Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA
Abstract
:1. Introduction
2. Processing and Selection of Surgically Retrieved Sperm for ICSI
2.1. Mechanical Processing of Testicular Tissue
2.2. Use of Erythrocyte-Lysing Buffer (ELB)
2.3. Enzymatic Digestion
2.4. Motility Enhancers
2.5. Short-Term Culture vs. Simultaneous ICSI
2.6. Motile Sperm Identification with HOST
2.7. Sperm Tail Flexibility Test to Check Sperm Viability
2.8. Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)
2.9. Laser-Assisted Sperm Selection
2.10. Birefringence-Based Sperm Selection
2.11. Microfluidics-Assisted Sperm Sorting
2.12. Raman Spectroscopy-Assisted Sperm Retrieval
2.13. Fluorescence-Activated Cell Sorting (FACS)
2.14. Other Emerging Technologies for Predicting Spermatogenesis in the Testes
3. Cryopreservation of Surgically Retrieved Sperm for ICSI
3.1. Fresh vs. Frozen/Thawed TESE
3.2. Whole Tissue or Isolated Spermatozoa
3.3. Cryopreservation Methods
3.4. Choosing the Proper Cryoprotectant
3.5. Cryopreservation of Very Few Spermatozoa
3.6. Drawbacks of Sperm Cryopreservation
3.7. Minimizing the Harmful Effects of Cryopreservation
4. Processing Immature Germ Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deruyver, Y.; Vanderschueren, D.; Van der Aa, F. Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: A systematic review. Andrology 2014, 2, 20–24. [Google Scholar] [CrossRef]
- Meng, M.V.; Cha, I.; Ljung, B.M.; Turek, P.J. Testicular fine-needle aspiration in infertile men: Correlation of cytologic pattern with biopsy histology. Am. J. Surg. Pathol. 2001, 25, 71–79. [Google Scholar] [CrossRef]
- Ubaldi, F.; Nagy, Z.; Liu, J.; Tournaye, H.; Camus, M.; Smitz, J.; Liebaers, I.; Devroey, P.; Van Steirteghem, A. A survey of four years of experience with intracytoplasmic sperm injection. Acta Eur. Fertil. 1995, 26, 7–11. [Google Scholar]
- Schlegel, P.N. Testicular sperm extraction: Microdissection improves sperm yield with minimal tissue excision. Hum. Reprod. 1999, 14, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Ateyah, A.; Hany, R.; Zohdy, W. Prospective comparative study between microsurgical and conventional testicular sperm extraction in non-obstructive azoospermia: Follow-up by serial ultrasound examinations. Hum. Reprod. 2000, 15, 653–656. [Google Scholar] [CrossRef]
- Okada, H.; Dobashi, M.; Yamazaki, T.; Hara, I.; Fujisawa, M.; Arakawa, S.; Kamidono, S. Conventional versus microdissection testicular sperm extraction for nonobstructive azoospermia. J. Urol. 2002, 168, 1063–1067. [Google Scholar] [CrossRef]
- Westlander, G. Utility of micro-TESE in the most severe cases of non-obstructive azoospermia. Ups J. Med. Sci. 2020, 125, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Colpi, G.M.; Colpi, E.M.; Piediferro, G.; Giacchetta, D.; Gazzano, G.; Castiglioni, F.M.; Magli, M.C.; Gianaroli, L. Microsurgical TESE versus conventional TESE for ICSI in non-obstructive azoospermia: A randomized controlled study. Reprod. Biomed. Online 2009, 18, 315–319. [Google Scholar] [CrossRef]
- Silber, S.J.; Van Steirteghem, A.C.; Liu, J.; Nagy, Z.; Tournaye, H.; Devroey, P. High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicle biopsy. Hum. Reprod. 1995, 10, 148–152. [Google Scholar] [CrossRef]
- Edirisinghe, W.R.; Junk, S.M.; Matson, P.L.; Yovich, J.L. Changes in motility patterns during in-vitro culture of fresh and frozen/thawed testicular and epididymal spermatozoa: Implications for planning treatment by intracytoplasmic sperm injection. Hum. Reprod. 1996, 11, 2474–2476. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tsai, Y.L.; Katz, E.; Compton, G.; Garcia, J.E.; Baramki, T.A. Outcome of in-vitro culture of fresh and frozen-thawed human testicular spermatozoa. Hum. Reprod. 1997, 12, 1667–1672. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.A.; Cotman, A.S. A new method for freezing testicular biopsy sperm: Three pregnancies with sperm extracted from cryopreserved sections of seminiferous tubule. Fertil. Steril. 1997, 68, 741–744. [Google Scholar] [CrossRef]
- Popal, W.; Nagy, Z.P. Laboratory processing and intracytoplasmic sperm injection using epididymal and testicular spermatozoa: What can be done to improve outcomes? Clinics (Sao Paulo) 2013, 68 (Suppl. 1), 125–130. [Google Scholar] [CrossRef]
- Pousette, A.; Akerlöf, E.; Rosenborg, L.; Fredricsson, B. Increase in progressive motility and improved morphology of human spermatozoa following their migration through Percoll gradients. Int. J. Androl. 1986, 9, 1–13. [Google Scholar] [CrossRef]
- Verheyen, G.; Popovic-Todorovic, B.; Tournaye, H. Processing and selection of surgically-retrieved sperm for ICSI: A review. Basic Clin. Androl. 2017, 27, 6. [Google Scholar] [CrossRef] [Green Version]
- Verheyen, G.; De Croo, I.; Tournaye, H.; Pletincx, I.; Devroey, P.; van Steirteghem, A.C. Comparison of four mechanical methods to retrieve spermatozoa from testicular tissue. Hum. Reprod. 1995, 10, 2956–2959. [Google Scholar] [CrossRef]
- Crabbé, E.; Verheyen, G.; Tournaye, H.; Van Steirteghem, A. Freezing of testicular tissue as a minced suspension preserves sperm quality better than whole-biopsy freezing when glycerol is used as cryoprotectant. Int. J. Androl. 1999, 22, 43–48. [Google Scholar] [CrossRef]
- Haimov-Kochman, R.; Imbar, T.; Lossos, F.; Nefesh, I.; Zentner, B.S.; Moz, Y.; Prus, D.; Bdolah, Y.; Hurwitz, A. Technical modification of testicular sperm extraction expedites testicular sperm retrieval. Fertil. Steril. 2009, 91, 281–284. [Google Scholar] [CrossRef]
- Verheyen, G.; Nagy, Z.; Joris, H.; De Croo, I.; Tournaye, H.; Van Steirteghem, A. Quality of frozen-thawed testicular sperm and its preclinical use for intracytoplasmic sperm injection into in vitro-matured germinal-vesicle stage oocytes. Fertil. Steril. 1997, 67, 74–80. [Google Scholar] [CrossRef]
- Yazdinejad, F.; Heydari, L.; Motamed Zadeh, L.; Seifati, S.M.; Agha-Rahimi, A. Application of erythrocyte lysing buffer (ELB) has detrimental effects on human sperm quality parameters, DNA fragmentation and chromatin structure. Andrologia 2020, 52, e13702. [Google Scholar] [CrossRef]
- Ball, B.A. Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 2008, 107, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Soygur, B.; Celik, S.; Celik-Ozenci, C.; Sati, L. Effect of erythrocyte-sperm separation medium on nuclear, acrosomal, and membrane maturity parameters in human sperm. J. Assist. Reprod. Genet. 2018, 35, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Nagayoshi, M.; Takemoto, Y.; Tanaka, I.; Kusunoki, H.; Watanabe, S.; Kuroda, K.; Takeda, S.; Ito, M.; Yanagimachi, R. Fourteen babies born after round spermatid injection into human oocytes. Proc. Natl. Acad. Sci. USA 2015, 112, 14629–14634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, G.; Singh, S.; Devi, M.G. Successful fertilization and embryo development after spermatid injection: A hope for nonobstructive azoospermic patients. J. Hum. Reprod. Sci. 2015, 8, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Chemes, H.; Cigorraga, S.; Bergadá, C.; Schteingart, H.; Rey, R.; Pellizzari, E. Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: Testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol. Reprod. 1992, 46, 793–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzbrunn, A.; Benson, D.M.; Holstein, A.F.; Schulze, W. A new concept for the extraction of testicular spermatozoa as a tool for assisted fertilization (ICSI). Hum. Reprod. 1996, 11, 752–755. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Baukloh, V.; Naether, O.G.; Schulze, W.; Salzbrunn, A.; Benson, D.M. Pregnancy after intracytoplasmic sperm injection of spermatozoa extracted from frozen-thawed testicular biopsy. Hum. Reprod. 1996, 11, 2197–2199. [Google Scholar] [CrossRef] [Green Version]
- Crabbé, E.; Verheyen, G.; Tournaye, H.; Van Steirteghem, A. The use of enzymatic procedures to recover testicular germ cells. Hum. Reprod. 1997, 12, 1682–1687. [Google Scholar] [CrossRef] [Green Version]
- Hadley, M.A.; Dym, M. Immunocytochemistry of extracellular matrix in the lamina propria of the rat testis: Electron microscopic localization. Biol. Reprod. 1987, 37, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Siu, M.K.; Lee, W.M.; Cheng, C.Y. The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 2003, 144, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.Y.; Mruk, D.D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev. 2002, 82, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Aydos, O.S.; Yukselten, Y.; Ozkavukcu, S.; Sunguroglu, A.; Aydos, K. ADAMTS1 and ADAMTS5 metalloproteases produced by Sertoli cells: A potential diagnostic marker in azoospermia. Syst. Biol. Reprod. Med. 2019, 65, 29–38. [Google Scholar] [CrossRef]
