MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Demographic Data and Clinical Characteristics
2.2. Immunosuppressive Treatment
2.3. Kidney Rejection Diagnosis
2.4. Total RNA Extraction
2.5. RT-PCR for miRNAs
2.6. miRNA Expression Profile Analysis
2.7. Target Prediction of miRNAs Differentially Expressed
2.8. Functional Analysis of miRNAs Differentially Expressed in Acute Rejection
2.9. Validation of miRNAs in the GSE115816 Cohort
2.10. Statistical Analysis
3. Results
3.1. miRNA Expression Profile Related to the Differentiation and Activation of B and T Cells in Kidney Recipients’ Outcome
3.2. Target Genes of miRNAs Differentially Expressed
3.3. Biological Processes of Target Genes of miRNA Differentially Expressed in Kidney Transplantation
3.4. Molecular Functions of Target Genes of miRNA Differentially Expressed in Kidney Transplantation
3.5. Validation of miRNAs in the GSE115816 Cohort
3.6. miR-150-5p Target Genes and Expression Analysis in Transcriptomic Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Samant, H.; Hawxby, A.; Samaniego, M.D. Biomarkers of rejection in kidney transplantation. Curr. Opin. Organ Transplant. 2019, 24, 103–110. [Google Scholar] [CrossRef] [PubMed]
- When a Transplant Fails|National Kidney Foundation. Available online: https://www.kidney.org/transplantation/transaction/TC/summer09/TCsm09_TransplantFails (accessed on 2 December 2020).
- Friedewald, J.; Abecassis, M.; Kurian, S. Gene expression biomarkers for kidney transplant rejection—The entire landscape. EBioMedicine 2019, 42, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, J.M.; Knight, S.R. Noninvasive biomarkers in monitoring kidney allograft health. Curr. Opin. Organ Transplant. 2019, 24, 411–415. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta-Mol. Cell Res. 2010, 1803, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Li, S.C.; Pan, C.Y.; Lin, W.C. Bioinformatic discovery of microRNA precursors from human ESTs and introns. BMC Genom. 2006, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Gimondi, S.; Dugo, M.; Vendramin, A.; Bermema, A.; Biancon, G.; Cavané, A.; Corradini, P.; Carniti, C. Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation. Exp. Hematol. 2016, 44, 624–634.e1. [Google Scholar] [CrossRef] [Green Version]
- Van Huyen, J.P.D.; Tible, M.; Gay, A.; Guillemain, R.; Aubert, O.; Varnous, S.; Iserin, F.; Rouvier, P.; François, A.; Vernerey, D.; et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 2014, 35, 3194–3202. [Google Scholar] [CrossRef] [Green Version]
- Amarilyo, G.; La Cava, A. MiRNA in systemic lupus erythematosus. Clin. Immunol. 2012, 144, 26–31. [Google Scholar] [CrossRef]
- Ratert, N.; Meyer, H.A.; Jung, M.; Lioudmer, P.; Mollenkopf, H.J.; Wagner, I.; Miller, K.; Kilic, E.; Erbersdobler, A.; Weikert, S.; et al. MiRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J. Mol. Diagn. 2013, 15, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Basso, K.; Sumazin, P.; Morozov, P.; Schneider, C.; Maute, R.L.; Kitagawa, Y.; Mandelbaum, J.; Haddad, J.; Chen, C.Z.; Califano, A.; et al. Identification of the Human Mature B Cell miRNome. Immunity 2009, 30, 744–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.P.; Wang, M.; Robertus, J.L.; Schakel, R.N.; Gibcus, J.H.; Diepstra, A.; Harms, G.; Peh, S.C.; Reijmers, R.M.; Pals, S.T.; et al. MiRNA profiling of B-cell subsets: Specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Lab. Investig. 