Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection and Definition
2.3. Measurement of L-FABP Levels
2.4. Outcome Definition
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics Analysis: Non-AKI vs. AKI Groups
3.2. Characteristics of Patients Who Had CPB Durations Longer Than 120 min
3.3. Performance of L-FABP in Discriminating AKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuo, G.; Yang, S.Y.; Chuang, S.S.; Fan, P.C.; Chang, C.H.; Hsiao, Y.C.; Chen, Y.C. Using acute kidney injury severity and scoring systems to predict outcome in patients with burn injury. J. Formos. Med. Assoc. 2016, 115, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Singhania, G.; Bihorac, A. Acute Kidney Injury in the Surgical Patient. Crit. Care Clin. 2015, 31, 705–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.H.; Lee, C.C.; Chen, S.W.; Fan, P.C.; Chen, Y.C.; Chang, S.W.; Chen, T.H.; Wu, V.C.; Lin, P.J.; Tsai, F.C. Predicting Acute Kidney Injury Following Mitral Valve Repair. Int. J. Med. Sci. 2016, 13, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.H.; Brooks, C.S.; Burch, R.N. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am. J. Kidney Dis. 1982, 2, 337–346. [Google Scholar] [CrossRef]
- McIlroy, D.R.; Wagener, G.; Lee, H.T. Biomarkers of acute kidney injury: An evolving domain. Anesthesiology 2010, 112, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not So Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef]
- Chmurzynska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum. Genom. 2011, 5, 170–191. [Google Scholar] [CrossRef]
- Sweetser, D.A.; Heuckeroth, R.O.; Gordon, J.I. The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Annu. Rev. Nutr. 1987, 7, 337–359. [Google Scholar] [CrossRef]
- Schroeder, F.; Petrescu, A.D.; Huang, H.; Atshaves, B.P.; McIntosh, A.L.; Martin, G.G.; Hostetler, H.A.; Vespa, A.; Landrock, D.; Landrock, K.K.; et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2008, 43, 1–17. [Google Scholar] [CrossRef]
- Ek-Von Mentzer, B.A.; Zhang, F.; Hamilton, J.A. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J. Biol. Chem. 2001, 276, 15575–15580. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Gong, Y.; Anderson, J.; Sun, D.; Minuk, G.; Roberts, M.S.; Burczynski, F.J. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 2005, 42, 871–879. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Y.; Shao, X.; Ni, Z.; Mou, S. L-FABP: A novel biomarker of kidney disease. Clin. Chim. Acta 2015, 445, 85–90. [Google Scholar] [CrossRef]
- Yamamoto, T.; Noiri, E.; Ono, Y.; Doi, K.; Negishi, K.; Kamijo, A.; Kimura, K.; Fujita, T.; Kinukawa, T.; Taniguchi, H.; et al. Renal L-type fatty acid—Binding protein in acute ischemic injury. J. Am. Soc. Nephrol. 2007, 18, 2894–2902. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Auriemma, S.; Fabbri, A.; D’Onofrio, A.; Katz, N.; McCullough, P.A.; Ricci, Z.; Shaw, A.; Ronco, C. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int. J. Artif. Organs 2008, 31, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.M.; Weissenberger, W.K.; Warters, R.D.; Geissler, H.J.; Allen, S.J.; Mehlhorn, U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion 2002, 17, 401–406. [Google Scholar] [CrossRef]