- Modarresi, T.; Sabbaghian, M.; Shahverdi, A.; Hosseinifar, H.; Akhlaghi, A.A.; Gilani, M.A.S. Enzymatic digestion improves testicular sperm retrieval in non-obstructive azoospermic patients. Iran. J. Reprod. Med. 2013, 11, 447–452. [Google Scholar] [PubMed]
- Crabbé, E.; Verheyen, G.; Silber, S.; Tournaye, H.; Van de Velde, H.; Goossens, A.; Van Steirteghem, A. Enzymatic digestion of testicular tissue may rescue the intracytoplasmic sperm injection cycle in some patients with non-obstructive azoospermia. Hum. Reprod. 1998, 13, 2791–2796. [Google Scholar] [CrossRef] [Green Version]
- Aydos, K.; Demirel, L.C.; Baltaci, V.; Unlü, C. Enzymatic digestion plus mechanical searching improves testicular sperm retrieval in non-obstructive azoospermia cases. Eur. J. Obstet Gynecol. Reprod. Biol. 2005, 120, 80–86. [Google Scholar] [CrossRef]
- Ramasamy, R.; Reifsnyder, J.E.; Bryson, C.; Zaninovic, N.; Liotta, D.; Cook, C.A.; Hariprashad, J.; Weiss, D.; Neri, Q.; Palermo, G.D.; et al. Role of tissue digestion and extensive sperm search after microdissection testicular sperm extraction. Fertil. Steril. 2011, 96, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Varghese, A.C. Laboratory handling of epididymal and testicular spermatozoa: What can be done to improve sperm injections outcome. J. Hum. Reprod. Sci. 2012, 5, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, K.; Szczepanik, M.; Ptak, M.; Ptak, W. The influence of collagenase treatment on the production of TNF-alpha, IL-6 and IL-10 by testicular macrophages. J. Immunol. Methods 2005, 301, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nagy, Z.; Joris, H.; Tournaye, H.; Smitz, J.; Camus, M.; Devroey, P.; Van Steirteghem, A. Analysis of 76 total fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum. Reprod. 1995, 10, 2630–2636. [Google Scholar] [PubMed]
- Esfandiari, N.; Javed, M.H.; Gotlieb, L.; Casper, R.F. Complete failed fertilization after intracytoplasmic sperm injection--analysis of 10 years’ data. Int. J. Fertil. Womens Med. 2005, 50, 187–192. [Google Scholar] [PubMed]
- Wu, B.; Wong, D.; Lu, S.; Dickstein, S.; Silva, M.; Gelety, T.J. Optimal use of fresh and frozen-thawed testicular sperm for intracytoplasmic sperm injection in azoospermic patients. J. Assist. Reprod. Genet. 2005, 22, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taşdemir, I.; Taşdemir, M.; Tavukçuoğlu, S. Effect of pentoxifylline on immotile testicular spermatozoa. J. Assist. Reprod. Genet. 1998, 15, 90–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tash, J.S.; Means, A.R. Cyclic adenosine 3’,5’ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 1983, 28, 75–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morisawa, M.; Okuno, M. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature 1982, 295, 703–704. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Tews, G.; Mayer, R.B.; Ziehr, S.; Arzt, W.; Costamoling, W.; Shebl, O. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil. Steril. 2011, 96, 1331–1336. [Google Scholar] [CrossRef]
- Pariz, J.R.; Ranéa, C.; Monteiro, R.A.C.; Evenson, D.P.; Drevet, J.R.; Hallak, J. Melatonin and Caffeine Supplementation Used, Respectively, as Protective and Stimulating Agents in the Cryopreservation of Human Sperm Improves Survival, Viability, and Motility after Thawing compared to Traditional TEST-Yolk Buffer. Oxid. Med. Cell Longev. 2019, 2019, 6472945. [Google Scholar] [CrossRef]
- Verma, R.; Huang, Z.; Deutschman, C.S.; Levy, R.J. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis. Crit. Care Med. 2009, 37, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Breininger, E.; Cetica, P.D.; Beconi, M.T. Capacitation inducers act through diverse intracellular mechanisms in cryopreserved bovine sperm. Theriogenology 2010, 74, 1036–1049. [Google Scholar] [CrossRef]
- Marquez, B.; Suarez, S.S. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod. 2004, 70, 1626–1633. [Google Scholar] [CrossRef] [Green Version]
- Pariz, J.R.; Hallak, J. Effects of caffeine supplementation in post-thaw human semen over different incubation periods. Andrologia 2016, 48, 961–966. [Google Scholar] [CrossRef]
- York, R.G.; Randall, J.L.; Scott, W.J. Teratogenicity of paraxanthine (1,7-dimethylxanthine) in C57BL/6J. mice. Teratology 1986, 34, 279–282. [Google Scholar] [CrossRef]
- Das, K.; Das, S.; Bhoumik, A.; Jaiswal, B.S.; Majumder, G.C.; Dungdung, S.R. In vitro initiated sperm forward motility in caput spermatozoa: Weak and transient. Andrologia 2012, 44 (Suppl. 1), 807–812. [Google Scholar] [CrossRef]
- Mangoli, V.; Mangoli, R.; Dandekar, S.; Suri, K.; Desai, S. Selection of viable spermatozoa from testicular biopsies: A comparative study between pentoxifylline and hypoosmotic swelling test. Fertil. Steril. 2011, 95, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Tasdemir, M.; Tasdemir, I.; Kodama, H.; Tanaka, T. Pentoxifylline-enhanced acrosome reaction correlates with fertilization in vitro. Hum. Reprod. 1993, 8, 2102–2107. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, B.; Vlaisavljevic, V.; Reljic, M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J. Androl. 2006, 27, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, C.; Chinchole, J.M.; Hans, E.; Charles, O.; Franquebalme, J.P.; Glowaczower, E.; Salzmann, J.; Terriou, P.; Roulier, R. Crude cumulative delivery rate following ICSI using intentionally frozen-thawed testicular spermatozoa in 51 men with non-obstructive azoospermia. Reprod. Biomed. Online 2005, 11, 319–324. [Google Scholar] [CrossRef]
- Aizer, A.; Dratviman-Storobinsky, O.; Noach-Hirsh, M.; Konopnicki, S.; Lazarovich, A.; Raviv, G.; Orvieto, R. Testicular sperm retrieval: What should we expect from the fresh and subsequent cryopreserved sperm injection? Andrologia 2021, 53, e13849. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Lee, S.H.; Park, Y.S.; Lim, C.K.; Ko, D.S.; Yang, K.M.; Park, D.W. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin. Exp Reprod. Med. 2015, 42, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Tardif, S.; Madamidola, O.A.; Brown, S.G.; Frame, L.; Lefièvre, L.; Wyatt, P.G.; Barratt, C.L.; Martins Da Silva, S.J. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Hum. Reprod. 2014, 29, 2123–2135. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Tang, L.C.; Ma, H.K. Stimulation of the human spermatozoal fertilizing ability by dibutyryl 3’,5’-CAMP and theophylline in vitro. Arch. Androl. 1983, 11, 19–23. [Google Scholar] [CrossRef]
- Loughlin, K.R.; Agarwal, A. Use of theophylline to enhance sperm function. Arch. Androl. 1992, 28, 99–103. [Google Scholar] [CrossRef]
- Holubcová, Z.; Otevřel, P.; Koudelka, M.; Kloudová, S. Live birth achieved despite the absence of ejaculated spermatozoa and mature oocytes retrieved: A case report. J. Assist. Reprod. Genet. 2021, 38, 925–929. [Google Scholar] [CrossRef]
- Ebner, T.; Shebl, O.; Mayer, R.B.; Moser, M.; Costamoling, W.; Oppelt, P. Healthy live birth using theophylline in a case of retrograde ejaculation and absolute asthenozoospermia. Fertil. Steril. 2014, 101, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Lacham-Kaplan, O.; Trounson, A. The effects of the sperm motility activators 2-deoxyadenosine and pentoxifylline used for sperm micro-injection on mouse and human embryo development. Hum. Reprod. 1993, 8, 945–952. [Google Scholar] [CrossRef]
- Hattori, H.; Nakajo, Y.; Ito, C.; Toyama, Y.; Toshimori, K.; Kyono, K. Birth of a healthy infant after intracytoplasmic sperm injection using pentoxifylline-activated sperm from a patient with Kartagener’s syndrome. Fertil. Steril. 2011, 95, 2431.e2439. [Google Scholar] [CrossRef] [PubMed]
- Glenn, D.R.; McVicar, C.M.; McClure, N.; Lewis, S.E. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil. Steril. 2007, 87, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Lefièvre, L.; De Lamirande, E.; Gagnon, C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J. Androl. 2000, 21, 929–937. [Google Scholar] [PubMed]
- Yang, Y.; Ma, Y.; Yang, H.; Jin, Y.; Hu, K.; Wang, H.X.; Wang, Y.X.; Huang, Y.R.; Chen, B. Effect of acute tadalafil on sperm motility and acrosome reaction: In vitro and in vivo studies. Andrologia 2014, 46, 417–422. [Google Scholar] [CrossRef]
- Andrade, J.R.; Traboulsi, A.; Hussain, A.; Dubin, N.H. In vitro effects of sildenafil and phentolamine, drugs used for erectile dysfunction, on human sperm motility. Am. J. Obstet Gynecol. 2000, 182, 1093–1095. [Google Scholar] [CrossRef]
- Wang, G.; Guo, Y.; Zhou, T.; Shi, X.; Yu, J.; Yang, Y.; Wu, Y.; Wang, J.; Liu, M.; Chen, X.; et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J. Proteom. 2013, 79, 114–122. [Google Scholar] [CrossRef]
- Dcunha, R.; Hussein, R.S.; Ananda, H.; Kumari, S.; Adiga, S.K.; Kannan, N.; Zhao, Y.; Kalthur, G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod. Sci. 2020. [Google Scholar] [CrossRef]