2009, 89, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Calado, D.P.; Galler, G.; Thai, T.H.; Patterson, H.C.; Wang, J.; Rajewsky, N.; Bender, T.P.; Rajewsky, K. MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb. Cell 2007, 131, 146–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigorito, E.; Perks, K.L.; Abreu-Goodger, C.; Bunting, S.; Xiang, Z.; Kohlhaas, S.; Das, P.P.; Miska, E.A.; Rodriguez, A.; Bradley, A.; et al. microRNA-155 Regulates the Generation of Immunoglobulin Class-Switched Plasma Cells. Immunity 2007, 27, 847–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danger, R.; Pallier, A.; Giral, M.; Martínez-Llordella, M.; Lozano, J.J.; Degauque, N.; Sanchez-Fueyo, A.; Soulillou, J.P.; Brouard, S. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J. Am. Soc. Nephrol. 2012, 23, 597–606. [Google Scholar] [CrossRef]
- Anglicheau, D.; Sharma, V.K.; Ding, R.; Hummel, A.; Snopkowski, C.; Dadhania, D.; Seshan, S.V.; Suthanthiran, M. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl. Acad. Sci. USA 2009, 106, 5330–5335. [Google Scholar] [CrossRef] [Green Version]
- Khalid, U.; Newbury, L.J.; Simpson, K.; Jenkins, R.H.; Bowen, T.; Bates, L.; Sheerin, N.S.; Chavez, R.; Fraser, D.J. A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci. Rep. 2019, 9, 3584. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G.; et al. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)z. Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G.; et al. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Mark, P.B.; Petrie, C.J.; Jardine, A.G. Diagnostic, Prognostic, And therapeutic implications of brain natriuretic peptide in dialysis and nondialysis-dependent chronic renal failure. Semin. Dial. 2007, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, R.; Zolala, F.; Nasirian, M.; Baneshi, M.R.; Etminan, A.; Sekhavati, E.; Khodadost, M.; Haghdoost, A.A. Estimation of the prevalence of chronic kidney disease: The results of a model based estimation in Kerman, Iran. Med. J. Islam. Repub. Iran 2016, 30, 238–245. [Google Scholar]
- Haas, M.; Loupy, A.; Lefaucheur, C.; Roufosse, C.; Glotz, D.; Seron, D.; Nankivell, B.J.; Halloran, P.F.; Colvin, R.B.; Akalin, E.; et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell–mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 2018, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Colvin, R.B.; Daha, M.R.; Drachenberg, C.B.; Haas, M.; Nickeleit, V.; Salmon, J.E.; Sis, B.; Zhao, M.H.; Bruijn, J.A.; et al. Pros and cons for C4d as a biomarker. Kidney Int. 2012, 81, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DIANA TOOLS. Available online: http://diana.imis.athena-innovation.gr/DianaTools/index.php (accessed on 3 December 2020).
- TargetScanHuman 7.2. Available online: http://www.targetscan.org/vert_72/ (accessed on 10 January 2021).
- GEO Accession Viewer. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115816 (accessed on 26 April 2021).
- Li, L.; Khatri, P.; Sigdel, T.K.; Tran, T.; Ying, L.; Vitalone, M.J.; Chen, A.; Hsieh, S.; Dai, H.; Zhang, M.; et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am. J. Transplant. 2012, 12, 2710–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurian, S.M.; Williams, A.N.; Gelbart, T.; Campbell, D.; Mondala, T.S.; Head, S.R.; Horvath, S.; Gaber, L.; Thompson, R.; Whisenant, T.; et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am. J. Transplant. 2014, 14, 1164–1172. [Google Scholar] [CrossRef]
- Günther, O.P.; Shin, H.; Ng, R.T.; McMaster, W.R.; McManus, B.M.; Keown, P.A.; Tebbutt, S.J.; Lê Cao, K.A. Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study. Omi. A J. Integr. Biol. 2014, 18, 682–695. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Haynes, W. Encyclopedia of Systems Biology, Benjamini—Hochberg Method; Springer: New York, NY, USA, 2013; p. 78. [Google Scholar]
- Home-GEO-NCBI. Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 3 December 2020).
- Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Matz, M.; Heinrich, F.; Lorkowski, C.; Wu, K.; Klotsche, J.; Zhang, Q.; Lachmann, N.; Durek, P.; Budde, K.; Mashreghi, M.-F. MicroRNA regulation in blood cells of renal transplanted patients with interstitial fibrosis/tubular atrophy and antibody-mediated rejection. PLoS ONE 2018, 13, e0201925. [Google Scholar] [CrossRef] [Green Version]
- Karytinos, A.; Forneris, F.; Profumo, A.; Ciossani, G.; Battaglioli, E.; Binda, C.; Mattevi, A. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 2009, 284, 17775–17782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backes, C.; Meese, E.; Keller, A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016, 20, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Suthanthiran, M.; Muthukumar, T. MicroRNAs and Transplantation. Clin. Lab. Med. 2019, 39, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.L.; Wissink, E.M.; Grimson, A.; Rudd, B.D. MiR-150 Regulates Differentiation and Cytolytic Effector Function in CD8+ T cells. Sci. Rep. 2015, 5, 16399. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ren, X.; Zhang, X. Role of microRNA-150 in solid tumors. Oncol. Lett. 2015, 10, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, J.; Li, J.; Wang, X.; Song, W. MicroRNA-150 promotes cell proliferation, migration, and invasion of cervical cancer through targeting PDCD4. Biomed. Pharmacother. 2018, 97, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Tagawa, H.; Yamashita, J.; Teshima, K.; Nara, M.; Iwamoto, K.; Kume, M.; Kameoka, Y.; Takahashi, N.; Nakagawa, T.; et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 2011, 25, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hippen, K.L.; Loschi, M.; Nicholls, J.; MacDonald, K.P.A.; Blazar, B.R. Effects of MicroRNA on Regulatory T Cells and Implications for Adoptive Cellular Therapy to Ameliorate Graft-versus-Host Disease. Front. Immunol. 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- de Candia, P.; Torri, A.; Gorletta, T.; Fedeli, M.; Bulgheroni, E.; Cheroni, C.; Marabita, F.; Crosti, M.; Moro, M.; Pariani, E.; et al. Intracellular Modulation, Extracellular Disposal and Serum Increase of MiR-150 Mark Lymphocyte Activation. PLoS ONE 2013, 8, e75348. [Google Scholar] [CrossRef] [PubMed]
- Wilflingseder, J.; Regele, H.; Perco, P.; Kainz, A.; Soleiman, A.; Mühlbacher, F.; Mayer, B.; Oberbauer, R. MiRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation 2013, 95, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltaninejad, E.; Nicknam, M.H.; Nafar, M.; Ahmadpoor, P.; Pourrezagholi, F.; Sharbafi, M.H.; Hosseinzadeh, M.; Foroughi, F.; Yekaninejad, M.S.; Bahrami, T.; et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection. Transpl. Immunol. 2015, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cron, M.A.; Maillard, S.; Truffault, F.; Gualeni, A.V.; Gloghini, A.; Fadel, E.; Guihaire, J.; Behin, A.; Berrih-Aknin, S.; Le Panse, R. Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Front. Immunol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roat, R.; Hossain, M.M.; Christopherson, J.; Free, C.; Guay, C.; Regazzi, R.; Guo, Z. Circulating miRNA-150-5p is associated with immune-mediated early β-cell loss in a humanized mouse model. Xenotransplantation 2019, 26, e12474. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhu, Y.; Hong, X.; Zhang, M.; Qiu, X.; Wang, Z.; Qi, Z.; Hong, X. miR-181d and c-myc-mediated inhibition of CRY2 and FBXL3 reprograms metabolism in colorectal cancer. Cell Death Dis. 2017, 8, e2958. [Google Scholar] [CrossRef]
- Liu, F.; Lou, Y.-L.; Wu, J.; Ruan, Q.-F.; Xie, A.; Guo, F.; Cui, S.-P.; Deng, Z.-F.; Wang, Y. Upregulation of MicroRNA-210 Regulates Renal Angiogenesis Mediated by Activation of VEGF Signaling Pathway under Ischemia/Perfusion Injury in vivo and in vitro. Kidney Blood Press. Res. 2012, 35, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Vitalone, M.J.; Sigdel, T.K.; Salomonis, N.; Sarwal, R.D.; Hsieh, S.C.; Sarwal, M.M. Transcriptional Perturbations in Graft Rejection. Transplantation 2015, 99, 1882–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Zhang, J.; Li, J.; Zhao, F.; Shen, Y.; Xing, X. Overexpression of miR-574-3p suppresses proliferation and induces apoptosis of chronic myeloid leukemia cells via targeting IL6/JAK/STAT3 pathway. Exp. Ther. Med. 2018, 16, 4296–4302. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.S.; Jee, M.K.; Cho, H.T.; Choi, J.I.; Im, Y.B.; Kwon, O.H.; Kang, S.K. MBD6 is a direct target of Oct4 and controls the stemness and differentiation of adipose tissue-derived stem cells. Cell. Mol. Life Sci. 2013, 70, 711–728. [Google Scholar] [CrossRef]
- Saito, Y.; Miyagawa, Y.; Onda, K.; Nakajima, H.; Sato, B.; Horiuchi, Y.; Okita, H.; Katagiri, Y.U.; Saito, M.; Shimizu, T.; et al. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells. Immunology 2008, 125, 570–590. [Google Scholar] [CrossRef]
- Teruel-Montoya, R.; Kong, X.; Abraham, S.; Ma, L.; Kunapuli, S.P.; Holinstat, M.; Shaw, C.A.; McKenzie, S.E.; Edelstein, L.C.; Bray, P.F. MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression. PLoS ONE 2014, 9, 102259. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. 2012, 5, 492–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juzenas, S.; Venkatesh, G.; Hübenthal, M.; Hoeppner, M.P.; Du, Z.G.; Paulsen, M.; Rosenstiel, P.; Senger, P.; Hofmann-Apitius, M.; Keller, A.; et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res. 2017, 45, 9290–9301. [Google Scholar] [CrossRef] [Green Version]
- Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol. Med. 2018, 24, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics of Kidney Transplant Patients | Total n = 15 | AR, n (%) n = 5 (33.3) | NAR, n (%) n = 10 (66.6) | pa |