- Axtell, A.L.; Fiedler, A.G.; Melnitchouk, S.; D’Alessandro, D.A.; Villavicencio, M.A.; Jassar, A.S.; Sundt, T.M., 3rd. Correlation of cardiopulmonary bypass duration with acute renal failure after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Wykrzykowska, J.J.; Garg, S.; Onuma, Y.; de Vries, T.; Goedhart, D.; Morel, M.A.; van Es, G.A.; Buszman, P.; Linke, A.; Ischinger, T.; et al. Value of age, creatinine, and ejection fraction (ACEF score) in assessing risk in patients undergoing percutaneous coronary interventions in the ‘All-Comers’ LEADERS trial. Circ. Cardiovasc. Interv. 2011, 4, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahli, B.E.; Wischnewsky, M.B.; Jakob, P.; Klingenberg, R.; Obeid, S.; Heg, D.; Raber, L.; Windecker, S.; Roffi, M.; Mach, F.; et al. Predictive value of the age, creatinine, and ejection fraction (ACEF) score in patients with acute coronary syndromes. Int. J. Cardiol. 2018, 270, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Section 2: AKI Definition. Kidney Int. 2012, 2, 19–36. [CrossRef] [Green Version]
- Alge, J.L.; Arthur, J.M. Biomarkers of AKI: A review of mechanistic relevance and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 2015, 10, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Parikh, C.R.; Thiessen-Philbrook, H.; Garg, A.X.; Kadiyala, D.; Shlipak, M.G.; Koyner, J.L.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M.; et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 2013, 8, 1079–1088. [Google Scholar] [CrossRef]
- Ho, J.; Tangri, N.; Komenda, P.; Kaushal, A.; Sood, M.; Brar, R.; Gill, K.; Walker, S.; MacDonald, K.; Hiebert, B.M.; et al. Urinary, Plasma, and Serum Biomarkers’ Utility for Predicting Acute Kidney Injury Associated With Cardiac Surgery in Adults: A Meta-analysis. Am. J. Kidney Dis. 2015, 66, 993–1005. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Kamijo-Ikemori, A.; Sugaya, T.; Yasuda, T.; Kimura, K. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults. Circ. J. 2012, 76, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagiri, D.; Doi, K.; Honda, K.; Negishi, K.; Fujita, T.; Hisagi, M.; Ono, M.; Matsubara, T.; Yahagi, N.; Iwagami, M.; et al. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann. Thorac. Surg. 2012, 93, 577–583. [Google Scholar] [CrossRef]
- Lehner, G.F.; Forni, L.G.; Joannidis, M. Oliguria and Biomarkers of Acute Kidney Injury: Star Struck Lovers or Strangers in the Night? Nephron 2016, 134, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Tonomura, Y.; Matsubara, M.; Kazama, I. Biomarkers in Urine and Use of Creatinine. In General Methods in Biomarker Research and Their Applications; Preedy, V.R., Patel, V.B., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 165–186. [Google Scholar]
