Region. NeuroImage 2000, 11 Pt 1, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Hädel, S.; Wirth, C.; Rapp, M.; Gallinat, J.; Schubert, F. Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. J. Magn. Reson. Imaging 2013, 38, 1480–1487. [Google Scholar] [CrossRef]
- Hjelmervik, H.; Hausmann, M.; Craven, A.R.; Hirnstein, M.; Hugdahl, K.; Specht, K. Sex- and sex hormone-related variations in energy-metabolic frontal brain asymmetries: A magnetic resonance spectroscopy study. NeuroImage 2018, 172, 817–825. [Google Scholar] [CrossRef]
- Sestili, P.; Martinelli, C.; Colombo, E.; Barbieri, E.; Potenza, L.; Sartini, S.; Fimognari, C. Creatine as an antioxidant. Amino Acids 2011, 40, 1385–1396. [Google Scholar] [CrossRef]
- Chebib, M.; Gavande, N.; Wong, K.Y.; Park, A.; Premoli, I.; Mewett, K.N.; Allan, R.D.; Duke, R.K.; Johnston, G.A.R.; Hanrahan, J. Guanidino Acids Act as ρ1 GABAC Receptor Antagonists. Neurochem. Res. 2009, 34, 1704–1711. [Google Scholar] [CrossRef]
- Royes, L.F.F.; Fighera, M.R.; Furian, A.F.; Oliveira, M.S.; Fiorenza, N.G.; Ferreira, J.; Da Silva, A.C.; Priel, M.R.; Ueda, É.S.; Calixto, J.B.; et al. Neuromodulatory effect of creatine on extracellular action potentials in rat hippocampus: Role of NMDA receptors. Neurochem. Int. 2008, 53, 33–37. [Google Scholar] [CrossRef]
- Curt, M.J.-C.; Voicu, P.-M.; Fontaine, M.; Dessein, A.-F.; Porchet, N.; Mention-Mulliez, K.; Dobbelaere, D.; Soto-Ares, G.; Cheillan, D.; Vamecq, J. Creatine biosynthesis and transport in health and disease. Biochimie 2015, 119, 146–165. [Google Scholar] [CrossRef]
- Feusner, J.D.; Lidström, A.; Moody, T.D.; Dhejne, C.; Bookheimer, S.Y.; Savic, I. Intrinsic network connectivity and own body perception in gender dysphoria. Brain Imaging Behav. 2017, 11, 964–976. [Google Scholar] [CrossRef]
- Uribe, C.; Junque, C.; Gómez-Gil, E.; Abos, A.; Mueller, S.C.; Guillamon, A. Brain network interactions in transgender individuals with gender incongruence. NeuroImage 2020, 211, 116613. [Google Scholar] [CrossRef]
- Khorashad, B.S.; Khazai, B.; Talaei, A.; Acar, F.; Hudson, A.R.; Borji, N.; Saberi, H.; Aminzadeh, B.; Mueller, S.C. Neuroanatomy of transgender persons in a Non-Western population and improving reliability in clinical neuroimaging. J. Neurosci. Res. 2020, 98, 2166–2177. [Google Scholar] [CrossRef]
- Zubiaurre-Elorza, L.; Junque, C.; Gómez-Gil, E.; Guillamon, A. Effects of Cross-Sex Hormone Treatment on Cortical Thickness in Transsexual Individuals. J. Sex. Med. 2014, 11, 1248–1261. [Google Scholar] [CrossRef]
- Bradford, J.; Reisner, S.L.; Honnold, J.A.; Xavier, J. Experiences of Transgender-Related Discrimination and Implications for Health: Results from the Virginia Transgender Health Initiative Study. Am. J. Public Health 2013, 103, 1820–1829. [Google Scholar] [CrossRef]
- Clements-Nolle, K.; Marx, R.; Katz, M. Attempted Suicide Among Transgender Persons. J. Homosex. 2006, 51, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, M.L.; Testa, R.J. A conceptual framework for clinical work with transgender and gender nonconforming clients: An adaptation of the Minority Stress Model. Prof. Psychol. Res. Pr. 2012, 43, 460–467. [Google Scholar] [CrossRef]
- Nemoto, T.; Bödeker, B.; Iwamoto, M. Social Support, Exposure to Violence and Transphobia, and Correlates of Depression Among Male-to-Female Transgender Women with a History of Sex Work. Am. J. Public Health 2011, 101, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Millet, N.; Longworth, J.; Arcelus, J. Prevalence of anxiety symptoms and disorders in the transgender population: A systematic review of the literature. Int. J. Transgenderism 2016, 18, 27–38. [Google Scholar] [CrossRef]
- Witcomb, G.L.; Bouman, W.P.; Claes, L.; Brewin, N.; Crawford, J.R.; Arcelus, J. Levels of depression in transgender people and its predictors: Results of a large matched control study with transgender people accessing clinical services. J. Affect. Disord. 2018, 235, 308–315. [Google Scholar] [CrossRef]