---|---|---|---|---|
Age receptor (years) | 57.5 ± 9.15 | 61.2 ± 6.71 | 53.8 ± 11.6 | 0.371 |
Gender receptor (Male/Female), n (%) | 15 | 3 (60)/2 (40) | 6 (60)/4 (40) | 1.000 |
Creatinine (v.n. 0.7 to 1.2 mg/dL) | 2.9 ± 2.1 | 2.5 ± 1.7 | 1.9 ± 2.4 | 0.628 |
eGFR (v.n. >90 mL/min/1.73 m2) | <60 mL/min/1.73 m2 | 37 mL/min/1.73 m2 | 41 mL/min/1.73 m2 | |
HLA mismatches b | 6.2 ± 0.8 | 4.5 ± 0.64 | 4.0 ± 1.1 | 0.539 |
Live-Donor, n (%) | 3 | 1 (20) | 2 (20) | 1.000 |
Preformed anti-HLA antibodies, n (%) | 3 | 1 (20) | 2 (20) | 1.000 |
Induction therapy (Tim/Bas), n (%) | 4 | 3 (60)/0 (0) | 1 (10)/1 (10) | 0.109 |
Delayed-Renal Function, n (%) | 2 | 2 (40) | 0 (0) | 0.095 |
miRNA | NAR | Ct | AR | Ct | miRNA | NAR | Ct | AR | Ct |
---|---|---|---|---|---|---|---|---|---|
let-7a-5p | + | 26.49 | + | 26.71 | miR-19a-3p | - | 37.48 | - | 37.25 |
let-7b-5p | + | 28.43 | + | 28.96 | miR-19b-3p | - | 35.41 | + | 34.33 |
let-7c | + | 30.38 | + | 30.78 | miR-204-5p | - | 35.89 | + | 33.99 |
let-7d-5p | + | 28.66 | + | 28.77 | miR-20a-5p | + | 32.68 | + | 32.72 |
let-7e-5p | + | 30.37 | + | 31.35 | miR-20b-5p | + | 34.69 | + | 33.56 |
let-7f-5p | + | 29.52 | + | 29.84 | miR-21-5p | + | 30.53 | + | 30.71 |
let-7g-5p | + | 30.26 | + | 30.51 | miR-210 | - | 35.57 | + | 33.09 |
let-7i-5p | + | 31.43 | + | 31.61 | miR-214-3p | + | 34.27 | + | 32.11 |
miR-100-5p | - | >40 | - | >40 | miR-221-3p | + | 32.39 | + | 31.5 |
miR-101-3p | - | 35.80 | + | 33.85 | miR-222-3p | + | 33.34 | + | 31.26 |
miR-106b-5p | + | 33.85 | + | 30.93 | miR-223-3p | + | 28.1 | + | 26.9 |
miR-125b-5p | - | >40 | + | 33.53 | miR-23a-3p | + | 28.22 | + | 27.71 |
miR-126-3p | + | 31.94 | + | 30.80 | miR-23b-3p | + | 32.2 | + | 30.95 |
miR-128 | - | 40.27 | + | 34.54 | miR-24-3p | + | 31.62 | + | 31.08 |
miR-130b-3p | + | 34.31 | + | 31.35 | miR-25-3p | + | 30.16 | + | 29.99 |
miR-132-3p | - | 35.44 | + | 34.89 | miR-26a-5p | + | 28.93 | + | 29.04 |
miR-139-5p | - | 35.70 | + | 34.92 | miR-26b-5p | + | 29.23 | + | 29.08 |
miR-142-3p | + | 34.54 | + | 33.51 | miR-27a-3p | + | 33.72 | + | 33.11 |
miR-142-5p | - | >40 | - | 35.03 | miR-27b-3p | - | 36.22 | + | 34.86 |
miR-145-5p | + | 34.69 | + | 31.52 | miR-28-5p | - | 35.4 | + | 32.18 |
miR-146a-5p | + | 33.04 | - | 35.47 | miR-29a-3p | + | 30.05 | + | 29.78 |
miR-146b-5p | - | >40 | - | 36.42 | miR-29b-3p | - | 37.14 | + | 33.8 |
miR-147a | - | >40 | + | 33.64 | miR-29c-3p | + | 32.97 | + | 32.52 |
miR-148a-3p | - | >40 | + | 32.72 | miR-30a-5p | + | 33.66 | + | 32.95 |
miR-150-5p | + | 29.66 | + | 30.98 | miR-30b-5p | - | 36.18 | + | 32.62 |
miR-155-5p | + | 30.01 | + | 30.34 | miR-30c-5p | + | 34.78 | + | 33.0 |
miR-15a-5p | + | 34.55 | + | 34.32 | miR-30d-5p | + | 34.56 | + | 34.05 |
miR-15a-3p | - | 35.15 | + | 32.2 | miR-30e-5p | - | 36.8 | + | 34.29 |