- Boldt, J.; Brenner, T.; Lehmann, A.; Suttner, S.W.; Kumle, B.; Isgro, F. Is kidney function altered by the duration of cardiopulmonary bypass? Ann. Thorac. Surg. 2003, 75, 7. [Google Scholar] [CrossRef]
- Sirvinskas, E.; Andrejaitiene, J.; Raliene, L.; Nasvytis, L.; Karbonskiene, A.; Pilvinis, V.; Sakalauskas, J. Cardiopulmonary bypass management and acute renal failure: Risk factors and prognosis. Perfusion 2008, 23, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Paarmann, H.; Charitos, E.; Beilharz, A.; Schön, J.; Berggreen, A.E.; Heringlake, M. Duration of cardiopulmonary bypass is an important confounder when using biomarkers for early diagnosis of acute kidney injury in cardiac surgical patients. Appl. Cardiopulm. Pathophysiol. 2013, 17, 284–297. [Google Scholar]
- Loef, B.G.; Epema, A.H.; Navis, G.; Ebels, T.; van Oeveren, W.; Henning, R.H. Off-pump coronary revascularization attenuates transient renal damage compared with on-pump coronary revascularization. Chest 2002, 121, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Haase, M.; Bellomo, R.; Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 2010, 55, 2024–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Chang, C.H.; Chen, S.W.; Fan, P.C.; Chang, S.W.; Chen, Y.T.; Nan, Y.Y.; Lin, P.J.; Tsai, F.C. Preoperative risk assessment improves biomarker detection for predicting acute kidney injury after cardiac surgery. PLoS ONE 2018, 13, e0203447. [Google Scholar] [CrossRef]
- Chen, J.J.; Lee, T.H.; Lee, C.C.; Chang, C.H. Using lipocalin as a prognostic biomarker in acute kidney injury. Expert Rev. Mol. Diagn. 2021, 1–10. [Google Scholar] [CrossRef]
- Robson, A.F.; Hupp, T.R.; Lickiss, F.; Ball, K.L.; Faulds, K.; Graham, D. Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proc. Natl. Acad. Sci. USA 2012, 109, 8073–8078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schley, G.; Koberle, C.; Manuilova, E.; Rutz, S.; Forster, C.; Weyand, M.; Formentini, I.; Kientsch-Engel, R.; Eckardt, K.U.; Willam, C. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury. PLoS ONE 2015, 10, e0145042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocze, I.; Jauch, D.; Gotz, M.; Kennedy, P.; Jung, B.; Zeman, F.; Gnewuch, C.; Graf, B.M.; Gnann, W.; Banas, B.; et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury after Major Surgery: The Prospective Randomized BigpAK Study. Ann. Surg. 2018, 267, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Ilaria, G.; Kianoush, K.; Ruxandra, B.; Francesca, M.; Mariarosa, C.; Davide, G.; Claudio, R. Clinical adoption of Nephrocheck(R) in the early detection of acute kidney injury. Ann. Clin. Biochem. 2021, 58, 6–15. [Google Scholar] [CrossRef]
- Rizo-Topete, L.M.; Rosner, M.H.; Ronco, C. Acute Kidney Injury Risk Assessment and the Nephrology Rapid Response Team. Blood Purif. 2017, 43, 82–88. [Google Scholar] [CrossRef]
All Patients (n = 144) | AKI (n = 59) | Non-AKI (n = 85) | p | |
---|---|---|---|---|
Baseline characters | ||||
Age, year | 62.0 ± 12.8 | 63.6 ± 12.8 | 60.9 ± 12.8 | 0.216 ‡ |
