Diagnosis of Helicobacter pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients, Endoscopy and Gastric Biopsy Sampling
2.2. Culture
2.3. Histology
2.4. Detection of H. pylori by qPCR
2.5. Confirmation of H. pylori Detection by Amplifying glmM
2.6. cagA Status
2.7. Characterization of the C-Terminal Variable Region by EPIYA Motifs
2.8. vacA Genotyping
2.9. Statistical Analysis
3. Results
3.1. Patients and H. pylori Infection
3.2. Histology
3.3. cagA Status and Genotype
3.4. vacA Genotype and Association with cagA Status
3.5. Association between Presence of H. pylori and Histology, Bacterial Load (qPCR), cagA Status of the Strain and Severity of Histology Lesions
3.6. Association between a Positive Culture, Bacterial Load (qPCR), Presence of H. pylori on Histology and cagA Status of the Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Mégraud, F.; Lehours, P. Helicobacter pylori Detection and Antimicrobial Susceptibility Testing. Clin. Microbiol. Rev. 2007, 20, 280–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y. European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, M.G.C.; Vazquez, R.G.; Mendez, I.M.; Vargas, C.R.; Cerezo, S.G. Detection of the glmM Gene in Helicobacter pylori Isolates with a Novel Primer by PCR. J. Clin. Microbiol. 2011, 49, 1650–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Reuse, H.; Labigne, A.; Mengin-Lecreulx, D. The Helicobacter pylori ureC gene codes for a phosphoglucosamine mutase. J. Bacteriol. 1997, 179, 3488–3493. [Google Scholar] [CrossRef] [Green Version]
- Šterbenc, A.; Jarc, E.; Poljak, M.; Homan, M. Helicobacter pylori virulence genes. World J. Gastroenterol. 2019, 25, 4870–4884. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Osato, M.S.; Sepulveda, A.R.; Gutierrez, O.; Figura, N.; Kim, J.G.; Kodama, T.; Kashima, K.; Graham, D.Y. Molecular epidemiology of Helicobacter pylori: Separation of H. pylori from East Asian and non-Asian countries. Epidemiol. Infect. 2000, 124, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Yamaoka, Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins 2019, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- Markovska, R.; Boyanova, L.; Yordanov, D.; Stankova, P.; Gergova, G.; Mitov, I. Status of Helicobacter pylori cag pathogenicity island (cag PAI) integrity and significance of its individual genes. Infect. Genet. Evol. 2018, 59, 167–171. [Google Scholar] [CrossRef]
- González, C.A.; Figueiredo, C.; Lic, B.C.; Ferreira, R.; Pardo, M.L.; Liso, R.J.M.; Alonso, P.; Sala, N.; Capella, G.; Sanz-Anquela, J.M. Helicobacter pylori cagA and vacA Genotypes as Predictors of Progression of Gastric Preneoplastic Lesions: A Long-Term Follow-Up in a High-Risk Area in Spain. Am. J. Gastroenterol. 2011, 106, 867–874. [Google Scholar] [CrossRef]
- Khiddi, F.; Abdellahi, M.V.M.; Horma, M.A.; Billoet, A.; Collobert, G.; Amar, A.M.; Nech, H.D.M.; Vadel, E.H.M.; Houmeida, A.; Raymond, J.; et al. Characteristics of Helicobacter pylori strains isolated from Mauritanian patients. Helicobacter 2020, 25, e12726. [Google Scholar] [CrossRef]
- Dixon, M.F.; Genta, R.M.; Yardley, J.H.; Correa, P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 1996, 20, 1161–1181. [Google Scholar] [CrossRef]
- Oleastro, M.; Ménard, A.; Santos, A.; Lamouliatte, H.; Monteiro, L.; Barthélémy, P.; Mégraud, F. Real-Time PCR Assay for Rapid and Accurate Detection of Point Mutations Conferring Resistance to Clarithromycin in Helicobacter pylori. J. Clin. Microbiol. 2003, 41, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Bazin, T.; Mfondi, A.N.; Julie, C.; Émile, J.-F.; Raymond, J.; Lamarque, D. Contribution of genetic amplification by PCR for the diagnosis of Helicobacter pylori infection in patients receiving proton pump inhibitors. United Eur. Gastroenterol. J. 2018, 6, 1267–1273. [Google Scholar] [CrossRef] [Green Version]