- Hosseini, A.; Khalili, M.A. Improvement of motility after culture of testicular spermatozoa: The effects of incubation timing and temperature. Transl. Androl. Urol. 2017, 6, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaban, B.; Urman, B.; Sertac, A.; Alatas, C.; Aksoy, S.; Mercan, R.; Nuhoglu, A. In-vitro culture of spermatozoa induces motility and increases implantation and pregnancy rates after testicular sperm extraction and intracytoplasmic sperm injection. Hum. Reprod. 1999, 14, 2808–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelopoulos, T.; Adler, A.; Krey, L.; Licciardi, F.; Noyes, N.; McCullough, A. Enhancement or initiation of testicular sperm motility by in vitro culture of testicular tissue. Fertil. Steril. 1999, 71, 240–243. [Google Scholar] [CrossRef]
- Karacan, M.; Alwaeely, F.; Erkan, S.; Çebi, Z.; Berberoğlugil, M.; Batukan, M.; Uluğ, M.; Arvas, A.; Çamlıbel, T. Outcome of intracytoplasmic sperm injection cycles with fresh testicular spermatozoa obtained on the day of or the day before oocyte collection and with cryopreserved testicular sperm in patients with azoospermia. Fertil. Steril. 2013, 100, 975–980. [Google Scholar] [CrossRef]
- Dalzell, L.H.; McVicar, C.M.; McClure, N.; Lutton, D.; Lewis, S.E. Effects of short and long incubations on DNA fragmentation of testicular sperm. Fertil. Steril. 2004, 82, 1443–1445. [Google Scholar] [CrossRef]
- Jeyendran, R.S.; Van der Ven, H.H.; Perez-Pelaez, M.; Crabo, B.G.; Zaneveld, L.J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984, 70, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Check, M.; Check, J.H.; Summers-Chase, D.; Swenson, K.; Yuan, W. An evaluation of the efficacy of in vitro fertilization with intracytoplasmic sperm injection for sperm with low hypoosmotic swelling test scores and poor morphology. J. Assist. Reprod. Genet. 2003, 20, 182–185. [Google Scholar] [CrossRef]
- Sallam, H.N.; Farrag, A.; Agameya, A.F.; El-Garem, Y.; Ezzeldin, F. The use of the modified hypo-osmotic swelling test for the selection of immotile testicular spermatozoa in patients treated with ICSI: A randomized controlled study. Hum. Reprod. 2005, 20, 3435–3440. [Google Scholar] [CrossRef] [Green Version]
- Sallam, H.; Farrag, A.; Agameya, A.; Ezzeldin, F.; Eid, A.; Sallam, A. The use of a modified hypo-osmotic swelling test for the selection of viable ejaculated and testicular immotile spermatozoa in ICSI. Hum. Reprod. 2001, 16, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Charehjooy, N.; Najafi, M.H.; Tavalaee, M.; Deemeh, M.R.; Azadi, L.; Shiravi, A.H.; Nasr-Esfahani, M.H. Selection of Sperm Based on Hypo-Osmotic Swelling May Improve ICSI Outcome: A Preliminary Prospective Clinical Trial. Int. J. Fertil. Steril. 2014, 8, 21–28. [Google Scholar] [PubMed]
- Liu, J.; Tsai, Y.L.; Katz, E.; Compton, G.; Garcia, J.E.; Baramki, T.A. High fertilization rate obtained after intracytoplasmic sperm injection with 100% nonmotile spermatozoa selected by using a simple modified hypo-osmotic swelling test. Fertil. Steril. 1997, 68, 373–375. [Google Scholar] [CrossRef]
- Goksan Pabuccu, E.; Sinem Caglar, G.; Dogus Demirkiran, O.; Pabuccu, R. Uncommon but devastating event: Total fertilisation failure following intracytoplasmic sperm injection. Andrologia 2016, 48, 164–170. [Google Scholar] [CrossRef]
- Nordhoff, V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology 2015, 3, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Moskovtsev, S.I.; Willis, J.; Azad, A.; Mullen, J.B. Sperm DNA integrity: Correlation with sperm plasma membrane integrity in semen evaluated for male infertility. Arch. Androl. 2005, 51, 33–40. [Google Scholar] [CrossRef]
- Stanger, J.D.; Vo, L.; Yovich, J.L.; Almahbobi, G. Hypo-osmotic swelling test identifies individual spermatozoa with minimal DNA fragmentation. Reprod. Biomed. Online 2010, 21, 474–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, D.; Check, J.H.; Katsoff, D. The value of motile density, strict morphology, and the hypoosmotic swelling test in in vitro fertilization-embryo transfer. Arch. Androl. 1996, 37, 57–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Check, J.H.; Katsoff, D.; Check, M.L.; Choe, J.K.; Swenson, K. In vitro fertilization with intracytoplasmic sperm injection is an effective therapy for male factor infertility related to subnormal hypo-osmotic swelling test scores. J. Androl. 2001, 22, 261–265. [Google Scholar]
- Hossain, A.; Osuamkpe, C.; Hossain, S.; Phelps, J.Y. Spontaneously developed tail swellings (SDTS) influence the accuracy of the hypo-osmotic swelling test (HOS-test) in determining membrane integrity and viability of human spermatozoa. J. Assist. Reprod. Genet. 2010, 27, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Bollendorf, A.; Check, J.H.; Kramer, D. The majority of males with subnormal hypoosmotic test scores have normal vitality. Clin. Exp Obstet Gynecol. 2012, 39, 25–26. [Google Scholar]
- Barros, A.; Sousa, M.; Angelopoulos, T.; Tesarik, J. Efficient modification of intracytoplasmic sperm injection technique for cases with total lack of sperm movement. Hum. Reprod. 1997, 12, 1227–1229. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Liu, J.; Garcia, J.E.; Katz, E.; Compton, G.; Baramki, T.A. Establishment of an optimal hypo-osmotic swelling test by examining single spermatozoa in four different hypo-osmotic solutions. Hum. Reprod. 1997, 12, 1111–1113. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.B.; Glina, S.; Antunes, N.; Wonchockier, R.; Galuppo, A.G.; Mizrahi, F.E. Sperm tail flexibility test: A simple test for selecting viable spermatozoa for intracytoplasmic sperm injection from semen samples without motile spermatozoa. Rev. Hosp. Clin. Fac Med. Sao Paulo 2003, 58, 250–253. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, N.M.; Vaca Sánchez, R.; Rodriguez Fiesta, S.; Lopez Salgado, T.; Rodríguez, R.; Bethencourt, J.C.; Blanes Zamora, R. Pregnancy with frozen-thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum. Reprod. 2004, 19, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Yoon, H.J.; Jang, J.M.; Oh, H.S.; Lee, Y.J.; Lee, W.D.; Yoon, S.H.; Lim, J.H. Comparison between intracytoplasmic sperm injection and intracytoplasmic morphologically selected sperm injection in oligo-astheno-teratozoospermia patients. Clin. Exp Reprod. Med. 2014, 41, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Boitrelle, F.; Guthauser, B.; Alter, L.; Bailly, M.; Bergere, M.; Wainer, R.; Vialard, F.; Albert, M.; Selva, J. High-magnification selection of spermatozoa prior to oocyte injection: Confirmed and potential indications. Reprod. Biomed. Online 2014, 28, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Setti, A.S.; Braga, D.P.; Figueira, R.C.; Iaconelli, A.; Borges, E. Intracytoplasmic morphologically selected sperm injection results in improved clinical outcomes in couples with previous ICSI failures or male factor infertility: A meta-analysis. Eur. J. Obstet Gynecol. Reprod. Biol. 2014, 183, 96–103. [Google Scholar] [CrossRef]
- Schachter-Safrai, N.; Karavani, G.; Reuveni-Salzman, A.; Gil, M.; Ben-Meir, A. Which semen analysis correlates with favorable Intracytoplasmic morphologically selected sperm injection (IMSI) outcomes? Eur. J. Obstet Gynecol. Reprod. Biol. 2019, 234, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.M.; Hadyme Miyague, A.; Barbosa, M.A.; Navarro, P.A.; Raine-Fenning, N.; Nastri, C.O.; Martins, W.P. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst Rev. 2020, 2, CD010167. [Google Scholar] [CrossRef]
- Văduva, C.C.; Constantinescu, C.; Radu, M.M.; Văduva, A.R.; Pănuş, A.; Ţenovici, M.; DiŢescu, D.; Albu, D.F. Pregnancy resulting from IMSI after testicular biopsy in a patient with obstructive azoospermia. Rom. J. Morphol. Embryol. 2016, 57, 879–883. [Google Scholar]
- Bradley, C.K.; McArthur, S.J.; Gee, A.J.; Weiss, K.A.; Schmidt, U.; Toogood, L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: A retrospective analysis. Andrology 2016, 4, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Feng, G.; Zhang, B.; Zhou, H.; Wang, C.; Shu, J.; Gan, X.; Lin, R.; Huang, D.; Huang, Y. A new insight into male fertility preservation for patients with completely immotile spermatozoa. Reprod. Biol. Endocrinol. 2017, 15, 74. [Google Scholar] [CrossRef] [Green Version]
- Aktan, T.M.; Montag, M.; Duman, S.; Gorkemli, H.; Rink, K.; Yurdakul, T. Use of a laser to detect viable but immotile spermatozoa. Andrologia 2004, 36, 366–369. [Google Scholar] [CrossRef]