miR-15b-5p | + | 27.26 | + | 26.58 | miR-31-5p | + | 34.46 | + | 33.34 |
miR-16-5p | + | 30.51 | + | 30.32 | miR-326 | - | 35.08 | + | 33.89 |
miR-17-5p | + | 33.56 | + | 32.61 | miR-331-3p | + | 33.18 | + | 33.35 |
miR-17-3p | - | >40 | + | 33.61 | miR-335-5p | - | 39.15 | - | 35.31 |
miR-181a-5p | - | 36.36 | + | 33.58 | miR-342-3p | + | 30.99 | + | 31.38 |
miR-181b-5p | + | 30.67 | + | 30.94 | miR-346 | + | 32.3 | + | 29.30 |
miR-181c-5p | - | 35.45 | + | 33.61 | miR-34a-5p | - | >40 | - | 35.64 |
miR-181d | + | 33.48 | + | 28.85 | miR-365a-3p | - | >40 | - | 35.42 |
miR-182-5p | + | 33.79 | + | 32.32 | miR-423-5p | + | 30.32 | + | 27.27 |
miR-184 | - | >40 | - | 35.4 | miR-574-3p | + | 32.72 | + | 27.76 |
miR-18a-5p | - | >40 | - | 35.0 | miR-92a-3p | + | 29.74 | + | 29.34 |
miR-191-5p | + | 30.88 | + | 26.97 | miR-93-5p | + | 32.43 | + | 31.3 |
miR-195-5p | + | 31.53 | + | 30.89 | miR-98-5p | + | 32.85 | + | 33.83 |
miR-199a-5p | - | >40 | + | 34.19 | miR-99a-5p | - | >40 | + | 34.66 |
miARN | Fold-Change a | Ct Value | |
---|---|---|---|
AR | NAR | ||
miR-574-3p | 28.40 | 27.76 | 32.72 |
miR-181d | 22.54 | 28.85 | 33.48 |
miR-191-5p | 13.68 | 26.97 | 30.88 |
miR-423-5p | 7.52 | 27.27 | 30.32 |
miR-346 | 7.28 | 29.30 | 32.30 |
miR-223-3p | 2.09 | 26.90 | 28.10 |
miR-150-5p | −2.75 | 30.98 | 29.66 |
A. Target Genes of the miRNA Increased in the AR Group | ||
GO ID * | Term a | FDR b |
Biological process (BP) | ||
GO: 0044265 | Catabolic process of cellular macromolecules | 0.0046 |
GO: 0016071 | Metabolic process of mRNA | 0.0046 |
GO: 0006401 | Catabolic process of RNA | 0.0046 |
GO: 0051150 | Regulation of smooth muscle differentiation | 0.0131 |
GO: 0006402 | Catabolic process of thee mRNA | 0.0236 |
Molecular Function (MF) | ||
GO: 0003723 | Binding to RNA | 0.0011 |
GO: 0032553 | Binding to ribonucleotides | 0.0018 |
GO: 0035639 | Binding to ribonucleotide triphospates of purines | 0.0018 |
GO: 0005524 | Binding to ATP | 0.0019 |
GO: 0008144 | Binding to drugs | 0.0020 |
B. Target Genes of the Mirna Decreased in the AR Group | ||
Biological process | ||
GO: 0061564 | Axonal development | 0.0001 |
GO: 0022604 | Regulation of cell morphogenesis | 0.0010 |
GO: 0016569 | Covalent modification of chromatin | 0.0019 |
GO: 0030099 | Myeloid cellular differentiation | 0.0019 |
GO: 0098742 | Cell-cell adhesion via molecules membrane adhesion | 0.0033 |
Molecular Function | ||
GO: 0003700 | DNA binding transcription factor activity | <0.0001 |
GO: 0000981 | DNA binding activity of RNA polymerase II | <0.0001 |
GO: 0043565 | Binding to specific DNA sequences | <0.0001 |
GO: 0000976 | Binding to specific DNA sequences of regulatory regions | <0.0001 |
GO: 1998037 | Binding to specific sequences of double-stranded DNA | <0.0001 |
A. Target Genes of the miRNA Increased in the AR Group | ||
Route ID | Term * | FDR a |
