Applications and Limitations of Neuro-Monitoring in Paediatric Anaesthesia and Intravenous Anaesthesia: A Narrative Review
Abstract
:1. EEG-Based Anaesthesia Depth Monitoring
1.1. Available EEGS Technology
1.2. Clinical Application
1.3. Limitations of pEEG and DSA in Children
2. Near Infrared Spectroscopy (NIRS) in Children
2.1. Population Target
2.2. ScO2 Values and Trigger for Intervention
2.3. ScO2 and Clinical Algorithms
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornelissen, L.; Kim, S.E.; Lee, J.M.; Brown, E.N.; Purdon, P.L.; Berde, C.B. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br. J. Anaesth. 2018, 120, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, A.J.; De Leeuw, T.G.; Tibboel, D.; Weber, F. Lower bispectral index values in children who are intellectually disabled. Anaest. Analg. 2009, 109, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.P.; Walsh, E.C.; Cornelissen, L.; Lee, J.M.; Berde, C.; Shank, E.S.; Purdon, P.L. Case Studies Using the Electroencephalogram to Monitor Anesthesia-Induced Brain States in Children. Anesth. Analg. 2020, 131, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.C.; Lee, J.M.; Terzakis, K.; Zhou, D.W.; Burns, S.; Buie, T.M.; Firth, P.G.; Shank, E.S.; Houle, T.T.; Brown, E.N. Age-dependent changes in the propofol-induced electroencephalogram in children with autism spectrum disorder. Front. Syst. Neurosci. 2018, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigouzzo, A.; Khoy-Ear, L.; Laude, D.; Louvet, N.; Moutard, M.-L.; Sabourdin, N.; Constant, I. EEG profiles during general anesthesia in children: A comparative study between sevoflurane and propofol. Paediatr. Anaesth. 2019, 29, 250–257. [Google Scholar] [CrossRef]
- Davidson, A.; Huang, G.; Rebmann, C.; Ellery, C. Performance of entropy and Bispectral Index as measures of anaesthesia effect in children of different ages. Br. J. Anaesth. 2005, 95, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.; Skowno, J. Neuromonitoring in paediatric anaesthesia. Curr. Opin. Anaesthesiol. 2019, 32, 370–376. [Google Scholar] [CrossRef]
- Lee, J.M.; Akeju, O.; Terzakis, K.; Pavone, K.J.; Deng, H.; Houle, T.T.; Firth, P.G.; Shank, E.S.; Brown, E.N.; Purdon, P.L. A prospective study of age-dependent changes in propofol-induced electroencephalogram oscillations in children. Anesthesiology 2017, 127, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Purdon, P.L.; Sampson, A.; Pavone, K.J.; Brown, E.N. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology 2015, 123, 937–960. [Google Scholar] [CrossRef] [Green Version]
- Maja, V.; Talja, P.; Tenkanen, N.; Tolvanen-Laakso, H. Description of the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta Anaesthesiol. Scand. 2004, 48, 154–161. [Google Scholar]
- De Heer, I.J.; Bouman, S.J.M.; Weber, F. Electroencephalographic (EEG) density spectral array monitoring in children during sevoflurane anaesthesia: A prospective observational study. Anaesthesia 2019, 74, 45–50. [Google Scholar] [CrossRef]
- Zanner, R.; Pilge, S.; Kochs, E.F.; Kreuzer, M.; Schneider, G. Time delay of electroencephalogram index calculation: Analysis of cerebral state, bispectral, and Narcotrend indices using perioperatively recorded electroencephalographic signals. Br. J. Anaesth. 2009, 103, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Myles, P.S.; Leslie, K.; McNeil, J.; Forbes, A.; Chan, M.T.V.; B-Aware Trial Group. Bispectral index monitoring to prevent awareness during anaesthesia: The B-Aware randomised controlled trial. Lancet 2004, 363, 1757–1763. [Google Scholar] [CrossRef]
- Avidan, M.S.; Zhang, L.; Burnside, B.A.; Finkel, K.J.; Searleman, A.; Selvidge, J.A.; Saager, L.; Turner, M.S.; Rao, S.; Bottros, M.; et al. Anesthesia awareness and the bispectral index. N. Engl. J. Med. 2008, 358, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J.; Glass, P.S.; Windsor, A.; Payne, F.; Rosow, C.; Sebel, P.; Manberg, P. Bispectral index allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology. 1997, 87, 808–815. [Google Scholar] [CrossRef]