- Kansau, I.; Raymond, J.; Bingen, E.; Courcoux, P.; Kalach, N.; Bergeret, M.; Braimi, N.; Dupont, C.; Labigne, A. Genotyping of Helicobacter pylori isolates by sequencing of PCR products and comparison with the RAPD technique. Res. Microbiol. 1996, 147, 661–669. [Google Scholar] [CrossRef]
- Patel, S.K.; Pratap, C.B.; Jain, A.K.; Gulati, A.K.; Nath, G. Diagnosis of Helicobacter pylori: What should be the gold standard? World J. Gastroenterol. 2014, 20, 12847–12859. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Kodama, T.; Gutierrez, O.; Kim, J.G.; Kashima, K.; Graham, D.Y. Relationship between Helicobacter pylori iceA, cagA, and vacA Status and Clinical Outcome: Studies in Four Different Countries. J. Clin. Microbiol. 1999, 37, 2274–2279. [Google Scholar] [CrossRef] [Green Version]
- Akopyants, N.S.; Clifton, S.W.; Kersulyte, D.; Crabtree, J.E.; Youree, B.E.; Reece, C.A.; Bukanov, N.O.; Drazek, E.S.; Roe, B.A.; Berg, D.E. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 2002, 28, 37–53. [Google Scholar] [CrossRef]
- Argent, R.H.; Zhang, Y.; Atherton, J.C. Simple Method for Determination of the Number of Helicobacter pylori CagA Variable-Region EPIYA Tyrosine Phosphorylation Motifs by PCR. J. Clin. Microbiol. 2005, 43, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.R.; Joo, Y.M.; Jang, S.; Yoo, Y.-J.; Lee, H.S.; Chung, I.-S.; Olsen, C.H.; Whitmire, J.M.; Merrell, D.S.; Cha, J.-H. Polymorphism in the CagA EPIYA Motif Impacts Development of Gastric Cancer. J. Clin. Microbiol. 2009, 47, 959–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panayotopoulou, E.G.; Sgouras, D.N.; Papadakos, K.; Kalliaropoulos, A.; Papatheodoridis, G.; Mentis, A.F.; Archimandritis, A.J. Strategy To Characterize the Number and Type of Repeating EPIYA Phosphorylation Motifs in the Carboxyl Terminus of CagA Protein in Helicobacter pylori Clinical Isolates. J. Clin. Microbiol. 2006, 45, 488–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Kim, N. Diagnosis of Helicobacter pylori by invasive test: Histology. Ann. Transl. Med. 2015, 3, 3. [Google Scholar] [CrossRef]
- El-Zimaity, H.M.; Graham, D.Y.; Al-Assi, M.T.; Malaty, H.; Karttunen, T.J.; Huberman, R.M.; Genta, R.M. Interobserver variation in the histopathological assessment of Helicobacter pylori gastritis. Hum. Pathol. 1996, 27, 35–41. [Google Scholar] [CrossRef]
- Lee, H.-C.; Huang, T.-C.; Lin, C.-L.; Chen, K.-Y.; Wang, C.-K.; Wu, D.-C. Performance of RoutineHelicobacter pyloriInvasive Tests in Patients with Dyspepsia. Gastroenterol. Res. Pract. 2013, 2013, 184806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zimaity, H.; Serra, S.; Szentgyorgyi, E.; Vajpeyi, R.; Samani, A. Gastric biopsies: The gap between evidence-based medicine and daily practice in the management of gastric Helicobacter pylori infection. Can. J. Gastroenterol. 2013, 27, e25–e30. [Google Scholar] [CrossRef] [Green Version]
- Kalach, N.; Gosset, P.; Dehecq, E.; Decoster, A.; Spyckerelle, C.; Papadopolos, S.; Dupont, C.; Raymond, J. Usefulness of Gastric Biopsy–Based Real-Time Polymerase Chain Reaction for the Diagnosis of Helicobacter pylori Infection in Children. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 307–312. [Google Scholar] [CrossRef]
- Wang, X.I.; Zhang, S.; Abreo, F.; Thomas, J. The role of routine immunohistochemistry for Helicobacter pylori in gastric biopsy. Ann. Diagn. Pathol. 2010, 14, 256–259. [Google Scholar] [CrossRef]
