The Impact of Vitamin D Low Doses on Its Serum Level and Cytokine Profile in Multiple Sclerosis Patients
Abstract
:1. Introduction
- IL-10 acts as immunosuppressive mainly on regulatory T cells, macrophages and inhibits the MHC II in DC [9,10]. It can also stimulate the immune response to enhance B cell survival and antibody production [11]. The biological effect of IL-10 also applies to neuroprotective processes in both neuron and glial tissues [12]. This is important due to the neurodegenerative processes following the inflammatory phase in the course of MS [12]. A transcription of IL-10 is regulated by 1,25(OH)2D3 [13].
- Interleukin 17 (IL-17) is the main proinflammatory cytokine released by activated lymphocytes Th17 [16,17]. Due to its ability to cross the blood–brain barrier and develop demyelination in the CNS, IL-17 is as a major contributor of MS immunopathogenesis [16,18]. Increased IL-17 level has also been detected in MS lesions and cerebrospinal fluid [18,19,20]. The differentiation of Th17 can be inhibited in the presence of calcitriol via VDR receptor [1,16,17].
- Interferon gamma (IFN-γ) is a proinflammatory lymphokine that plays an important role in the innate and adaptive immune system by modulating cellular processes [21]. IFN-γ action is implemented by regulation of MHC I and II, differentiation of T cells to a Th1 phenotype, and activation of B cells to induce immunoglobulin secretion [21,22]. A proinflammatory IFN-γ activity can be inhibited by vitamin D [23]. 1,25(OH)2D3 decreases the synthesis of INF-γ in peripheral blood lymphocytes (PBL) and T cell lines [23].
2. Materials and Methods
2.1. Study Group
- Aged between 18 and 55 years;
- Diagnosis of RRMS based on the McDonald Criteria (2010) [26];
- Stable MS disease modifying therapy for at least 6 months prior to the study;
- Vitamin D deficiency, as defined as 25(OH)D serum level below 75 nmol/L.
- Diagnosis of PPMS or SPMS;
- Renal or liver failure, thyroid dysfunction, hyperparathyroidism;
- Depression;
- Anemia, leucopenia;
- Epilepsy;
- Pregnancy, breast-feeding;
- Malabsorption or taking medication affecting calcium-phosphate metabolism within the last 6 months;
- Spending most time indoors, working underground, traveled to a different climate zone within the last 6 months;
- Potential dysfunction of the immune system (e.g., MS relapse within the last 30 days), steroid therapy taken within the last 30 days, overt symptoms of acute or chronic inflammation.
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Study Group
3.2. Vitamin D Serum Level
3.3. Cytokines Serum Levels
3.4. Parameters of Calcium-Phosphate Metabolism
3.5. Relationship between Vitamin D Concentration and Selected Cytokines Levels and Calcium-Phosphate Metabolism
3.6. Relationship between Vitamin D Concentration and EDSS Score
3.7. Compliance
4. Discussion
4.1. The Effect of Vitamin D Supplementation
4.2. The Effect of Vitamin D on the Concentration of the Inflammatory Cytokines
4.2.1. IL-10 Serum Levels
4.2.2. IL-17 Serum Levels
4.2.3. TGF-β Serum Levels
4.2.4. IFN-γ Serum Levels
4.3. Safety of Vitamin D Supplementation. Calcium-Phosphate Metabolism
4.4. Limitations to the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ragab, D.; Soliman, D.; Samaha, D.; Yassin, A. Vitamin D Status and Its Modulatory Effect on Interferon Gamma and Interleukin-10 Production by Peripheral Blood Mononuclear Cells in Culture. Cytokine 2016, 85, 5–10. [Google Scholar] [CrossRef]
- Holmøy, T.; Lindstrøm, J.C.; Eriksen, E.F.; Steffensen, L.H.; Kampman, M.T. High Dose Vitamin D Supplementation Does Not Affect Biochemical Bone Markers in Multiple Sclerosis—A Randomized Controlled Trial. BMC Neurol. 2017, 17, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierrot-Deseilligny, C.; Souberbielle, J.-C. Vitamin D and Multiple Sclerosis: An Update. Mult. Scler. Relat. Disord. 2017, 14, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. J. Immunol. 2007, 179, 1634–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoriadis, N.; van Pesch, V. ParadigMS Group a Basic Overview of Multiple Sclerosis Immunopathology. Eur. J. Neurol. 2015, 22 (Suppl. 2), 3–13. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, J.; Zheng, C.; Wu, J.; Cheng, Y.; Zhu, S.; Lin, C.; Cao, Q.; Zhu, J.; Jin, T. 1,25-Dihydroxyvitamin D3 -Induced Dendritic Cells Suppress Experimental Autoimmune En-cephalomyelitis by Increasing Proportions of the Regulatory Lymphocytes and Reducing T Helper Type 1 and Type 17 Cells. Immunology 2017, 152, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin Effects on the Immune System: Vitamins A and D Take Centre Stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Hawrylowicz, C.M.; O’Garra, A. Potential Role of Interleukin-10-Secreting Regulatory T Cells in Allergy and Asthma. Nat. Rev. Immunol. 2005, 5, 271–283. [Google Scholar] [CrossRef]