- Liu, S.S. Effects of Bispectral Index monitoring on ambulatory anesthesia: A meta-analysis of randomised controlled trials and a cost analysis. Anesthesiology 2004, 101, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.R.; Bernardo, W.M.; Nunes, V.M. Benefit of general anesthesia monitored by bispectral index compared with monitoring guided only by clinical parameters. Systematic review and meta-analysis. Braz. J. Anesthesiol. 2017, 67, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargin, M.; Uluer, M.S.; Ozmen, S. The effects of bispectral index monitoring on hemodynamics and recovery profile in developmentally delayed pediatric patients undergoing dental surgery. Paediatr. Anaesth. 2015, 950–955. [Google Scholar] [CrossRef]
- Weber, F.; Walhout, L.C.; Escher, J.C. The impact of narcotrend EEG-guided propofol administration on the speed of recovery from pediatric procedural sedation-a randomized controlled trial. Paediatr. Anaesth. 2018, 28, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.L.; Shanks, A.M.; Woodrum, D.T. Intraoperative bispectral index monitoring and time to extubation after cardiac surgery: Secondary analysis of a randomized controlled trial. BMC Anesthesiol. 2014, 14, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sury, M.R. Accidental awareness during anesthesia in children. Paediatr. Anaesth. 2016, 26, 468–474. [Google Scholar] [CrossRef]
- Yuan, I.; Olbrecht, V.A.; Mensinger, J.L.; Zhang, B.; Davidson, A.J.; Von Ungern-Sternberg, B.S.; Skowno, J.; Lian, Q.; Song, X.; Zhao, P. Statistical Analysis Plan for “An international multicenter study of isoelectric electroencephalography events in infants and young children during anesthesia for surgery”. Paediatr. Anaesth. 2019, 29, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Cheung, Y.M.; Scoones, G.; Stolker, R.J.; Weber, F. Use, applicability and reliability of depth of hypnosis monitors in children—a survey among members of the European Society for Paediatric Anaesthesiology. BMC Anesthesiol. 2018, 18, 40. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.J.; Bagshaw, O. Practicalities of Total Intravenous Anesthesia and Target-controlled Infusion in Children. Anesthesiology 2019, 131, 164–185. [Google Scholar] [CrossRef]
- Eisermann, M.; Kaminska, A.; Moutard, M.L.; Soufflet, C.; Plouin, P. Normal EEG in childhood: From neonates to adolescents. Neurophysiol. Clin. 2013, 43, 35–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, J.; Yu, J.; Tian, M.; Cui, X.; Wu, A. Variation of bispectral index in children aged 1–12 years under propofol anesthesia: An observational study. BMC Anesthesiol. 2019, 19, 145. [Google Scholar] [CrossRef] [Green Version]
- Sciusco, A.; Standing, J.F.; Sheng, Y.; Raimondo, P.; Cinnella, G.; Dambrosio, M. Effect of age on the performance of bispectral and entropy indices during sevoflurane pediatricanesthesia: A pharmacometric study. Paediatr. Anaesth. 2017, 27, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Dennhardt, N.; Arndt, S.; Beck, C.; Boethig, D.; Heiderich, S.; Schultz, B.; Weber, F.; Sümpelmann, R. Effect of age on Narcotrend Index monitoring during sevoflurane anesthesia in children below 2 years of age. Paediatr. Anaesth. 2018, 28, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Purdon, P.; Pavone, K.; Akeju, O.; Smith, A.; Sampson, A.; Lee, J.; Zhou, D.; Solt, K.; Brown, E. The Ageing Brain: Age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br. J. Anaesth. 2015, 115, i46–i57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, K.; Shigemi, K.; Sawa, T. Neonatal electroencephalography shows low sensitivity to anesthesia. Neurosci. Lett. 2012, 517, 87–91. [Google Scholar] [CrossRef]