- Benoit, A.; Hoyeau, N.; Fléjou, J.F. Diagnosis of Helicobacter pylori infection on gastric biopsies: Standard stain, special stain or immunohistochemistry? Ann. Pathol. 2018, 38, 363–369. [Google Scholar] [CrossRef]
- Loffeld, R.J.L.F.; Stobberingh, E.; Flendrig, J.A.; Arends, J.W.; Loffeld, R.J.L.F.; Stobberingh, E.; Flendrig, J.A.; Arends, J.W. Helicobacter pylori in gastric biopsy specimens. Comparison of culture, modified Giemsa stain, and immunohistochemistry. A retrospective study. J. Pathol. 1991, 165, 69–73. [Google Scholar] [CrossRef]
- Grove, D.I.; Koutsouridis, G.; Cummins, A.G. Comparison of culture, histopathology and urease testing for the diagnosis of Helicobacter pylori gastritis and susceptibility to amoxycillin, clarithromycin, metronidazole and tetracycline. Pathology 1998, 30, 183–187. [Google Scholar] [CrossRef]
- Hirschl, A.M.; Makristathis, A. Methods to Detect Helicobacter pylori: From Culture to Molecular Biology. Helicobacter 2007, 12 (Suppl 2), 6–11. [Google Scholar] [CrossRef]
- Lopes, A.I.; Vale, F.F.; Oleastro, M. Helicobacter pylori infection—recent developments in diagnosis. World J. Gastroenterol. 2014, 20, 9299–9313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvet, X.; Lehours, P.; Lario, S.; Mégraud, F. Diagnosis of Helicobacter pylori infection. Helicobacter 2010, 15 (Suppl. S1), 7–13. [Google Scholar] [CrossRef]
- Park, C.-Y.; Kwak, M.; Gutierrez, O.; Graham, D.Y.; Yamaoka, Y. Comparison of Genotyping Helicobacter pylori Directly from Biopsy Specimens and Genotyping from Bacterial Cultures. J. Clin. Microbiol. 2003, 41, 3336–3338. [Google Scholar] [CrossRef] [Green Version]
- Broutet, N.; Marais, A.; Lamouliatte, H.; de Mascarel, A.; Samoyeau, R.; Salamon, R.; Mégraud, F. cagA Status and Eradication Treatment Outcome of Anti- Helicobacter pylori Triple Therapies in Patients with Nonulcer Dyspepsia. J. Clin. Microbiol. 2001, 39, 1148–1151. [Google Scholar] [CrossRef] [Green Version]
- Audibert, C.; Janvier, B.; Grignon, B.; Salaüna, L.; Burucoa, C.; Lecron, J.-C.; Fauchère, J.-L. Correlation between IL-8 induction, cagA status and vacA genotypes in 153 French Helicobacter pylori isolates. Res. Microbiol. 2000, 151, 191–200. [Google Scholar] [CrossRef]
- Sgouras, D.N.; Panayotopoulou, E.G.; Papadakos, K.; Martinez-Gonzalez, B.; Roumbani, A.; Panayiotou, J.; Vanvliet-Constantinidou, C.; Mentis, A.F.; Roma-Giannikou, E. CagA and VacA Polymorphisms Do Not Correlate with Severity of Histopathological Lesions in Helicobacter pylori -Infected Greek Children. J. Clin. Microbiol. 2009, 47, 2426–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, G.A.; Oliveira, A.M.R.; Queiroz, D.M.M.; Carvalho, A.S.T.; Nogueira, A.M.M.F. Immunoblot Analysis of Humoral Immune Response to Helicobacter pylori in Children with and without Duodenal Ulcer. J. Clin. Microbiol. 2000, 38, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ou, Z.; Wang, F.; Guo, Y.; Zhang, R.; Zhang, J.; Li, P.; Xu, W.; He, Y. Distinctiveness of thecagAGenotype in Children and Adults with Peptic Symptoms in South China. Helicobacter 2009, 14, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.; Van Doorn, L.-J.; Nogueira, C.; Soares, J.M.; Pinho, C.; Figueira, P.; Quint, W.G.V.; Carneiro, F. Helicobacter pylori genotypes are associated with clinical outcome in Portuguese patients and show a high prevalence of infections with multiple strains. Scand. J. Gastroenterol. 2001, 36, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Kalaf, E.A.; Al-Khafaji, Z.M.; Yassen, N.Y.; Al-Abbudi, F.A.; Sadwen, S.N. Study of the cytoxin-associated gene a (CagA gene) in Helicobacter pylori using gastric biopsies of Iraqi patients. Saudi J. Gastroenterol. 2013, 19, 69–74. [Google Scholar] [CrossRef]