- Gerber, P.A.; Kruse, R.; Hirchenhain, J.; Krüssel, J.S.; Neumann, N.J. Pregnancy after laser-assisted selection of viable spermatozoa before intracytoplasmatic sperm injection in a couple with male primary cilia dyskinesia. Fertil. Steril. 2008, 89, 1826.e9–1826.e12. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Feng, G.; Zhang, B.; Zhou, H.; Shu, J.; Gan, X. A successful pregnancy using completely immotile but viable frozen-thawed spermatozoa selected by laser. Clin. Exp. Reprod. Med. 2017, 44, 52–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkavukcu, S.; Celik-Ozenci, C.; Konuk, E.; Atabekoglu, C. Live birth after Laser Assisted Viability Assessment (LAVA) to detect pentoxifylline resistant ejaculated immotile spermatozoa during ICSI in a couple with male Kartagener’s syndrome. Reprod. Biol. Endocrinol. 2018, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Chattopadhyay, R.; Bose, G.; Ganesh, A.; Das, S.; Chakravarty, B.N. Selection of birefringent spermatozoa under Polscope: Effect on intracytoplasmic sperm injection outcome. Andrologia 2012, 44 (Suppl. 1), 734–738. [Google Scholar] [CrossRef]
- Gianaroli, L.; Magli, M.C.; Collodel, G.; Moretti, E.; Ferraretti, A.P.; Baccetti, B. Sperm head’s birefringence: A new criterion for sperm selection. Fertil. Steril. 2008, 90, 104–112. [Google Scholar] [CrossRef] [PubMed]
- McDowell, S.; Kroon, B.; Ford, E.; Hook, Y.; Glujovsky, D.; Yazdani, A. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst. Rev. 2014, CD010461. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Wu, T.L.; Huang, H.R.; Li, C.J.; Fu, H.T.; Soong, Y.K.; Lee, M.Y.; Yao, D.J. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J. Lab. Autom. 2014, 19, 91–99. [Google Scholar] [CrossRef]
- Schuster, T.G.; Cho, B.; Keller, L.M.; Takayama, S.; Smith, G.D. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod. Biomed. Online 2003, 7, 75–81. [Google Scholar] [CrossRef]
- Quinn, M.M.; Jalalian, L.; Ribeiro, S.; Ona, K.; Demirci, U.; Cedars, M.I.; Rosen, M.P. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum. Reprod. 2018, 33, 1388–1393. [Google Scholar] [CrossRef] [Green Version]
- Samuel, R.; Son, J.; Jenkins, T.G.; Jafek, A.; Feng, H.; Gale, B.K.; Carrell, D.T.; Hotaling, J.M. Microfluidic System for Rapid Isolation of Sperm From Microdissection TESE Specimens. Urology 2020, 140, 70–76. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Di, L.; Osterberg, E.C.; Liu, F.; He, L.; Hu, H.; Huang, Y.; Li, P.S.; Li, Z. Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules. Fertil. Steril. 2014, 102, 54–60.e52. [Google Scholar] [CrossRef]
- Liu, Y.F.; Di, L.; Osterberg, E.C.; He, L.; Li, P.S.; Li, Z. Use of Raman spectroscopy to identify active spermatogenesis and Sertoli-cell-only tubules in mice. Andrologia 2016, 48, 1086–1091. [Google Scholar] [CrossRef]
- Osterberg, E.C.; Laudano, M.A.; Ramasamy, R.; Sterling, J.; Robinson, B.D.; Goldstein, M.; Li, P.S.; Haka, A.S.; Schlegel, P.N. Identification of spermatogenesis in a rat sertoli-cell only model using Raman spectroscopy: A feasibility study. J. Urol. 2014, 192, 607–612. [Google Scholar] [CrossRef]
- Mallidis, C.; Sanchez, V.; Wistuba, J.; Wuebbeling, F.; Burger, M.; Fallnich, C.; Schlatt, S. Raman microspectroscopy: Shining a new light on reproductive medicine. Hum. Reprod. Update 2014, 20, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Samuel, R.; Badamjav, O.; Murphy, K.E.; Patel, D.P.; Son, J.; Gale, B.K.; Carrell, D.T.; Hotaling, J.M. Microfluidics: The future of microdissection TESE? Syst. Biol. Reprod. Med. 2016, 62, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahmani, M.Y.; Hammadeh, M.E.; Al Smadi, M.A.; Baller, M.K. Label-Free Evaluation of Chromatin Condensation in Human Normal Morphology Sperm Using Raman Spectroscopy. Reprod. Sci. 2021, 1–13. [Google Scholar] [CrossRef]
- Haas, G.G.; D’Cruz, O.J.; DeBault, L.E. Assessment by fluorescence-activated cell sorting of whether sperm-associated immunoglobulin (Ig)G and IgA occur on the same sperm population. Fertil. Steril. 1990, 54, 127–132. [Google Scholar] [CrossRef]
- Mittal, S.; Mielnik, A.; Bolyakov, A.; Schlegel, P.N.; Paduch, D. Pilot Study Results Using Fluorescence Activated Cell Sorting of Spermatozoa from Testis Tissue: A Novel Method for Sperm Isolation after TESE. J. Urol. 2017, 197, Pd68-01. [Google Scholar] [CrossRef]
- Mangum, C.L.; Patel, D.P.; Jafek, A.R.; Samuel, R.; Jenkins, T.G.; Aston, K.I.; Gale, B.K.; Hotaling, J.M. Towards a better testicular sperm extraction: Novel sperm sorting technologies for non-motile sperm extracted by microdissection TESE. Transl. Androl. Urol. 2020, 9, S206–S214. [Google Scholar] [CrossRef]
- Ramasamy, R.; Sterling, J.; Fisher, E.S.; Li, P.S.; Jain, M.; Robinson, B.D.; Shevchuck, M.; Huland, D.; Xu, C.; Mukherjee, S.; et al. Identification of spermatogenesis with multiphoton microscopy: An evaluation in a rodent model. J. Urol. 2011, 186, 2487–2492. [Google Scholar] [CrossRef]
- Najari, B.B.; Ramasamy, R.; Sterling, J.; Aggarwal, A.; Sheth, S.; Li, P.S.; Dubin, J.M.; Goldenberg, S.; Jain, M.; Robinson, B.D.; et al. Pilot study of the correlation of multiphoton tomography of ex vivo human testis with histology. J. Urol. 2012, 188, 538–543. [Google Scholar] [CrossRef]
- Ramasamy, R.; Sterling, J.; Manzoor, M.; Salamoon, B.; Jain, M.; Fisher, E.; Li, P.S.; Schlegel, P.N.; Mukherjee, S. Full field optical coherence tomography can identify spermatogenesis in a rodent sertoli-cell only model. J. Pathol. Inform. 2012, 3, 4. [Google Scholar] [CrossRef]
- Oseguera-López, I.; Ruiz-Díaz, S.; Ramos-Ibeas, P.; Pérez-Cerezales, S. Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Front. Cell Dev. Biol. 2019, 7, 298. [Google Scholar] [CrossRef]
- Bernie, A.M.; Mata, D.A.; Ramasamy, R.; Schlegel, P.N. Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: A systematic review and meta-analysis. Fertil. Steril. 2015, 104, 1099–1103.e3. [Google Scholar] [CrossRef]
- Yogev, L.; Kleiman, S.E.; Shabtai, E.; Botchan, A.; Paz, G.; Hauser, R.; Lehavi, O.; Yavetz, H.; Gamzu, R. Long-term cryostorage of sperm in a human sperm bank does not damage progressive motility concentration. Hum. Reprod. 2010, 25, 1097–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashiri, A.; Halper, K.I.; Orvieto, R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol 2018, 16, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barash, A.; Dekel, N.; Fieldust, S.; Segal, I.; Schechtman, E.; Granot, I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil. Steril. 2003, 79, 1317–1322. [Google Scholar] [CrossRef]
- Nastri, C.O.; Lensen, S.F.; Gibreel, A.; Raine-Fenning, N.; Ferriani, R.A.; Bhattacharya, S.; Martins, W.P. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst. Rev. 2015, CD009517. [Google Scholar] [CrossRef] [Green Version]
- Audrins, P.; Holden, C.A.; McLachlan, R.I.; Kovacs, G.T. Semen storage for special purposes at Monash IVF from 1977 to 1997. Fertil. Steril. 1999, 72, 179–181. [Google Scholar] [CrossRef]
- Guan, H.T.; Wan, Z.; Zhang, L.; Meng, T.Q.; Xiong, C.L.; Li, C.L. Analysis of the Screening Results for 3,564 Student Sperm Donors in Hubei Province, China. J. Reprod. Med. 2015, 60, 409–414. [Google Scholar]
- Talwar, P.; Singh, S. Chapter 7 Human Epididymal and Testicular Sperm Cryopreservation. Methods Mol. Biol. 2017, 1568, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wei, Z.; Yang, J.; Wang, T.; Jiang, H.; Li, H.; Tang, Z.; Wang, S.; Liu, J. Comparison of intracytoplasmic sperm injection outcome with fresh versus frozen-thawed testicular sperm in men with nonobstructive azoospermia: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2018, 35, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Küpker, W.; Schlegel, P.N.; Al-Hasani, S.; Fornara, P.; Johannisson, R.; Sandmann, J.; Schill, T.; Bals-Pratsch, M.; Ludwig, M.; Diedrich, K. Use of frozen-thawed testicular sperm for intracytoplasmic sperm injection. Fertil. Steril. 2000, 73, 453–458. [Google Scholar] [CrossRef]
- Kalsi, J.; Thum, M.Y.; Muneer, A.; Pryor, J.; Abdullah, H.; Minhas, S. Analysis of the outcome of intracytoplasmic sperm injection using fresh or frozen sperm. BJU Int. 2011, 107, 1124–1128. [Google Scholar] [CrossRef]
- Ohlander, S.; Hotaling, J.; Kirshenbaum, E.; Niederberger, C.; Eisenberg, M.L. Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: A meta-analysis. Fertil. Steril. 2014, 101, 344–349. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, J.; Luo, L.; Li, L.; Zhang, H.; Xi, Q.; Liu, R. ICSI outcomes of fresh or cryopreserved spermatozoa from micro-TESE in patients with nonobstructive azoospermia: CONSORT. Medicine 2021, 100, e25021. [Google Scholar] [CrossRef] [PubMed]