- Gómez-Gil, E.; Zubiaurre-Elorza, L.; Esteva, I.; Guillamon, A.; Godás, T.; Almaraz, M.C.; Halperin, I.; Salamero, M. Hormone-treated transsexuals report less social distress, anxiety and depression. Psychoneuroendocrinology 2012, 37, 662–670. [Google Scholar] [CrossRef]
- Anand, A.; Shekhar, A. Brain Imaging Studies in Mood and Anxiety Disorders. Ann. N. Y. Acad. Sci. 2006, 985, 370–388. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.L.; Shin, L.M.; Wright, C.I. Neuroimaging Studies of Amygdala Function in Anxiety Disorders. Ann. N. Y. Acad. Sci. 2006, 985, 389–410. [Google Scholar] [CrossRef]
- Whalen, P.J.; Shin, L.M.; Somerville, L.H.; McLean, A.A.; Kim, H. Functional neuroimaging studies of the amygdala in depression. Semin. Clin. Neuropsychiatry 2002, 7, 234–242. [Google Scholar] [CrossRef]
- Koenigs, M.; Grafman, J. Posttraumatic Stress Disorder: The Role of Medial Prefrontal Cortex and Amygdala. Neuroscience 2009, 15, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Xia, C.; Wang, W.; Sun, H.; Tan, Q.; Zhang, S.; Li, L.; Kemp, G.J.; Yue, Q.; Gong, Q. Abnormal metabolite concentrations and amygdala volume in patients with recent-onset posttraumatic stress disorder. J. Affect. Disord. 2018, 241, 539–545. [Google Scholar] [CrossRef]
- Williamson, J.B.; Lamb, D.G.; Porges, E.C.; Bottari, S.; Woods, A.J.; Datta, S.; Langer, K.; Cohen, R.A. Cerebral Metabolite Concentrations Are Associated with Cortical and Subcortical Volumes and Cognition in Older Adults. Front. Aging Neurosci. 2021, 12. [Google Scholar] [CrossRef]
- Perez-Laso, C.; Cerdan, S.; Junque, C.; Gómez, Á.; Ortega, E.; Mora, M.; Avendaño, C.; Gómez-Gil, E.; del Cerro, M.C.R.; Guillamon, A. Effects of Adult Female Rat Androgenization on Brain Morphology and Metabolomic Profile. Cereb. Cortex 2017, 28, 2846–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–57. [Google Scholar] [PubMed]
- Schubert, F.; Gallinat, J.; Seifert, F.; Rinneberg, H. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. NeuroImage 2004, 21, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Kerwin, R.; Patel, S.; Meldrum, B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 1990, 39, 25–32. [Google Scholar] [CrossRef]
- Haase, A.; Frahm, J.; Hanicke, W.; Matthaei, D. 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 1985, 30, 341–344. [Google Scholar] [CrossRef]
- Gruetter, R. Automatic, localizedin Vivo adjustment of all first-and second-order shim coils. Magn. Reson. Med. 1993, 29, 804–811. [Google Scholar] [CrossRef]
- Pijnappel, W.W.F.; Vandenboogaart, A.; de Beer, R.; van Ormondt, D. Svd-Based Quantification of Magnetic-Resonance Signals. J. Magn. Reson. 1992, 97, 122–134. [Google Scholar] [CrossRef]
- Vanhammea, L.; Fierro, R.D.; Van Huffel, S.; De Beer, R. Fast Removal of Residual Water in Proton Spectra. J. Magn. Reson. 1998, 132, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Stefan, D.D.C.F.; Di Cesare, F.; Andrasescu, A.; Popa, E.; Lazariev, A.; Vescovo, E.; Strbak, O.; Williams, S.; Starcuk, Z.; Cabanas, M.; et al. Quantitation of magnetic resonance spectroscopy signals: The jMRUI software package. Meas. Sci. Technol. 2009, 20, 104035. [Google Scholar] [CrossRef]
- Ratiney, H.; Coenradie, Y.; Cavassila, S.; Van Ormondt, D.; Graveron-Demilly, D. Time-domain quantitation of 1 H short echo-time signals: Background accommodation. Magma Magn. Reson. Mater. Phys. Biol. Med. 2004, 16, 284–296. [Google Scholar] [CrossRef]
- Ratiney, H.; Sdika, M.; Coenradie, Y.; Cavassila, S.; Van Ormondt, D.; Graveron-Demilly, D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 2005, 18, 1–13. [Google Scholar] [CrossRef]
- Graverondemilly, D.; Diop, A.; Briguet, A.; Fenet, B. Product-Operator Algebra for Strongly Coupled Spin Systems. J. Magn. Reson. Ser. A 1993, 101, 233–239. [Google Scholar] [CrossRef]