Gender, male | 95 (66.0%) | 38 (64.4%) | 57 (67.0%) | 0.741 |
Underlying disease | ||||
Diabetes mellitus | 53 (36.8%) | 20 (33.9%) | 33 (38.8%) | 0.547 |
Preoperation examination data | ||||
Hemoglobin, g/dL | 12.5 ± 2.4 | 11.6 ± 2.4 | 13.1 ± 2.2 | <0.001 ‡ |
Platelet, 1000/uL | 226.2 ± 81.8 | 223.1 ± 91.0 | 228.3 ± 75.2 | 0.715 ‡ |
White blood cell count, /uL | 7443.4 ± 2599.3 | 7650.0 ± 2968.5 | 7302.3 ± 2322.2 | 0.434 ‡ |
Creatinine, mg/dL | 0.8 [0.7; 1.0] | 0.8 [0.7; 1.2] | 0.8 [0.7; 1.0] | 0.509 † |
eGFR, mL/min * | 86.2 ± 22.7 | 83.0 ± 24.0 | 88.4 ± 21.5 | 0.159 ‡ |
ALT, mg/dL | 25.0 [18.0; 36.5] | 29.0 [18.0; 40.0] | 24.5 [18.0; 35.2] | 0.544 † |
LVEF, % | 64 [52; 70] | 62 [47; 68] | 65 [55; 72] | 0.211 † |
ACEF score | 1.0 [0.8; 1.3] | 1.1 [0.9; 1.3] | 1.0 [0.8; 1.2] | 0.091 † |
Surgical type | ||||
Aortic surgery | 1 (0.7%) | 1 (1.7%) | 0 (0%) | |
CABG | 53 (36.8%) | 15 (25.4%) | 38 (44.7%) | |
CABG and valve surgery | 9 (6.3%) | 6 (10.2%) | 3 (3.5%) | |
Valve surgery | 80 (55.6%) | 36 (61.0%) | 44 (51.8%) | |
Others | 1 (0.7%) | 1 (1.7%) | 0 (0%) | |
Surgical-related factors | ||||
CPB time, mins | 138.2 ± 58.2 | 165.8 ± 62.5 | 118.9 ± 46.3 | <0.001 ‡ |
Clamp time, mins | 80 [0; 114] | 98 [41; 143] | 71 [0; 108] | 0.003 † |
HTK perfusion | 98 (68.1%) | 46 (78.0%) | 52 (61.2%) | 0.034 |
Postoperative L-FABP data | ||||
1st time L-FABP, ng/dL | 59.8 [21.9; 179.0] | 77.5 [26.7; 236.9] | 43.0 [16.6; 124.1] | 0.032 † |
2nd time L-FABP, ng/dL | 60.4 [20.7; 165.2] | 119.4 [50.2; 425.7] | 42.6 [14.9; 97.9] | <0.001 † |
1st time L-FABP to Creatinine ratio, ng/mg | 3.2 [0.9; 9.8] | 5.2 [1.4; 13.5] | 2.2 [0.7; 7.9] | 0.006 † |
2nd time L-FABP to Creatinine ratio, ng/mg | 0.8 [0.3; 2.8] | 1.7 [0.7; 6.6] | 0.5 [0.2; 1.4] | <0.001 † |
ICU stay, days | 2 [1; 3] | 3 [2; 5] | 1 [1; 2] | <0.001 † |
Mortality | 5 (3.5%) | 1 (1.2%) | 4 (6.8%) | 0.072 |
All Patients (n = 85) | AKI (n = 46) | Non-AKI (n = 39) | p | |
---|---|---|---|---|
Baseline characters | ||||
Age, year | 62.1 ± 12.1 | 63.5 ± 12.5 | 60.5 ± 11.5 | 0.269 ‡ |
Gender, male | 55 (64.7%) | 31 (67.4%) | 24 (61.5%) | 0.574 |
Underlying disease | ||||
Diabetes mellitus | 24 (28.2%) | 14 (30.4%) | 10 (25.6%) | 0.625 |
Preoperation examination data | ||||
Hemoglobin, g/dL | 12.3 ± 2.3 | 11.7 ± 2.4 | 13.0 ± 2.0 | 0.013 ‡ |
Platelet, 1000/uL | 220.8 ± 85.3 | 209.8 ± 83.9 | 233.8 ± 86.3 | 0.205 ‡ |
White blood cell count, /uL | 7527.4 ± 2572.0 | 7880.0 ± 3201.8 | 7120.5 ± 2086.8 | 0.209 ‡ |
Creatinine, mg/dL | 0.8 [0.7; 1.0] | 0.8 [0.7; 1.2] | 0.8 [0.7; 0.9] | 0.412 † |
eGFR, mL/min * | 85.5 ± 22.7 | 82.6 ± 23.1 | 88.9 ± 22.0 | 0.201 ‡ |
ALT, mg/dL | 25.0 [16.0; 38.0] | 31.0 [16.0; 40.0] | 24.5 [16.8; 36.5] | 0.508 † |
LVEF, % | 60.9 ± 13.2 | 60.6 ± 13.9 | 61.2 ± 12.5 | 0.855 ‡ |
ACEF score | 1.0 [0.8; 1.3] | 1.0 [0.9; 1.3] | 1.0 [0.8; 1.2] | 0.173 † |
Surgical type | ||||
Aortic surgery | 1 (1.2%) | 1 (2.2%) | 0 (0%) | |
CABG | 15 (17.6%) | 7 (15.2%) | 8 (20.5%) | |
CABG and valve surgery | 9 (10.6%) | 6 (13.0%) | 3 (7.7%) | |