- Madureira, C.; Cunha, M.; Sousa, M.; Neto, A.P.; Pinho, M.J.; Viana, P.; Gonçalves, A.; Silva, J.; Teixeira da Silva, J.; Oliveira, C.; et al. Treatment by testicular sperm extraction and intracytoplasmic sperm injection of 65 azoospermic patients with non-mosaic Klinefelter syndrome with birth of 17 healthy children. Andrology 2014, 2, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Lee, S.H.; Lim, C.K.; Cho, J.W.; Yang, K.M.; Seo, J.T. Effect of testicular spermatozoa on embryo quality and pregnancy in patients with non-obstructive azoospermia. Syst. Biol. Reprod. Med. 2015, 61, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pšenička, M.; Saito, T.; Rodina, M.; Dzyuba, B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology 2016, 72, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Marinović, Z.; Lujić, J.; Kása, E.; Bernáth, G.; Urbányi, B.; Horváth, Á. Cryosurvival of isolated testicular cells and testicular tissue of tench Tinca tinca and goldfish Carassius auratus following slow-rate freezing. Gen. Comp. Endocrinol. 2017, 245, 77–83. [Google Scholar] [CrossRef]
- Unni, S.; Kasiviswanathan, S.; D’Souza, S.; Khavale, S.; Mukherjee, S.; Patwardhan, S.; Bhartiya, D. Efficient cryopreservation of testicular tissue: Effect of age, sample state, and concentration of cryoprotectant. Fertil. Steril. 2012, 97, 200–208.e201. [Google Scholar] [CrossRef]
- Donnelly, E.T.; McClure, N.; Lewis, S.E. Cryopreservation of human semen and prepared sperm: Effects on motility parameters and DNA integrity. Fertil. Steril. 2001, 76, 892–900. [Google Scholar] [CrossRef]
- Perraguin-Jayot, S.; Audebert, A.; Emperaire, J.C.; Parneix, I. Ongoing pregnancies after intracytoplasmic injection using cryopreserved testicular spermatozoa. Hum. Reprod. 1997, 12, 2706–2709. [Google Scholar] [CrossRef] [Green Version]
- Nikolettos, N.; Al-Hasani, S.; Demirel, C.; Küpker, W.; Bals-Pratsch, M.; Sandmann, J.; Fornara, P.; Schöpper, B.; Sturm, R.; Diedrich, K. Outcome of ICSI cycles using frozen-thawed surgically obtained spermatozoa in poor responders to ovarian stimulation: Cancellation or proceeding to ICSI? Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 259–264. [Google Scholar] [CrossRef]
- Friedler, S.; Raziel, A.; Soffer, Y.; Strassburger, D.; Komarovsky, D.; Ron-el, R. Intracytoplasmic injection of fresh and cryopreserved testicular spermatozoa in patients with nonobstructive azoospermia--a comparative study. Fertil. Steril. 1997, 68, 892–897. [Google Scholar] [CrossRef]
- Gil-Salom, M.; Romero, J.; Rubio, C.; Ruiz, A.; Remohí, J.; Pellicer, A. Intracytoplasmic sperm injection with cryopreserved testicular spermatozoa. Mol. Cell Endocrinol. 2000, 169, 15–19. [Google Scholar] [CrossRef]
- De Croo, I.; Van der Elst, J.; Everaert, K.; De Sutter, P.; Dhont, M. Fertilization, pregnancy and embryo implantation rates after ICSI with fresh or frozen-thawed testicular spermatozoa. Hum. Reprod. 1998, 13, 1893–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spis, E.; Bushkovskaia, A.; Isachenko, E.; Todorov, P.; Sanchez, R.; Skopets, V.; Isachenko, V. Conventional freezing vs. cryoprotectant-free vitrification of epididymal (MESA) and testicular (TESE) spermatozoa: Three live births. Cryobiology 2019, 90, 100–102. [Google Scholar] [CrossRef]
- Schiewe, M.C.; Rothman, C.; Spitz, A.; Werthman, P.E.; Zeitlin, S.I.; Anderson, R.E. Validation-verification of a highly effective, practical human testicular tissue in vitro culture-cryopreservation procedure aimed to optimize pre-freeze and post-thaw motility. J. Assist. Reprod. Genet. 2016, 33, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Huleihel, M.; Lunenfeld, E. Approaches and Technologies in Male Fertility Preservation. Int. J. Mol. Sci. 2020, 21, 5471. [Google Scholar] [CrossRef]
- Aslam, I.; Fishel, S. Short-term in-vitro culture and cryopreservation of spermatogenic cells used for human in-vitro conception. Hum. Reprod. 1998, 13, 634–638. [Google Scholar] [CrossRef]
- Sharma, R.; Kattoor, A.J.; Ghulmiyyah, J.; Agarwal, A. Effect of sperm storage and selection techniques on sperm parameters. Syst. Biol. Reprod. Med. 2015, 61, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stanic, P.; Tandara, M.; Sonicki, Z.; Simunic, V.; Radakovic, B.; Suchanek, E. Comparison of protective media and freezing techniques for cryopreservation of human semen. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 91, 65–70. [Google Scholar] [CrossRef]
- Le, M.T.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, V.T.; Nguyen, T.T.A.; Nguyen, V.Q.H.; Cao, N.T. Cryopreservation of human spermatozoa by vitrification versus conventional rapid freezing: Effects on motility, viability, morphology and cellular defects. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 234, 14–20. [Google Scholar] [CrossRef]
- Silva, A.M.D.; Pereira, A.F.; Comizzoli, P.; Silva, A.R. Cryopreservation and Culture of Testicular Tissues: An Essential Tool for Biodiversity Preservation. Biopreserv. Biobank 2020, 18, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sanger, E.; Saewu, A.; Leveille, M.C. Human sperm vitrification: The state of the art. Reprod. Biol. Endocrinol. 2020, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Arav, A.; Yavin, S.; Zeron, Y.; Natan, D.; Dekel, I.; Gacitua, H. New trends in gamete’s cryopreservation. Mol. Cell Endocrinol. 2002, 187, 77–81. [Google Scholar] [CrossRef]
- Liow, S.L.; Foong, L.C.; Chen, N.Q.; Yip, W.Y.; Khaw, C.L.; Kumar, J.; Vajta, G.; Ng, S.C. Live birth from vitrified-warmed human oocytes fertilized with frozen-thawed testicular spermatozoa. Reprod. Biomed. Online 2009, 19, 198–201. [Google Scholar] [CrossRef]
- Schulz, M.; Risopatrón, J.; Uribe, P.; Isachenko, E.; Isachenko, V.; Sánchez, R. Human sperm vitrification: A scientific report. Andrology 2020, 8, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Berkovitz, A.; Miller, N.; Silberman, M.; Belenky, M.; Itsykson, P. A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Hum. Reprod. 2018, 33, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Ohno, M.; Tanaka, A.; Nagayoshi, M.; Yamaguchi, T.; Takemoto, Y.; Tanaka, I.; Watanabe, S.; Itakura, A. Modified permeable cryoprotectant-free vitrification method for three or fewer ejaculated spermatozoa from cryptozoospermic men and 7-year follow-up study of 14 children born from this method. Hum. Reprod. 2020, 35, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, F. Cryopreservation of single-sperm: Where are we today? Reprod. Biol. Endocrinol. 2020, 18, 41. [Google Scholar] [CrossRef]
- Sá, R.; Cremades, N.; Malheiro, I.; Sousa, M. Cryopreservation of human testicular diploid germ cell suspensions. Andrologia 2012, 44, 366–372. [Google Scholar] [CrossRef]
- Hammadeh, M.E.; Szarvasy, D.; Zeginiadou, T.; Rosenbaum, P.; Georg, T.; Schmidt, W. Evaluation of cryoinjury of spermatozoa after slow (programmed biological freezer) or rapid (liquid nitrogen vapour) freeze-thawing techniques. J. Assist. Reprod. Genet. 2001, 18, 364–370. [Google Scholar] [CrossRef]
- Riva, N.S.; Ruhlmann, C.; Iaizzo, R.S.; Marcial López, C.A.; Martínez, A.G. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assist. Reprod. 2018, 22, 331–337. [Google Scholar] [CrossRef]
- Kamath, M.S.; Muthukumar, K. Appendix B: Solid Surface Vitrification. Methods Mol. Biol. 2017, 1568, 297–307. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, R.T.; Wu, L.M.; Johansson, L.; Guo, T.H.; Liu, Y.S.; Tong, X.H. Cryoprotectant-free ultra-rapid freezing of human spermatozoa in cryogenic vials. Andrologia 2014, 46, 642–649. [Google Scholar] [CrossRef]
- Di Santo, M.; Tarozzi, N.; Nadalini, M.; Borini, A. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv. Urol. 2012, 2012, 854837. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Shanehbandi, D.; Hamdi, K.; Rahbar, S.; Pashaiasl, M. Influence of cryopreservation on structure and function of mammalian spermatozoa: An overview. Cell Tissue Bank 2020, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef]
- Hovatta, O.; Foudila, T.; Siegberg, R.; Johansson, K.; von Smitten, K.; Reima, I. Pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen-thawed testicular biopsy specimen. Hum. Reprod. 1996, 11, 2472–2473. [Google Scholar] [CrossRef] [Green Version]
- Serafini, P.C.; Hauser, D.; Moyer, D.; Marrs, R.P. Cryopreservation of human spermatozoa: Correlations of ultrastructural sperm head configuration with sperm motility and ability to penetrate zona-free hamster ova. Fertil. Steril. 1986, 46, 691–695. [Google Scholar] [CrossRef]
- Keros, V.; Rosenlund, B.; Hultenby, K.; Aghajanova, L.; Levkov, L.; Hovatta, O. Optimizing cryopreservation of human testicular tissue: Comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum. Reprod. 2005, 20, 1676–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, P.F.; Radford, J.A.; Shalet, S.M.; Joyce, A.D.; Gosden, R.G. Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil. Steril. 2001, 75, 269–274. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Wu, C.; Qiu, S.; Chen, X.; Cai, B.; Xie, H. Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS. BMC Vet. Res. 2021, 17, 127. [Google Scholar] [CrossRef]