- Stanisz, G.J.; Odrobina, E.E.; Pun, J.; Escaravage, M.; Graham, S.J.; Bronskill, M.J.; Henkelman, R.M. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 2005, 54, 507–512. [Google Scholar] [CrossRef]
- Lu, H.; Nagae-Poetscher, L.M.; Golay, X.; Lin, D.; Pomper, M.; van Zijl, P.C. Routine clinical brain MRI sequences for use at 3.0 Tesla. J. Magn. Reson. Imaging 2005, 22, 13–22. [Google Scholar] [CrossRef]
- Piechnik, S.; Evans, C.J.; Bary, L.; Wise, R.; Jezzard, P. Functional changes in CSF volume estimated using measurement of waterT2relaxation. Magn. Reson. Med. 2009, 61, 579–586. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J. Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla. Magn. Reson. Med. 2015, 76, 725–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganji, S.K.; Banerjee, A.; Patel, A.M.; Zhao, Y.D.; Dimitrov, I.E.; Browning, J.D.; Brown, E.S.; Maher, E.A.; Choi, C. T2 measurement of J-coupled metabolites in the human brain at 3T. NMR Biomed. 2012, 25, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Gasparovic, C.; Song, T.; Devier, D.; Bockholt, H.J.; Caprihan, A.; Mullins, P.; Posse, S.; Jung, R.E.; Morrison, L.A. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 2006, 55, 1219–1226. [Google Scholar] [CrossRef]
- Edden, R.A.; Puts, N.; Harris, A.D.; Barker, P.B.; Evans, C.J. A batch processing tool for the quantitative analysis of GABA-edited MRS spectra. J. Magn. Reason. Imaging 2014, 40, 1445–1452. [Google Scholar] [CrossRef]
- Liachenko, S.; Ramu, J. Sex differences in the effect of acute administration of nicotine on MRS-measured metabolic profile of the rat brain. Neurosci. Res. 2020, 157, 51–57. [Google Scholar] [CrossRef]
- Epperson, C.N.; O’Malley, S.; Czarkowski, K.A.; Gueorguieva, R.; Jatlow, P.; Sanacora, G.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Sex, GABA, and nicotine: The impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol. Psychiatry 2005, 57, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddock, R.J.; Casazza, G.A.; Buonocore, M.H.; Tanase, C. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): A dynamic 1H-MRS study. NeuroImage 2011, 57, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.; Thomas, A.G.; Rawlings, N.B.; Near, J.; Nichols, T.E.; Clare, S.; Johansen-Berg, H.; Stagg, C.J. An Ultra-High Field Magnetic Resonance Spectroscopy Study of Post Exercise Lactate, Glutamate and Glutamine Change in the Human Brain. Front. Physiol. 2015, 6, 351. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Jiang, C.S.; Ernst, T. Effects of age and sex on brain glutamate and other metabolites. Magn. Reson. Imaging 2009, 27, 142–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science 1982, 217, 1214–1222. [Google Scholar] [CrossRef]
- Brand, A.; Richter-Landsberg, C.; Leibfritz, D. Multinuclear NMR Studies on the Energy Metabolism of Glial and Neuronal Cells. Dev. Neurosci. 1993, 15, 289–298. [Google Scholar] [CrossRef]
- Gómez, Á.; Cerdán, S.; Pérez-Laso, C.; Ortega, E.; Pásaro, E.; Fernández, R.; Gómez-Gil, E.; Mora, M.; Marcos, A.; del Cerro, M.C.R.; et al. Effects of adult male rat feminization treatments on brain morphology and metabolomic profile. Horm. Behav. 2020, 125, 104839. [Google Scholar] [CrossRef] [PubMed]
- Phelps, E.A.; LeDoux, J.E. Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron 2005, 48, 175–187. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Gianaros, P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [Green Version]
- Hsu, D.T.; Sanford, B.J.; Meyers, K.K.; Love, T.; Hazlett, K.E.; Wang, H.; Ni, L.; Walker, S.J.; Mickey, B.J.; Korycinski, S.T.; et al. Response of the μ-opioid system to social rejection and acceptance. Mol. Psychiatry 2013, 18, 1211–1217. [Google Scholar] [CrossRef]