- Hans, P.; Dewandre, P.Y.; Brichant, J.F.; Bonhomme, V. Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br. J. Anaesth. 2005, 94, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Ge, S.; Xiong, W.; Zhou, P.; Cang, J.; Xue, Z. Effects of different loading doses of dexmedetomidine on bispectral index under stepwise propofol target-controlled infusion. Pharmacology 2013, 91, 1–6. [Google Scholar] [CrossRef]
- Ozcengiz, D.; Unlügenç, H.; Güneş, Y.; Karacaer, F. The effect of dexmedetomidine on bispectral index monitoring in children. Middle East. J. Anaesthesiol. 2012, 21, 613–618. [Google Scholar]
- Prabhakar, H.; Ali, Z.; Bithal, P.K.; Singh, G.P.; Laithangbam, P.K.; Dash, H.H. EEG entropy values during isoflurane, sevoflurane and halothane anesthesia with and without nitrous oxide. J. Neurosurg. Anesthesiol. 2009, 21, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Hans, P.; Dewandre, P.Y.; Brichant, J.F.; Bonhomme, V. Effects of nitrous oxide on spectral entropy of the EEG during surgery under balanced anaesthesia with sufentanil and sevoflurane. Acta Anaesthesiol. Belg. 2005, 56, 37–43. [Google Scholar] [PubMed]
- Schuller, P.J.; Newell, S.; Strickland, P.A.; Barry, J.J. Response of bispectral index to neuromuscular block in awake volunteers. Br. J. Anaesth. 2015, 115, i95–i103. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.N.; Bischoff, P.; Standl, T.; Lankenau, G.; Hilbert, M.; Esch, J.S.A. Comparative Evaluation of Narcotrend, Bispectral Index, and Classical Electroencephalographic Variables During Induction, Maintenance, and Emergence of a Propofol/Remifentanil Anesthesia. Anesth. Analg. 2004, 98, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Minto, C.F.; Schnider, T.W.; Egan, T.D.; Youngs, E.; Lemmens, H.J.; Gambus, P.L.; Billard, V.; Hoke, J.F.; Moore, K.H.; Hermann, D.J.; et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 1997, 86, 10–23. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, J.C. Intraoperative blood pressure levels in young and anaesthetised children: Are we getting any closer to the truth? Curr. Opin. Anaesthesiol. 2018, 31, 313–319. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.E.; Schouten, A.N. Beyond survival; influences of blood pressure, cerebral perfusion and anesthesia on neurodevelopment. Paediatr. Anaesth. 2014, 24, 68–73. [Google Scholar] [CrossRef]
- Nagdyman, N.; Fleck, T.; Schubert, S.; Ewert, P.; Peters, B.; Lange, P.E.; Abdul-Khaliq, H. Comparison between cerebral tis- sue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children. Intensive Care Med. 2005, 31, 846–850. [Google Scholar] [CrossRef]
- Nagdyman, N.; Ewert, P.; Peters, B.; Miera, O.; Fleck, T.; Berger, F. Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr. Anaesth. 2008, 18, 160–166. [Google Scholar] [CrossRef]
- Suemori, T.; Skowno, J.; Horton, S.; Bottrell, S.; Butt, W.; Davidson, A.J. Cerebral oxygen saturation and tissue hemoglobin concentration as predictive markers of early postoperative outcomes after pediatric cardiac surgery. Paediatr. Anaesth. 2016, 26, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.J.; Da Costa, C.S.; Austin, T.; Brady, K.M.; Czosnyka, M.; Lee, J.K. Neonatal cerebrovascular autoregulation. Pediatr. Res. 2018, 84, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Soul, J.S.; Hammer, P.E.; Tsuji, M.; Saul, J.P.; Bassan, H.; Limperopoulos, C.; Disalvo, D.N.; Moore, M.; Akins, P.; Ringer, S.; et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr. Res. 2007, 61, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, F.Y.; Leung, T.S.; Austin, T.; Wilkinson, M.; Meek, J.H.; Wyatt, J.S.; Walker, A.M. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 2008, 121, e604–e611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassan, H.; Gauvreau, K.; Newburger, J.W.; Tsuji, M.; Limperopoulos, C.; Soul, J.S.; Walter, G.; Laussen, P.C.; Jonas, R.A.; Du Plessis, A.J. Identification of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr. Res. 2005, 57, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, J.; Moller, G. Cerebral near-infrared spectroscopy correlates to vital parameters during cardiopulmonary bypass surgery in children. Pediatr. Cardiol. 2014, 35, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kussman, B.D.; Laussen, P.C.; Benni, P.B.; McGowan, F.X.; McElhinney, D.B. Cerebral oxygen saturation in children with congenital heart disease and chronic hypoxemia. Anesth. Analg. 2017, 125, 234–240. [Google Scholar] [CrossRef]
- Zulueta, J.L.; Vida, V.L.; Perisinotto, E.; Pittarello, D.; Stellin, G. Role of intraoperative regional oxygen saturation using near infrared spectroscopy in the prediction of low output syndrome after pediatric heart surgery. J. Card. Surg. 2013, 28, 446–452. [Google Scholar] [CrossRef]
- Chakravarti, S.B.; Mittnacht, A.J.; Katz, J.C.; Nguyen, K.; Joashi, U.; Srivastava, S. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2009, 23, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Vida, V.L.; Tessari, C.; Cristante, A.; Nori, R.; Pittarello, D.; Ori, C.; Cogo, P.; Perissinotto, E.; Stellin, G. The role of regional oxygen saturation using near-infrared spectroscopy and blood lactate levels as early predictors of outcome after pediatric cardiac surgery. Can. J. Cardiol. 2016, 32, 970–977. [Google Scholar] [CrossRef]
- Andropoulos, D.B.; Diaz, L.K.; Fraser, C.D., Jr.; McKenzie, E.D.; Stayer, S.A. Is bilateral monitoring of cerebral oxygen saturation necessary during neonatal aortic arch reconstruction? Anesth. Analg. 2004, 98, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.C.; Charpie, J.R.; Ohye, R.G. Near-infrared spectroscopy: What we know and what we need to know—A systematic review of the congenital heart disease literature. J. Thorac. Cardiovasc. Surg. 2009, 137, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishay, M.; Giacomello, L.; Retrosi, G.; Thyoka, M.; Garriboli, M.; Brierley, J.; Harding, L.; Scuplak, S.; Cross, K.M.; Curry, J.I.; et al. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: Results of a pilot randomized controlled trial. Ann. Surg. 2013, 258, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Bishay, M.; Giacomello, L.; Retrosi, G.; Thyoka, M.; Nah, S.A.; McHoney, M.; De Coppi, P.; Brierley, J.; Scuplak, S.; Kiely, E.M.; et al. Decreased cerebral oxygen saturation during thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia in infants. J. Pediatr. Surg. 2011, 46, 47–51. [Google Scholar] [CrossRef]
- Costerus, S.; Vlot, J.; Van Rosmalen, J.; Wijnen, R.; Weber, F. Effects of neonatal thoracoscopic surgery on tissue oxygenation: A pilot study on (Neuro-) monitoring and outcomes. Eur. J. Pediatr. Surg. 2019, 29, 166–172. [Google Scholar]
- Rhondali, O.; Juhel, S.; Mathews, S.; Cellier, Q.; Desgranges, F.P.; Mahr, A.; De Queiroz, M.; Pouyau, A.; Rhzioual-Berrada, K.; Chassard, D. Impact of sevoflurane anesthesia on brain oxygenation in children younger than 2 years. Paediatr. Anaesth. 2014, 24, 734–740. [Google Scholar] [CrossRef]
- Michelet, D.; Arslan, O.; Hilly, J.; Mangalsuren, N.; Brasher, C.; Grace, R.; Bonnard, A.; Malbezin, S.; Nivoche, Y.; Dahmani, S. Intraoperative changes in blood pressure associated with cerebral desaturation in infants. Paediatr. Anaesth. 2015, 25, 681–688. [Google Scholar] [CrossRef]
- Koch, H.W.; Hansen, T.G. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates: A 24-h observational study. Paediatr. Anaesth. 2016, 26, 190–198. [Google Scholar] [CrossRef]
- Olbrecht, V.A.; Skowno, J.; Marchesini, V.; Ding, L.; Jiang, Y.; Ward, C.G.; Yu, G.; Liu, H.; Schurink, B.; Vutskits, L.; et al. An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology 2018, 128, 85–96. [Google Scholar] [CrossRef]