- Medrano, L.; Enciso, M.; Gomez-Torres, M.J.; Aizpurua, J. First birth of a healthy infant following intra-cytoplasmic sperm injection using a new permeable cryoprotectant-free sperm vitrification protocol. Cryobiology 2019, 87, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Isachenko, E.; Isachenko, V.; Katkov, I.I.; Rahimi, G.; Schöndorf, T.; Mallmann, P.; Dessole, S.; Nawroth, F. DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum. Reprod. 2004, 19, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Fahy, G.M.; MacFarlane, D.R.; Angell, C.A.; Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef]
- Desai, N.N.; Blackmon, H.; Goldfarb, J. Single sperm cryopreservation on cryoloops: An alternative to hamster zona for freezing individual spermatozoa. Reprod. Biomed. Online 2004, 9, 47–53. [Google Scholar] [CrossRef]
- Liu, F.; Zou, S.S.; Zhu, Y.; Sun, C.; Liu, Y.F.; Wang, S.S.; Shi, W.B.; Zhu, J.J.; Huang, Y.H.; Li, Z. A novel micro-straw for cryopreservation of small number of human spermatozoon. Asian J. Androl. 2017, 19, 326–329. [Google Scholar] [CrossRef]
- Desai, N.; Goldberg, J.; Austin, C.; Sabanegh, E.; Falcone, T. Cryopreservation of individually selected sperm: Methodology and case report of a clinical pregnancy. J. Assist. Reprod. Genet. 2012, 29, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Jimenez, M.; Dorado, J.; Pereira, B.; Ortiz, I.; Consuegra, C.; Bottrel, M.; Ortiz, E.; Hidalgo, M. Vitrification in straws conserves motility features better than spheres in donkey sperm. Reprod. Domest. Anim. 2018, 53 (Suppl. 2), 56–58. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Garrisi, G.J. Micromanipulation of gametes and embryos: Cryopreservation of a single human spermatozoon within an isolated zona pellucida. Hum. Reprod. Update 1997, 3, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, Y.Y.; Tsai, H.D.; Chang, C.C.; Lo, H.Y. Sperm cryopreservation with empty human or mouse zona pellucidae. A comparison. J. Reprod. Med. 2000, 45, 383–386. [Google Scholar] [PubMed]
- Walmsley, R.; Cohen, J.; Ferrara-Congedo, T.; Reing, A.; Garrisi, J. The first births and ongoing pregnancies associated with sperm cryopreservation within evacuated egg zonae. Hum. Reprod. 1998, 13 (Suppl. 4), 61–70. [Google Scholar] [CrossRef] [Green Version]
- Just, A.; Gruber, I.; Wöber, M.; Lahodny, J.; Obruca, A.; Strohmer, H. Novel method for the cryopreservation of testicular sperm and ejaculated spermatozoa from patients with severe oligospermia: A pilot study. Fertil. Steril. 2004, 82, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Herrler, A.; Eisner, S.; Bach, V.; Weissenborn, U.; Beier, H.M. Cryopreservation of spermatozoa in alginic acid capsules. Fertil. Steril. 2006, 85, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Araki, Y.; Yao, T.; Asayama, Y.; Matsuhisa, A. Single human sperm cryopreservation method using hollow-core agarose capsules. Fertil. Steril. 2015, 104, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, K.; Sakai, S.; Khanmohammadi, M.; Yamochi, T.; Hashimoto, S.; Anzai, M.; Morimoto, Y.; Taya, M.; Hosoi, Y. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J. Assist. Reprod. Genet. 2016, 33, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, Y.; Fujii, Y.; Kurotsuchi, S.; Motoyama, H.; Funahashi, H. Successful delivery derived from vitrified-warmed spermatozoa from a patient with nonobstructive azoospermia. Fertil. Steril. 2012, 98, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Fujii, Y.; Shintani, K.; Seo, M.; Motoyama, H.; Funahashi, H. Simple vitrification for small numbers of human spermatozoa. Reprod. Biomed. Online 2012, 24, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Schuster, T.G.; Keller, L.M.; Dunn, R.L.; Ohl, D.A.; Smith, G.D. Ultra-rapid freezing of very low numbers of sperm using cryoloops. Hum. Reprod. 2003, 18, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.; Culler, C.; Goldfarb, J. Cryopreservation of single sperm from epididymal and testicular samples on cryoloops: Preliminary case report. Fertil. Steril. 2004, 82, S264–S265. [Google Scholar] [CrossRef]
- Stein, A.; Shufaro, Y.; Hadar, S.; Fisch, B.; Pinkas, H. Successful use of the Cryolock device for cryopreservation of scarce human ejaculate and testicular spermatozoa. Andrology 2015, 3, 220–224. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, X.; Qin, Y.Q.; Hao, D.Y.; Shi, H.R. Outcomes of day 3 embryo transfer with vitrification using Cryoleaf: A 3-year follow-up study. J. Assist. Reprod. Genet. 2012, 29, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, W.; Zhou, L.; Hu, J.; Li, Z.; Zhang, Z.; Wu, Y. Successful delivery derived from cryopreserved rare human spermatozoa with novel cryopiece. Andrology 2017, 5, 832–837. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, M.A.; Merino, O.; Risopatrón, J.; Isachenko, V.; Isachenko, E.; Sánchez, R. High temperature is essential for preserved human sperm function during the devitrification process. Andrologia 2016, 48, 111–113. [Google Scholar] [CrossRef]
- Pabón, D.; Meseguer, M.; Sevillano, G.; Cobo, A.; Romero, J.L.; Remohí, J.; de Los Santos, M.J. A new system of sperm cryopreservation: Evaluation of survival, motility, DNA oxidation, and mitochondrial activity. Andrology 2019, 7, 293–301. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Hassan, M.A.E.; Mohammed, A.K.; Alhimaidi, A.R.; Al-Gabri, N.; Al-Khaldi, K.O.; Swelum, A.A. The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm. Animals 2020, 10, 1508. [Google Scholar] [CrossRef]
- Hosseini, A.; Khalili, M.A.; Talebi, A.R.; Agha-Rahimi, A.; Ghasemi-Esmailabad, S.; Woodward, B.; Yari, N. Cryopreservation of Low Number of Human Spermatozoa; Which is Better: Vapor Phase or Direct Submerging in Liquid Nitrogen? Hum. Fertil. 2019, 22, 126–132. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Cartón-García, F.; Riesco, M.F.; Herráez, M.P.; Robles, V. Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 2013, 1, 723–730. [Google Scholar] [CrossRef]
- Len, J.S.; Koh, W.S.D.; Tan, S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. BioSci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Di Nardo, M.; Adiga, S.K.; Talevi, R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 2021, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Lusignan, M.F.; Li, X.; Herrero, B.; Delbes, G.; Chan, P.T.K. Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology 2018, 6, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongdee, P.; Sukprasert, M.; Satirapod, C.; Wongkularb, A.; Choktanasiri, W. Comparison of Cryopreserved Human Sperm between Ultra Rapid Freezing and Slow Programmable Freezing: Effect on Motility, Morphology and DNA Integrity. J. Med. Assoc Thai 2015, 98 (Suppl. 4), S33–S42. [Google Scholar] [PubMed]
- Vutyavanich, T.; Piromlertamorn, W.; Nunta, S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil. Steril. 2010, 93, 1921–1928. [Google Scholar] [CrossRef]
- Oraiopoulou, C.; Vorniotaki, A.; Taki, E.; Papatheodorou, A.; Christoforidis, N.; Chatziparasidou, A. The impact of fresh and frozen testicular tissue quality on embryological and clinical outcomes. Andrologia 2021, 53, e14040. [Google Scholar] [CrossRef] [PubMed]
- Vernaeve, V.; Tournaye, H.; Osmanagaoglu, K.; Verheyen, G.; Van Steirteghem, A.; Devroey, P. Intracytoplasmic sperm injection with testicular spermatozoa is less successful in men with nonobstructive azoospermia than in men with obstructive azoospermia. Fertil. Steril. 2003, 79, 529–533. [Google Scholar] [CrossRef]
- Martin, R.H.; Greene, C.; Rademaker, A.W.; Ko, E.; Chernos, J. Analysis of aneuploidy in spermatozoa from testicular biopsies from men with nonobstructive azoospermia. J. Androl. 2003, 24, 100–103. [Google Scholar]
- Mulder, C.L.; Catsburg, L.A.E.; Zheng, Y.; de Winter-Korver, C.M.; van Daalen, S.K.M.; van Wely, M.; Pals, S.; Repping, S.; van Pelt, A.M.M. Long-term health in recipients of transplanted in vitro propagated spermatogonial stem cells. Hum. Reprod. 2018, 33, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Semião-Francisco, L.; Braga, D.P.; Figueira, R.e.C.; Madaschi, C.; Pasqualotto, F.F.; Iaconelli, A.; Borges, E. Assisted reproductive technology outcomes in azoospermic men: 10 years of experience with surgical sperm retrieval. Aging Male 2010, 13, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Jellad Ammar, S.; Arfaoui, R.; Hammami, F.; Souayah, N.; Chibani, M.; Rachdi, R. Does cryopreservation of testicular sperm affect ICSI outcomes in azoospermia? Tunis Med. 2020, 98, 581–587. [Google Scholar] [PubMed]
- Ernandez, J.; Berk, B.; Han, T.; Abou Ghayda, R.; Kathrins, M. Evaluating the quality of reported outcomes for microsurgical TESE in men with non-obstructive azoospermia: A methodological analysis. Andrology 2021. [Google Scholar] [CrossRef]
- Khan, I.M.; Cao, Z.; Liu, H.; Khan, A.; Rahman, S.U.; Khan, M.Z.; Sathanawongs, A.; Zhang, Y. Impact of Cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. Front. Vet. Sci. 2021, 8, 609180. [Google Scholar] [CrossRef]