Valve surgery | 59 (69.4%) | 31 (67.4%) | 28 (71.8%) | |
Others | 1 (1.2%) | 1 (2.2%) | 0 (0%) | |
Surgical related factors | ||||
CPB time, mins | 172.5 ± 49.2 | 184.3 ± 57.8 | 158.5 ± 32.0 | 0.012 ‡ |
Clamp time, mins | 103.6 ± 54.0 | 109.5 ± 50.8 | 96.7 ± 47.7 | 0.278 ‡ |
HTK perfusion | 74 (87.1%) | 41 (89.1%) | 33 (84.6%) | 0.537 |
Postoperative L-FABP data | ||||
1st time L-FABP, ng/dL | 91.0 [26.1; 244.1] | 114.1 [39.9; 283.2] | 73.8 [22.8; 203.1] | 0.169 † |
2nd time L-FABP, ng/dL | 104.1 [36.9; 270.0] | 155.2 [62.6; 467.7] | 54.5 [22.6; 118.3] | <0.001 † |
1st time L-FABP to Creatinine ratio, ng/mg | 5.8 [1.5; 12.3] | 5.7 [1.6; 15.2] | 5.8 [0.9; 10.2] | 0.096 † |
2nd time L-FABP to Creatinine ratio, ng/mg | 1.2 [0.5; 4.5] | 2.7 [0.9; 8.6] | 0.9 [0.3; 1.4] | <0.001 † |
ICU stay, days | 2 [1; 4] | 3 [2; 5] | 1 [1; 2] | <0.001 † |
Mortality | 3 (3.5%) | 3 (6.5%) | 0 (0%) | 0.104 |
Population | AUROC (95% CI) | p Value | Sensitivity (%) | Specificity (%) | Optimal Cut-Off † | |
---|---|---|---|---|---|---|
1st timepoint | Urinary L-FABP | |||||
Total | 0.598 (0.503–0.694) | 0.046 | 40.7 | 77.1 | >132.34 | |
CPB duration > 120 min | 0.579 (0.456–0.702) | 0.063 | 21.7 | 97.4 | >337.08 | |
Urinary L-FABP-to-creatinine ratio | ||||||
Total | 0.627 (0.533–0.722) | 0.010 | 33.9 | 89.2 | >11.842 | |
CPB duration > 120 min | 0.596 (0.475–0.718) | 0.131 | 39.1 | 84.2 | >11.842 | |
2nd timepoint | Urinary L-FABP | |||||
Total | 0.720 (0.633–0.807) | <0.001 | 61.0 | 77.1 | >101.77 | |
CPB duration > 120 min | 0.742 (0.636–0.848) | <0.001 | 71.7 | 73.7 | >101.77 | |
Urinary L-FABP-to-creatinine ratio | ||||||
Total | 0.727 (0.643–0.811) | <0.001 | 79.7 | 56.6 | >0.612 | |
CPB duration > 120 min | 0.751 (0.648–0.855) | <0.001 | 73.9 | 68.1 | >1.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.H.; Lee, C.-C.; Chen, J.-J.; Fan, P.-C.; Tu, Y.-R.; Yen, C.-L.; Kuo, G.; Chen, S.-W.; Tsai, F.-C.; Chang, C.-H. Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. J. Clin. Med. 2021, 10, 2741. https://doi.org/10.3390/jcm10132741
Lee TH, Lee C-C, Chen J-J, Fan P-C, Tu Y-R, Yen C-L, Kuo G, Chen S-W, Tsai F-C, Chang C-H. Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. Journal of Clinical Medicine. 2021; 10(13):2741. https://doi.org/10.3390/jcm10132741
Chicago/Turabian StyleLee, Tao Han, Cheng-Chia Lee, Jia-Jin Chen, Pei-Chun Fan, Yi-Ran Tu, Chieh-Li Yen, George Kuo, Shao-Wei Chen, Feng-Chun Tsai, and Chih-Hsiang Chang. 2021. "Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery" Journal of Clinical Medicine 10, no. 13: 2741. https://doi.org/10.3390/jcm10132741
APA StyleLee, T. H., Lee, C. -C., Chen, J. -J., Fan, P. -C., Tu, Y. -R., Yen, C. -L., Kuo, G., Chen, S. -W., Tsai, F. -C., & Chang, C. -H. (2021). Assessment of Cardiopulmonary Bypass Duration Improves Novel Biomarker Detection for Predicting Postoperative Acute Kidney Injury after Cardiovascular Surgery. Journal of Clinical Medicine, 10(13), 2741. https://doi.org/10.3390/jcm10132741