- Gómez-Pesquera, E.; Poves-Alvarez, R.; Martinez-Rafael, B.; Liu, P.; Alvarez, J.; Lorenzo-López, M.; Fierro, I.; Gómez-Sánchez, E.; Heredia-Rodriguez, M.; Gómez-Herreras, J.I.; et al. Cerebral Oxygen Saturation and Negative Postoperative Behavioral Changes in Pediatric Surgery: A Prospective Observational Study. J. Pediatr. 2019, 208, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Skowno, J.; Vutskits, L.; McGowan, F.; Kurth, C.D. Staying away from the edge-cerebral oximetry guiding blood pressure management. Paediatr. Anaesth. 2015, 25, 654–655. [Google Scholar] [CrossRef]
- Bailey, S.M.; Hendricks-Munoz, K.D.; Wells, J.T.; Mally, P. Packed red blood cell transfusion increases regional cerebral and splanchnic tissue oxygen saturation in anemic symptomatic preterm infants. Am. J. Perinatol. 2010, 27, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Kurth, C.; Steven, J.L.; Montenegro, L.M.; Watzman, H.; Gaynor, J.; Spray, T.L.; Nicolson, S.C. Cerebral oxygen saturation before congenital heart surgery. Ann. Thorac. Surg. 2001, 72, 187–192. [Google Scholar] [CrossRef]
- Franceschini, M.A.; Thaker, S.; Themelis, G.; Krishnamoorthy, K.K.; Bortfeld, H.; Diamond, S.G.; Boas, D.A.; Arvin, K.; Grant, P.E. Assessment of infant brain development with frequency-domain near-infrared spectroscopy. Pediatr. Res. 2007, 61, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Kurth, C.D.; Levy, W.J.; McCann, J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J. Cereb. Blood Flow Metab. 2002, 22, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Kurth, C.D.; McCann, J.C.; Wu, J.; Miles, L.; Loepke, A.W. Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth. Analg. 2009, 108, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.; Deschamps, A.; Murkin, J.M. A proposed algorithm for the intra-operative use of cerebral near-infrared spectroscopy. Semin. Cardiothorac. Vasc. Anesth. 2007, 11, 274–281. [Google Scholar] [CrossRef]
- Weber, F.; Scoones, G.P. A practical approach to cerebral near-infrared spectroscopy (NIRS) directed hemodynamic management in non cardiac pediatricanesthesia. Pediatr. Anesth. 2019, 29, 993–1001. [Google Scholar] [CrossRef] [Green Version]
Device | EEG-Derived Index (Processed EEG) | Mechanism of Action-Algorhytm Basis | Anaesthesia Range (Total Range) | Delay (s) | Potential Influencing Factors | Other EEG Monitoring Included into the Device | Additional Parameters | Index Age Limits |
---|---|---|---|---|---|---|---|---|
BISMonitor (Bispectral Index Monitor Covidien LP, Medtronic Inc.) - 2 channel - 4 channel | BIS index | Analysis of EEG features (degree of high frequency activation, low frequency synchronisation, nearly suppressed periods, fully suppressed periods) which correlate with hypnosis/sedations EEG in adults | 40–60 (0–100) 0 = very deep hypnosis; 100 = conscious | Index 5–15 DSA Real-time | EMGand NMBDs Medical Devices (Electocautery, pacemakers, etc.) Certain anaesthetic agentis or adjuvants, Serious clinical conditions (cerebral ischemia, hypo perfusion, cardiac arrest, hypovolemia, hypotension, hypothermia) | 2 channel M: Raw EEG 4 channel M: - Raw-EEG - DSA (Density Spectral Array) - Asymmetry (ASYM) Indicator | EMG (bar 0–4 −> EMG power 30 to > 55) Burst Count (Burst/minute) SQI (Signal Quality Indicator) 0–100 Suppression Ratio (SR) number | 12 year = safe 1-5 year to be cautiously used (2 channel sensor age > 4 years recommended; <1 year not safe DSA > 6 months |