- Diab, M.; Shemis, M.; Gamal, D.; El-Shenawy, A.; El-Ghannam, M.; El-Sherbini, E.; Saber, M. Helicobacter pylori Western cagA genotype in Egyptian patients with upper gastrointestinal disease. Egypt. J. Med. Hum. Genet. 2018, 19, 297–300. [Google Scholar] [CrossRef]
- Link, A.; Langner, C.; Schirrmeister, W.; Habendorf, W.; Weigt, J.; Venerito, M.; Tammer, I.; Schlüter, D.; Schlaermann, P.; Meyer, T.F.; et al. Helicobacter pylorivacA genotype is a predominant determinant of immune response toHelicobacter pyloriCagA. World J. Gastroenterol. 2017, 23, 4712–4723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pormohammad, A.; Ghotaslou, R.; Leylabadlo, H.E.; Nasiri, M.J.; Dabiri, H.; Hashemi, A. Risk of gastric cancer in association with Helicobacter pylori different virulence factors: A systematic review and meta-analysis. Microb. Pathog. 2018, 118, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Román-Román, A.; Martínez-Carrillo, D.N.; Atrisco-Morales, J.; Azúcar-Heziquio, J.C.; Cuevas-Caballero, A.S.; Castañón-Sánchez, C.A.; Reyes-Ríos, R.; Betancourt-Linares, R.; Reyes-Navarrete, S.; Carmen, I.C.-D.; et al. Helicobacter pylori vacA s1m1 genotype but not cagA or babA2 increase the risk of ulcer and gastric cancer in patients from Southern Mexico. Gut Pathog. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Belda, S.; Saez, J.; Santibáñez, M.; Rodríguez, J.; Sola-Vera, J.; Ruiz-Garcia, M.; Brotons, A.; Lopez-Girona, E.; Perez, E.; Sillero, C.; et al. Relationship between bacterial load, morbidity and cagA gene in patients infected by Helicobacter pylori. Clin. Microbiol. Infect. 2012, 18, E251–E253. [Google Scholar] [CrossRef] [Green Version]
- Talarico, S.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Herrero, R.; Porras, C.; Cortes, B.; Larson, A.; Fang, F.C.; Salama, N.R. Quantitative Detection and Genotyping ofHelicobacter pylorifrom Stool using Droplet Digital PCR Reveals Variation in Bacterial Loads that Correlates withcagAVirulence Gene Carriage. Helicobacter 2016, 21, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Atherton, J.C.; Tham, K.T.; Peek, J.R.M.; Cover, T.; Blaser, M.J. Density of Helicobacter pylori Infection In Vivo as Assessed by Quantitative Culture and Histology. J. Infect. Dis. 1996, 174, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Simala-Grant, J.L.; Taylor, D.E. Molecular biology methods for the characterization of Helicobacter pylori infections and their diagnosis. APMIS 2004, 112, 886–897. [Google Scholar] [CrossRef] [Green Version]
Gene | Target Site | Primer | Primer Sequences (5′–3′) | PCR Product Size (pb) | References |
---|---|---|---|---|---|
23S rRNA | Domaine V | HPY-S | AGGTTAAGAGGATGCGTCAGTC | 267 | [12] |
HPY-AS | CGCATGATATTCCCATTAGCAGT | ||||
glmM | glmM | glmM S | GGATAAGCTTTTAGGGGTGTTAGGGG | 294 | [14] |
glmM AS | GCTTACTTTCTAACACTAACGCGC | ||||
cagA | cagA constant region | cagA-F | GATAACAGGCAAGCTTTTGAGG | 349 | [16] |
cagA-R | CTGCAAAAGATTGTTTGGCAGA | ||||
Empty-site | 2 | ACATTTTGGCTAAATAAACGCTG | 360 | [17] | |
25 | TCATGCGAGCGGCGATGTG | ||||
Forward for all EPIYA motifs | cagA28F | TTCTCAAAGGAGCAATTGGC | [18] | ||
EPYIA-A | cagA-P1C | GTCCTGCTTTCTTTTTATTAACTTKAGC | 264 | ||
EPYIA-B | cagA-P2CG | TTTAGCAACTTGAGCGTAAATGGG | 309 | ||
EPIYA-B | cagA-P2TA | TTTAGCAACTTGAGTATAAATGGG | 309 | ||
EPYIA-C et D | cagA-P3E | ATCAATTGTAGCGTAAATGGG | 468 | ||
EPIYA-D | cagA-pD | TTGATTTGCCTCATCAAAATC | 486 | [19] | |