- Vermeulen, M.; Poels, J.; de Michele, F.; des Rieux, A.; Wyns, C. Restoring Fertility with Cryopreserved Prepubertal Testicular Tissue: Perspectives with Hydrogel Encapsulation, Nanotechnology, and Bioengineered Scaffolds. Ann. Biomed. Eng. 2017, 45, 1770–1781. [Google Scholar] [CrossRef] [PubMed]
- Shahin, M.A.; Khalil, W.A.; Saadeldin, I.M.; Swelum, A.A.; El-Harairy, M.A. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa. Animals 2020, 10, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vento, F.; Vermeulen, M.; Ucakar, B.; Poels, J.; des Rieux, A.; Wyns, C. Significant Benefits of Nanoparticles Containing a Necrosis Inhibitor on Mice Testicular Tissue Autografts Outcomes. Int. J. Mol. Sci. 2019, 20, 5833. [Google Scholar] [CrossRef] [Green Version]
- Saadeldin, I.M.; Khalil, W.A.; Alharbi, M.G.; Lee, S.H. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals 2020, 10, 2281. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Shen, J.; Wang, Y.; Pan, C.; Pang, W.; Diao, H.; Dong, W. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 2016, 7, 58832–58847. [Google Scholar] [CrossRef] [PubMed]
- Mokarizadeh, A.; Rezvanfar, M.A.; Dorostkar, K.; Abdollahi, M. Mesenchymal stem cell derived microvesicles: Trophic shuttles for enhancement of sperm quality parameters. Reprod. Toxicol. 2013, 42, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Stremersch, S.; Vandenbroucke, R.E.; Van Wonterghem, E.; Hendrix, A.; De Smedt, S.C.; Raemdonck, K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J. Control. Release 2016, 232, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Saez, F. Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology. Reproduction 2013, 146, R21–R35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zhu, W.Q.; Zhu, X.C.; Cai, N.N.; Yang, R.; Cai, H.; Zhang, X.M. Cryopreservation of calf testicular tissues with knockout serum replacement. Cryobiology 2020, 92, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Bahmyari, R.; Zare, M.; Sharma, R.; Agarwal, A.; Halvaei, I. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis. Andrologia 2020, 52, e13514. [Google Scholar] [CrossRef]
- Arkoun, B.; Galas, L.; Dumont, L.; Rives, A.; Saulnier, J.; Delessard, M.; Rondanino, C.; Rives, N. Vitamin E but Not GSH Decreases Reactive Oxygen Species Accumulation and Enhances Sperm Production during In Vitro Maturation of Frozen-Thawed Prepubertal Mouse Testicular Tissue. Int. J. Mol. Sci. 2019, 20, 5380. [Google Scholar] [CrossRef] [Green Version]
- Leão, A.P.A.; Souza, A.V.; Mesquita, N.F.; Pereira, L.J.; Zangeronimo, M.G. Antioxidant enrichment of rooster semen extenders—A systematic review. Res. Vet. Sci. 2021, 136, 111–118. [Google Scholar] [CrossRef]
- Schlegel, P.N. Nonobstructive azoospermia: A revolutionary surgical approach and results. Semin. Reprod. Med. 2009, 27, 165–170. [Google Scholar] [CrossRef]
- Mehmood, S.; Aldaweesh, S.; Junejo, N.N.; Altaweel, W.M.; Kattan, S.A.; Alhathal, N. Microdissection testicular sperm extraction: Overall results and impact of preoperative testosterone level on sperm retrieval rate in patients with nonobstructive azoospermia. Urol. Ann. 2019, 11, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.X.; Hanson, B.M.; Hotaling, J.M. Round Spermatid Injection. Urol. Clin. N. Am. 2020, 47, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Suzuki, K.; Nagayoshi, M.; Takemoto, Y.; Watanabe, S.; Takeda, S.; Irahara, M.; Kuji, N.; Yamagata, Z.; Yanagimachi, R. Ninety babies born after round spermatid injection into oocytes: Survey of their development from fertilization to 2 years of age. Fertil. Steril. 2018, 110, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Pabuccu, R.; Sertyel, S.; Pabuccu, E.; Aydos, K.; Haliloglu, A.H.; Demirkıran, D.; Keles, G.; Tanaka, A. Live Births with a Novel ROSI Technique Using Elongating Spermatids for Non Obstructive Azoospermia Patients: A European Cohort Study. In Proceedings of the ESHRE 36th Annual Meeting, Copenhagen, Denmark, 5–8 July 2020; p. O-125. [Google Scholar]
- Sousa, M.; Cremades, N.; Alves, C.; Silva, J.; Barros, A. Developmental potential of human spermatogenic cells co-cultured with Sertoli cells. Hum. Reprod. 2002, 17, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Katagiri, K.; Gohbara, A.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kubota, Y.; Ogawa, T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011, 471, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Yokonishi, T.; Sato, T.; Komeya, M.; Katagiri, K.; Kubota, Y.; Nakabayashi, K.; Hata, K.; Inoue, K.; Ogonuki, N.; Ogura, A.; et al. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat. Commun 2014, 5, 4320. [Google Scholar] [CrossRef] [PubMed]
- Perrard, M.H.; Sereni, N.; Schluth-Bolard, C.; Blondet, A.; D Estaing, S.G.; Plotton, I.; Morel-Journel, N.; Lejeune, H.; David, L.; Durand, P. Complete Human and Rat Ex Vivo Spermatogenesis from Fresh or Frozen Testicular Tissue. Biol. Reprod. 2016, 95, 89. [Google Scholar] [CrossRef]
- de Michele, F.; Poels, J.; Vermeulen, M.; Ambroise, J.; Gruson, D.; Guiot, Y.; Wyns, C. Haploid Germ Cells Generated in Organotypic Culture of Testicular Tissue from Prepubertal Boys. Front. Physiol 2018, 9, 1413. [Google Scholar] [CrossRef]
- Portela, J.M.D.; de Winter-Korver, C.M.; van Daalen, S.K.M.; Meißner, A.; de Melker, A.A.; Repping, S.; van Pelt, A.M.M. Assessment of fresh and cryopreserved testicular tissues from (pre)pubertal boys during organ culture as a strategy for in vitro spermatogenesis. Hum. Reprod. 2019, 34, 2443–2455. [Google Scholar] [CrossRef]
- Medrano, J.V.; Vilanova-Pérez, T.; Fornés-Ferrer, V.; Navarro-Gomezlechon, A.; Martínez-Triguero, M.L.; García, S.; Gómez-Chacón, J.; Povo, I.; Pellicer, A.; Andrés, M.M.; et al. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018, 110, 1045–1057.e1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komeya, M.; Hayashi, K.; Nakamura, H.; Yamanaka, H.; Sanjo, H.; Kojima, K.; Sato, T.; Yao, M.; Kimura, H.; Fujii, T.; et al. Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro. Sci. Rep. 2017, 7, 15459. [Google Scholar] [CrossRef] [Green Version]
- Ibtisham, F.; Honaramooz, A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, Z.; Hosseini, S.M.; Hajian, M.; Abedi, P.; Bahadorani, M.; Baharvand, H.; Nasr-Esfahani, M.H. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology 2012, 77, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Meng, Q.; Lu, J.; Zhang, L.; Li, H.; Huang, B. Human amnion mesenchymal stem cells restore spermatogenesis in mice with busulfan-induced testis toxicity by inhibiting apoptosis and oxidative stress. Stem Cell Res. Ther. 2020, 11, 290. [Google Scholar] [CrossRef]
- Liang, J.; Wang, N.; He, J.; Du, J.; Guo, Y.; Li, L.; Wu, W.; Yao, C.; Li, Z.; Kee, K. Induction of Sertoli-like cells from human fibroblasts by NR5A1 and GATA4. Elife 2019, 8. [Google Scholar] [CrossRef]
- Yang, S.; Ping, P.; Ma, M.; Li, P.; Tian, R.; Yang, H.; Liu, Y.; Gong, Y.; Zhang, Z.; Li, Z.; et al. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients. Stem Cell Rep. 2014, 3, 663–675. [Google Scholar] [CrossRef]
- Marh, J.; Tres, L.L.; Yamazaki, Y.; Yanagimachi, R.; Kierszenbaum, A.L. Mouse round spermatids developed in vitro from preexisting spermatocytes can produce normal offspring by nuclear injection into in vivo-developed mature oocytes. Biol. Reprod. 2003, 69, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kim, H.J.; Kim, H.; Lee, S.J.; Gye, M.C. In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials 2006, 27, 2845–2853. [Google Scholar] [CrossRef]
- Abu Elhija, M.; Lunenfeld, E.; Schlatt, S.; Huleihel, M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J. Androl. 2012, 14, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Gye, M.C.; Choi, K.W.; Hong, J.Y.; Lee, Y.B.; Park, D.W.; Lee, S.J.; Min, C.K. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil. Steril. 2007, 87, 824–833. [Google Scholar] [CrossRef]
- Gholami, K.; Pourmand, G.; Koruji, M.; Sadighigilani, M.; Navid, S.; Izadyar, F.; Abbasi, M. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod. Biol. 2018, 18, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Xiao, S.; Zhang, Y. Stage-specific approaches promote in vitro induction for spermatogenesis in vitro. Cell. Dev. Biol. Anim. 2018, 54, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Cremades, N.; Bernabeu, R.; Barros, A.; Sousa, M. In-vitro maturation of round spermatids using co-culture on Vero cells. Hum. Reprod. 1999, 14, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Nagayoshi, M.; Awata, S.; Mawatari, Y.; Tanaka, I.; Kusunoki, H. Completion of meiosis in human primary spermatocytes through in vitro coculture with Vero cells. Fertil. Steril. 2003, 79 (Suppl. 1), 795–801. [Google Scholar] [CrossRef]