SEDLine (Root Masimo) | PSI (Patient State Index) | Quantitative EEG analysis of the power within the α, β, δ and θ frequency bands; the temporal and spatial gradients occurring among these frequency bands when changing anaesthetic dept. | 25–50 (0–100) 0 = very deep hypnosis; 100 = conscious | Index 25 DSA Real-time | EMG and NMBDs Medical Devices (Pacemakers, etc.) Certain anaesthetic agentis or adjuvants, Serious clinical conditions (cerebral ischemia, hypo perfusion, cardiac arrest, hypovolemia, hypotension, hypothermia) | Raw EEG 4 channels Power Spectrum and DSA SEFL95 and SEFR95 Spectral Edge Frequency left and right (95% quantile) ASYMmetry Graph | EMG Suppression Rate (SR) Artifact (ARTF) Electrical Impedance | <1 year not safe DSA > 6 months |
NARCOTREND-Compact M (Medival) | Narcotrend Monitor | Analysis of multivariate EEG-derived parameters to carry out an automatic classification of the EEG on a scale ranging from stage A (conscious) to stage F (very deep hypnosis). | D (general anaesthesia)-E (general anaesthesia with deep hypnosis); [A (conscious) − F (very deep hypnosis)]. | Real-time | EMG and NMBDs Medical Devices (Electocautery, pacemakers, etc.) Serious clinical conditions (cerebral ischemia, hypo perfusion, cardiac arrest, hypovolemia, hypotension, hypothermia) | Raw-EEG (1 or 2 channels) Cerebrogram Relative Band Activities/Power Power Spectrum and DSA Quantiles SEF50 (median (50% quantile) and SEF95 spectral edge frequency (95% quantile) | EMG Burst Suppression Ratio (BSR) STI (sharp transient intensity) Impedance | <1 year not safe <60 days: only EEG classifications for stages with implied or clear suppression lines (E2 to F1). If there is an EEG without suppression lines, the output is “Undiff. EEG” 60 day–1 year: the full A–F scale is displayed. As long as no fully classifiable EEG is detected −> the output “Undiff. EEG” is displayed. DSA > 6 months |
Narcotrend Index | 20–64 (0–100) 0 = very deep hypnosis; 100 = conscious | Index 28 DSA Real-time | ||||||
E-ENTROPYModule (GE Healthcare, Inc.) | SE (State of Entropy) RE (Response Entropy) | Analysis of the irregularity, complexity, or unpredictability characteristics of the EEG and the frontal electromyograph (FEMG) signals | 40–60 (0–91) | 15–60 | Medical Devices (Electocautery, pacemakers, etc.) Neurological Disorders, traumas, epileptic seizures and psychoactive medication | – | EMG (Index component) Burst Suppression Ratio (BSR) | <2 year not safe |
CSM Cerebral State Monitor (Danmeter) | CSI (Cerebral State Index) | Quantitative EEG analysis in specific frequency bands (α and β), the relationship between these quantities (β-α) and the amount of instantaneous burst suppression (BS) in each thirty-second period of the EEG. | 40–60 (0–100) 0 = very deep hypnosis; 100 = conscious | 50 | Serious clinical conditions (severe neurological disorders) and psychoactive medication Medical Devices (Pacemakers) | Raw EEG | EMG% and EMG bar BS% Indicator (Burst suppression percentage SQI (Signal Quality Indicator) 0–100 Sensor Impedance | <2 year not safe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, C.; Marchesini, V.; Disma, N. Applications and Limitations of Neuro-Monitoring in Paediatric Anaesthesia and Intravenous Anaesthesia: A Narrative Review. J. Clin. Med. 2021, 10, 2639. https://doi.org/10.3390/jcm10122639
Grasso C, Marchesini V, Disma N. Applications and Limitations of Neuro-Monitoring in Paediatric Anaesthesia and Intravenous Anaesthesia: A Narrative Review. Journal of Clinical Medicine. 2021; 10(12):2639. https://doi.org/10.3390/jcm10122639
Chicago/Turabian StyleGrasso, Chiara, Vanessa Marchesini, and Nicola Disma. 2021. "Applications and Limitations of Neuro-Monitoring in Paediatric Anaesthesia and Intravenous Anaesthesia: A Narrative Review" Journal of Clinical Medicine 10, no. 12: 2639. https://doi.org/10.3390/jcm10122639
APA StyleGrasso, C., Marchesini, V., & Disma, N. (2021). Applications and Limitations of Neuro-Monitoring in Paediatric Anaesthesia and Intravenous Anaesthesia: A Narrative Review. Journal of Clinical Medicine, 10(12), 2639. https://doi.org/10.3390/jcm10122639