cagA variable region | cagA2530S | GTTAARAATRGTGTRAAYGG (R = A ou G and Y = T ou C) | Variable | [20] | |
cagA3000AS | TTTAGCTTCTGATACCGC | ||||
vacA | «s» region | VA1F | ATGGAAATACAACAAACACAC | 259 (s1) 286 (s2) | [16] |
VA1R | CTGCTTGAATGCGCCAAAC | ||||
«m» region | VAGF | CAATCTGTCCAATCAAGCGAG | 570 (m1) 645 (m2) | [16] | |
VAGR | GCGTCTAAATAATTCCAAGG |
Bacterial Load (qPCR Ct Values) | p-Value | ||
---|---|---|---|
High (Ct < 30) n (%) | Low (Ct ≥ 30) n (%) | ||
Culture (n = 513) * | |||
Positive | 368 (93.4) | 14 (11.8) | <0.001 Φ |
Negative | 26 (6.6) | 105 (88.2) | |
Total | 394 (100) | 119 (100) | |
H. pylori histology detection (n = 338) ** | |||
Positive | 234 (92.5) | 14 (16.4) | <0.001 Φ |
Negative | 19 (7.7) | 71 (83.5) | |
Total | 253 (100) | 85 (100) |
Histology Grading | p-Value | |||
---|---|---|---|---|
Normal n (%) | Mild and Moderate Gastritis n (%) | Severe Gastritis/Gastric Cancer n (%) | ||
Age group | ||||
Adults (n = 278) | 23 (56.1) | 204 (87.9) | 51 (78.5) | - |
Children (n = 60) | 18 (43.9) | 28 (12.1) | 14 (21.5) | |
Total | 41 (100) | 232 (100) | 65 (100) | |
H. pylori histology detection | ||||
Positive | 3 (7.3) | 191 (82.3) | 54 (83) | <0.001 Φ |
Negative | 38 (92.7) | 41 (17.7) | 11 (16.9) | |
Total | 41 (100) | 232 (100) | 65 (100) | |
Bacterial load (qPCR Ct values) | ||||
High (Ct < 30) | 5 (12.2) | 193 (83.2) | 56 (86.1) | <0.001 Φ |
Low (Ct ≥ 30) | 36 (87.8) | 39 (16.8) | 9 (13.8) | |
Total | 41 (100) | 232 (100) | 65 (100) | |
cagA status | ||||
Positive | 3 (7.3) | 63 (27.1) | 30 (46.1) | <0.001 Φ |
Negative | 38 (92.7) | 159 (68.5) | 34 (52.3) | |
Undetermined | 0 (0) | 10 (4.3) | 1 (1.5) | |
Total | 41 (100) | 232 (100) | 65 (100) |
cagA Status | p-Value | |||
---|---|---|---|---|
Positive n (%) | Negative n (%) | Undetermined n (%) | ||
Culture (n = 513) * | ||||
Positive | 149 (94.3) | 218 (64.7) | 15 (83.3) | <0.001 Φ |
Negative | 9 (5.7) | 119 (35.3) | 3 (16.7) | |
Total | 158 (100) | 337 (100) | 18 (100) | |
Bacterial load (n = 513) * | ||||
High (Ct < 30) | 150 (94.9) | 227 (67.3) | 17 (94.4) | <0.001 Φ |
Low (Ct ≥ 30) | 8 (5.1) | 110 (32.7) | 1 (5.6) | |
Total | 158 (100) | 337 (100) | 18 (100) | |
H. pylori histology detection in 338 available histological reports ** | ||||
Positive | 88 (91.7) | 149 (64.5) | 11 (100) | <0.001 Φ |
Negative | 8 (8.3) | 82 (35.5) | 0 (0) | |
Total | 96 (100) | 231 (100) | 11 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastli, N.; Allain, M.; Lamarque, D.; Abitbol, V.; Billoët, A.; Collobert, G.; Coriat, R.; Terris, B.; Kalach, N.; Raymond, J. Diagnosis of Helicobacter pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors. J. Clin. Med. 2021, 10, 2755. https://doi.org/10.3390/jcm10132755
Gastli N, Allain M, Lamarque D, Abitbol V, Billoët A, Collobert G, Coriat R, Terris B, Kalach N, Raymond J. Diagnosis of Helicobacter pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors. Journal of Clinical Medicine. 2021; 10(13):2755. https://doi.org/10.3390/jcm10132755
Chicago/Turabian StyleGastli, Nabil, Margaux Allain, Dominique Lamarque, Vered Abitbol, Annick Billoët, Gislène Collobert, Romain Coriat, Benoit Terris, Nicolas Kalach, and Josette Raymond. 2021. "Diagnosis of Helicobacter pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors" Journal of Clinical Medicine 10, no. 13: 2755. https://doi.org/10.3390/jcm10132755
APA StyleGastli, N., Allain, M., Lamarque, D., Abitbol, V., Billoët, A., Collobert, G., Coriat, R., Terris, B., Kalach, N., & Raymond, J. (2021). Diagnosis of Helicobacter pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors. Journal of Clinical Medicine, 10(13), 2755. https://doi.org/10.3390/jcm10132755