hsa04928 | Secretion and synthesis of parathyroid hormone | 0.0038 |
hsa04728 | Dopaminergic synapsis | 0.0038 |
hsa04371 | Route of APLN signaling | 0.0038 |
hsa04024 | Route of cGMP signaling | 0.0039 |
hsa04070 | Route of phosphatidyl-inositol signaling | 0.0040 |
B. Target Genes of the miRNA Decreased in the Ar Group | ||
hsa04012 | Route of ErbBsignaling | 0.0070 |
hsa01521 | Resistance to TyrosinKinase EGFR | 0.0260 |
GEO Studies | |||
---|---|---|---|
Target Genes | GSE14346 logFC | GSE15296 logFC | GSE46474 logFC |
NAR/AR(28/31) | NAR/AR (24/51) | NAR/AR (20/20) | |
ABHD12 | −0.15 | −0.39 (*) | 0.24 |
ACO1 | −0.41 (**) | −0.21 (*) | −0.03 |
ATP9A | −0.09 | 0.21 (*) | 0.14 |
AZIN1 | −0.68 (**) | −0.74 (***) | 0.11 |
CDKN1B | −0.67 (***) | −0.43 (*) | 0.14 |
CHD2 | −0.84 (**) | 0.93 (**) | −0.05 |
FAM46C | 0.44 | −0.53 | −0.11 |
LDLR | −0.33 (*) | 0.07 | 0.13 |
MBD6 | 0.45 (**) | 0.34 (*) | 0.39 |
MDM4 | 0.21 | −0.39 | −0.23 |
MESDC2 | −1.02 (***) | −0.37 (*) | −0.12 |
MLXIP | 0.31 | 0.28 (*) | −0.20 |
MTCH2 | −0.72 (***) | −0.47 (**) | −0.11 |
NAA38 | −0.45 (*) | 0.28 | 0.23 |
NBEAL1 | 0.44 (*) | 0.15 | −0.07 |
PDE7A | −1.16 (***) | −0.86 (**) | −0.19 |
PERP | −0.83 (**) | 0.21 (*) | −0.04 |
SAR1A | −0.22 | −0.22 | 0.19 |
SMC3 | −0.04 | −0.69 (***) | 0.21 |
SOGA3 | −0.16 | 0.07 | −0.06 |
SP1 | 0.27 | −0.86 (***) | 0.21 |
VTI1A | −0.46 (*) | 0.62 (***) | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaro, R.; Legaz, I.; Jimenez-Coll, V.; El kaaoui El band, J.; Martínez-Banaclocha, H.; Galián, J.A.; Parrado, A.; Mrowiec, A.; Botella, C.; Moya-Quiles, M.R.; et al. MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study. J. Clin. Med. 2021, 10, 2748. https://doi.org/10.3390/jcm10132748
Alfaro R, Legaz I, Jimenez-Coll V, El kaaoui El band J, Martínez-Banaclocha H, Galián JA, Parrado A, Mrowiec A, Botella C, Moya-Quiles MR, et al. MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study. Journal of Clinical Medicine. 2021; 10(13):2748. https://doi.org/10.3390/jcm10132748
Chicago/Turabian StyleAlfaro, Rafael, Isabel Legaz, Victor Jimenez-Coll, Jaouad El kaaoui El band, Helios Martínez-Banaclocha, José Antonio Galián, Antonio Parrado, Anna Mrowiec, Carmen Botella, María Rosa Moya-Quiles, and et al. 2021. "MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study" Journal of Clinical Medicine 10, no. 13: 2748. https://doi.org/10.3390/jcm10132748
APA StyleAlfaro, R., Legaz, I., Jimenez-Coll, V., El kaaoui El band, J., Martínez-Banaclocha, H., Galián, J. A., Parrado, A., Mrowiec, A., Botella, C., Moya-Quiles, M. R., Boix, F., de la Peña-Moral, J., Minguela, A., Llorente, S., & Muro, M. (2021). MicroRNA Expression Changes in Kidney Transplant: Diagnostic Efficacy of miR-150-5p as Potential Rejection Biomarker, Pilot Study. Journal of Clinical Medicine, 10(13), 2748. https://doi.org/10.3390/jcm10132748