- Grandjean, J.; Azzinnari, D.; Seuwen, A.; Sigrist, H.; Seifritz, E.; Pryce, C.R.; Rudin, M. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. NeuroImage 2016, 142, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Hansen, B.; Wiborg, O.; Kroenke, C.D.; Jespersen, S.N. Diffusion MRI and MR spectroscopy reveal microstructural and metabolic brain alterations in chronic mild stress exposed rats: A CMS recovery study. NeuroImage 2018, 167, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Ellenbroek, B.; Youn, J. Rodent models in neuroscience research: Is it a rat race? Dis. Model. Mech. 2016, 9, 1079–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, C.; Gass, N.; Weber-Fahr, W.; Sartorius, A. Advantages and Challenges of Small Animal Magnetic Resonance Imaging as a Translational Tool. Neuropsychobiology 2014, 69, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, N.; Kim, S.; Hong, S.; Park, K.; Lim, S.; Park, J.-M.; Na, B.; Chae, Y.; Lee, J.; et al. Sex differences in amygdala subregions: Evidence from subregional shape analysis. NeuroImage 2012, 60, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Marwha, D.; Halari, M.; Eliot, L. Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. NeuroImage 2017, 147, 282–294. [Google Scholar] [CrossRef]
- Mueller, S.C.; Wierckx, K.; Boccadoro, S.; T’Sjoen, G. Neural correlates of ostracism in transgender persons living according to their gender identity: A potential risk marker for psychopathology? Psychol. Med. 2018, 48, 2313–2320. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.D.; Ristori, J.; Castellini, G.; Cocchetti, C.; Cassioli, E.; Orsolini, S.; Sensi, C.; Romani, A.; Mazzoli, F.; Cipriani, A.; et al. Neural Correlates of Gender Face Perception in Transgender People. J. Clin. Med. 2020, 9, 1731. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.L.; Van Goozen, S.H.; Kuiper, A.; Cohen-Kettenis, P.T. Transsexual subtypes: Clinical and theoretical significance. Psychiatry Res. 2005, 137, 151–160. [Google Scholar] [CrossRef]
- Nieder, T.; Herff, M.; Cerwenka, S.; Preuss, W.F.; Cohen-Kettenis, P.T.; De Cuypere, G.; Haraldsen, I.R.H.; Richter-Appelt, H. Age of Onset and Sexual Orientation in Transsexual Males and Females. J. Sex. Med. 2011, 8, 783–791. [Google Scholar] [CrossRef]
TMGD (n = 29) | CW (n = 34) | CM (n = 28) | |
---|---|---|---|
Mean age (years) | 27.8 ± 11.9 | 30.2 ± 8.9 | 26.3 ± 5.8 |
Mean body mass index (kg/m2) | 25.4 ± 6.2 | 23.4 ± 3.8 | 23.6 ± 4.3 |
Smoking | |||
Never | 16 (57.1%) | 32 (91.4%) | 25 (83.3%) |
Current | 12 (42.9%) | 3 (8.6%) | 5 (16.7%) |
Exercise | |||
None | 16 (61.5%) | 8 (22.9%) | 4 (13.8%) |
Occasionally | 7 (26.9%) | 9 (25.7%) | 4 (13.8%) |
Regularly | 3 (11.5%) | 18 (51.4%) | 21 (72.4%) |
Education | |||
Primary school degree | 1 (3.4%) | 0 | 0 |
High school degree | 20 (69%) | 10 (28.6%) | 11 (36.7%) |
Graduate school degree | 8 (27.6%) | 14 (40%) | 7 (23.3%) |
Postgraduate degree | 0 | 11 (31.4%) | 12 (40%) |
Drug use | |||
Never | 27 (93.1%) | 34 (97.1%) | 29 (96.7%) |
Current | 2 (6.9%) | 1 (2.9%) | 1 (3.3%) |
Onset of GD | / | / | |
Childhood | 11 (40.1%) | ||
Peri-puberty | 10 (37%) | ||
Adulthood | 6 (22.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collet, S.; Bhaduri, S.; Kiyar, M.; T’Sjoen, G.; Mueller, S.; Guillamon, A. Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. J. Clin. Med. 2021, 10, 2623. https://doi.org/10.3390/jcm10122623
Collet S, Bhaduri S, Kiyar M, T’Sjoen G, Mueller S, Guillamon A. Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. Journal of Clinical Medicine. 2021; 10(12):2623. https://doi.org/10.3390/jcm10122623
Chicago/Turabian StyleCollet, Sarah, Sourav Bhaduri, Meltem Kiyar, Guy T’Sjoen, Sven Mueller, and Antonio Guillamon. 2021. "Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People" Journal of Clinical Medicine 10, no. 12: 2623. https://doi.org/10.3390/jcm10122623
APA StyleCollet, S., Bhaduri, S., Kiyar, M., T’Sjoen, G., Mueller, S., & Guillamon, A. (2021). Characterization of the 1H-MRS Metabolite Spectra in Transgender Men with Gender Dysphoria and Cisgender People. Journal of Clinical Medicine, 10(12), 2623. https://doi.org/10.3390/jcm10122623