- Movahedin, M.; Ajeen, A.; Ghorbanzadeh, N.; Tiraihi, T.; Valojerdi, M.R.; Kazemnejad, A. In vitro maturation of fresh and frozen-thawed mouse round spermatids. Andrologia 2004, 36, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Bahceci, M.; Ozcan, C.; Greco, E.; Mendoza, C. Restoration of fertility by in-vitro spermatogenesis. Lancet 1999, 353, 555–556. [Google Scholar] [CrossRef]
- Tesarik, J.; Greco, E.; Mendoza, C. Assisted reproduction with in-vitro-cultured testicular spermatozoa in cases of severe germ cell apoptosis: A pilot study. Hum. Reprod. 2001, 16, 2640–2645. [Google Scholar] [CrossRef] [Green Version]
- Solomon, R.; AbuMadighem, A.; Kapelushnik, J.; Amano, B.C.; Lunenfeld, E.; Huleihel, M. Involvement of Cytokines and Hormones in the Development of Spermatogenesis In Vitro from Spermatogonial Cells of Cyclophosphamide-Treated Immature Mice. Int. J. Mol. Sci. 2021, 22, 1672. [Google Scholar] [CrossRef]
- Liu, S.; Tang, Z.; Xiong, T.; Tang, W. Isolation and characterization of human spermatogonial stem cells. Reprod. Biol. Endocrinol. 2011, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzadeh, E.; Mirzapour, T.; Nowroozi, M.R.; Nazarian, H.; Piryaei, A.; Alipour, F.; Modarres Mousavi, S.M.; Ghaffari Novin, M. Differentiation of spermatogonial stem cells by soft agar three-dimensional culture system. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Pramod, R.K.; Mitra, A. In vitro culture and characterization of spermatogonial stem cells on Sertoli cell feeder layer in goat (Capra hircus). J. Assist. Reprod. Genet. 2014, 31, 993–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowroozi, M.R.; Ahmadi, H.; Rafiian, S.; Mirzapour, T.; Movahedin, M. In vitro colonization of human spermatogonia stem cells: Effect of patient’s clinical characteristics and testicular histologic findings. Urology 2011, 78, 1075–1081. [Google Scholar] [CrossRef]
- Jabari, A.; Sadighi Gilani, M.A.; Koruji, M.; Gholami, K.; Mohsenzadeh, M.; Rastegar, T.; Khadivi, F.; Ghanami Gashti, N.; Nikmahzar, A.; Mojaverrostami, S.; et al. Three-dimensional co-culture of human spermatogonial stem cells with Sertoli cells in soft agar culture system supplemented by growth factors and Laminin. Acta Histochem. 2020, 122, 151572. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Terada, Y.; Ugajin, T.; Yaegashi, N.; Sato, K. A novel culture system for mouse spermatid maturation which produces elongating spermatids capable of inducing calcium oscillation during fertilization and embryonic development. J. Assist. Reprod. Genet. 2010, 27, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roulet, V.; Denis, H.; Staub, C.; Le Tortorec, A.; Delaleu, B.; Satie, A.P.; Patard, J.J.; Jégou, B.; Dejucq-Rainsford, N. Human testis in organotypic culture: Application for basic or clinical research. Hum. Reprod. 2006, 21, 1564–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, S.S.; Sarda, K.; Bhattacharya, I.; Plant, T.M. Insufficient androgen and FSH signaling may be responsible for the azoospermia of the infantile primate testes despite exposure to an adult-like hormonal milieu. Hum. Reprod. 2012, 27, 2515–2525. [Google Scholar] [CrossRef] [Green Version]
- Heidargholizadeh, S.; Aydos, S.E.; Yukselten, Y.; Ozkavukcu, S.; Sunguroglu, A.; Aydos, K. A differential cytokine expression profile before and after rFSH treatment in Sertoli cell cultures of men with nonobstructive azoospermia. Andrologia 2017, 49, e12647. [Google Scholar] [CrossRef]
- Komeya, M.; Kimura, H.; Nakamura, H.; Yokonishi, T.; Sato, T.; Kojima, K.; Hayashi, K.; Katagiri, K.; Yamanaka, H.; Sanjo, H.; et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 2016, 6, 21472. [Google Scholar] [CrossRef]
- Sato, T.; Katagiri, K.; Kojima, K.; Komeya, M.; Yao, M.; Ogawa, T. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS ONE 2015, 10, e0130171. [Google Scholar] [CrossRef]
- Reuter, K.; Schlatt, S.; Ehmcke, J.; Wistuba, J. Fact or fiction: In vitro spermatogenesis. Spermatogenesis 2012, 2, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Galdon, G.; Atala, A.; Sadri-Ardekani, H. In Vitro Spermatogenesis: How Far from Clinical Application? Curr. Urol. Rep. 2016, 17, 49. [Google Scholar] [CrossRef] [PubMed]
Compound | Control | Results | Refs. |
---|---|---|---|
DNase plus collagenase type IV | Mechanical searching | Increased SRR 9% of cases where no spermatozoa were found after mechanical searching. | [33] |
DNase plus collagenase type IV | Mechanical searching | Increased SRR 26% of cases where no spermatozoa were found after mechanical searching | [34] |
DNase plus collagenase type IV | Mechanical searching | Increased SRR 33% of cases where no spermatozoa were found after mechanical searching | [35] |
DNase plus collagenase type IV | Mechanical searching | Increased SRR 7% of cases where no spermatozoa were found after mechanical searching | [36] |
Collagenase type IV and collagenase type IA | Untreated samples | Vitality in control, collagenase IV and IA; 74.7%, 84.9% and 79.5%, respectively, motility; 86%, 86% and 71%, respectively (p > 0.05). Recovered spermatozoa by collagenase IV and IA; 0.34 × 106 and 0.22 × 106, respectively p = 0.017 | [28] |
Compound | Control | Results | Refs. |
---|---|---|---|
Pentoxifylline | Hypoosmotic test | Increased fertilization rate (62% vs. 41% p < 0.05) Increased pregnancy rate (32% vs. 16% p < 0.05) | [53] |
Pentoxifylline | Untreated immotile sperm | Initiated motility in 95.7% of the samples. Increased fertilization rate (66% vs. 50.9%; p < 0.005) Increased mean number of embryos per cycle (4.7 vs. 2.7 p < 0.01). | [55] |
Pentoxifylline | In-group | Induced additional motility in 33.3% and 69.3% of cases where fresh and frozen samples were used, respectively. | [57] |
Pentoxifylline | Untreated immotile sperm | Initiated motility in 70.8% of the samples. | [42] |
Theophylline | Untreated motile or immotile sperm | Improved motility in 98.5% of the cases. Increased fertilization (79.9% vs. 63.3% p < 0.001) and pregnancy (53.9% vs. 23.8% p < 0.05) rates. | [45] |
Time of in Vitro Culture | Control | Results | Refs. |
---|---|---|---|
24 h | 0 day | Improved motility from 13% to 76% (at 25 °C) and 67% (at 37 °C) (p = 0.01) | [72] |
24 h supp recFSH | 24 h simple medium | recFSH supplementation improved motility to 70.4% vs. 32.9%, fertilization 68.8% vs. 42.1%, implantation per embryo 20.1% vs. 13.2%, and clinical pregnancy 47.9% vs. 30% (p < 0.005) | [73] |
24 h—72 h | 0 day | After 24 h in culture, a marked increase of 5–8% in motile sperm was observed and a maximum motility rate appeared between 48 and 72 h of culture (p < 0.05) | [41] |
Method | Comparison | Results | Refs. |
---|---|---|---|
HOST | Sperm morphology | Significantly higher fertilization 43.6% vs. 28.2%, pregnancy 27.3% vs. 5.7% and ongoing pregnancy 20.5% vs. 2.9%. | [79] |
Testicular vs. ejaculated spermatozoa | Fertilization 30.1% vs. 42.7% (NS), pregnancy 16.7% vs. 13.3% (NS) and delivery/ongoing pregnancy 8.3% vs. 6.7% (NS), respectively. | [80] | |
Sperm tail flexibility test | Motile vs. immotile sperm selected by the test | In frozen-thawed samples; fertilization 74.3% vs. 65.7%, and pregnancies three vs. two, respectively (NS). In fresh samples; fertilization 64.4% vs. 73.4%, and pregnancies nine vs. three, respectively (NS). | [94] |
Laser-assisted sperm selection | Random sperm selection | Higher fertilization 45.4% vs. 20.4% p < 0.0001, cleavage 64.4% vs. 30.6% p < 0.0001, and take-home-baby rate 9.0% vs. 5.9%. | [103] |
Sperm birefringence | Normal motility/morphology | Improved grade I/II embryo 71.2% vs. 63.4% and pregnancy 46.6% vs. 33.3%, respectively. | [107] |
Routine sperm selection | Improved pregnancy 58% vs. 18% p = 0.053, implantation 42.1% vs. 12.5% p = 0.049 and ongoing pregnancy 58% vs. 9% p = 0.018, respectively. | [108] | |
Microfluidics-assisted sperm sorting | Standard sample processing | Improved sperm yield 13.5 sperm per min vs. 1.52 sperm per min. | [113] |
Fluorescence-activated cell sorting | Standard sample processing | Improved sperm recovery 50% vs. 38%, respectively. | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydos, K.; Aydos, O.S. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. J. Clin. Med. 2021, 10, 2687. https://doi.org/10.3390/jcm10122687
Aydos K, Aydos OS. Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. Journal of Clinical Medicine. 2021; 10(12):2687. https://doi.org/10.3390/jcm10122687
Chicago/Turabian StyleAydos, Kaan, and Oya Sena Aydos. 2021. "Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA" Journal of Clinical Medicine 10, no. 12: 2687. https://doi.org/10.3390/jcm10122687
APA StyleAydos, K., & Aydos, O. S. (2021). Sperm Selection Procedures for Optimizing the Outcome of ICSI in Patients with NOA. Journal of Clinical Medicine, 10(12), 2687. https://doi.org/10.3390/jcm10122687