- Niino, M.; Fukazawa, T.; Miyazaki, Y.; Takahashi, E.; Minami, N.; Amino, I.; Fujiki, N.; Doi, S.; Kikuchi, S. Suppression of IL-10 Production by Calcitriol in Patients with Multiple Sclerosis. J. Neuroimmunol. 2014, 270, 86–94. [Google Scholar] [CrossRef]
- Olson, K.C.; Kulling Larkin, P.M.; Signorelli, R.; Hamele, C.E.; Olson, T.L.; Conaway, M.R.; Feith, D.J.; Loughran, T.P. Vitamin D Pathway Activation Selectively Deactivates Signal Transducer and Activator of Transcription (STAT) Proteins and Inflammatory Cytokine Pro-duction in Natural Killer Leukemic Large Granular Lymphocytes. Cytokine 2018, 111, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.E.; Donald Acheson, E. A Unifying Multiple Sclerosis Etiology Linking Virus In-fection, Sunlight, and Vitamin D, through Viral Interleukin-10. Med. Hypotheses 2008, 71, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Alroy, I.; Towers, T.L.; Freedman, L.P. Transcriptional Repression of the Interleukin-2 Gene by Vitamin D3: Direct Inhibition of NFATp/AP-1 Complex Formation by a Nuclear Hormone Receptor. Mol. Cell Biol. 1995, 15, 5789–5799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahangar-Parvin, R.; Mohammadi-Kordkhayli, M.; Azizi, S.V.; Nemati, M.; Khorramdelazad, H.; Taghipour, Z.; Hassan, Z.; Moazzeni, S.M.; Jafarzadeh, A. The Modulatory Effects of Vitamin D on the Expression of IL-12 and TGF-β in the Spinal Cord and Serum of Mice with Experimental Autoimmune Encephalomyelitis. Iran J. Pathol. 2018, 13, 10–22. [Google Scholar]
- Åivo, J.; Hänninen, A.; Ilonen, J.; Soilu-Hänninen, M. Vitamin D3 Administration to MS Patients Leads to Increased Serum Levels of Latency Activated Peptide (LAP) of TGF-Beta. J. Neuroimmunol. 2015, 280, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Luo, F.; Xing, J.; Zhang, F.; Xu, J.; Zhang, Z. 1,25(OH)2D3 Inhibited Th17 Cells Differentiation via Regulating the NF-κB Activity and Expression of IL-17. Cell Prolif. 2018, 51. [Google Scholar] [CrossRef] [Green Version]
- Naghavi Gargari, B.; Behmanesh, M.; Shirvani Farsani, Z.; Pahlevan Kakhki, M.; Azimi, A.R. Vitamin D Supplementation Up-Regulates IL-6 and IL-17A Gene Expression in Multiple Sclerosis Patients. Int. Immunopharmacol. 2015, 28, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Sotirchos, E.S.; Bhargava, P.; Eckstein, C.; Van Haren, K.; Baynes, M.; Ntranos, A.; Gocke, A.; Steinman, L.; Mowry, E.M.; Calabresi, P.A. Safety and Immunologic Effects of High- vs Low-Dose Cholecalciferol in Multiple Sclerosis. Neurology 2016, 86, 382–390. [Google Scholar] [CrossRef]
- Allen, A.C.; Kelly, S.; Basdeo, S.A.; Kinsella, K.; Mulready, K.J.; Mills, K.H.G.; Tubridy, N.; Walsh, C.; Brady, J.J.; Hutchinson, M.; et al. A Pilot Study of the Immunological Effects of High-Dose Vitamin D in Healthy Volunteers. Mult. Scler. 2012, 18, 1797–1800. [Google Scholar] [CrossRef]
- Golan, D.; Halhal, B.; Glass-Marmor, L.; Staun-Ram, E.; Rozenberg, O.; Lavi, I.; Dishon, S.; Barak, M.; Ish-Shalom, S.; Miller, A. Vitamin D Supplementation for Patients with Multiple Sclerosis Treated with Interferon-Beta: A Randomized Controlled Trial Assessing the Effect on Flu-like Symptoms and Immunomodulatory Properties. BMC Neurol. 2013, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O.; et al. Interleukins, from 1 to 37, and Interferon-γ: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721. [Google Scholar] [CrossRef]
- Kokic, V.; Martinovic Kaliterna, D.; Radic, M.; Tandara, L.; Perkovic, D. Association be-tween Vitamin D, Oestradiol and Interferon-Gamma in Female Patients with Inactive Systemic Lupus Erythematosus: A Cross-Sectional Study. J. Int. Med. Res. 2018, 46, 1162–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cippitelli, M.; Santoni, A. Vitamin D3: A Transcriptional Modulator of the Interfer-on-Gamma Gene. Eur. J. Immunol. 1998, 28, 3017–3030. [Google Scholar] [CrossRef]
- Rolf, L.; Muris, A.-H.; Hupperts, R.; Damoiseaux, J. Illuminating Vitamin D Effects on B Cells--the Multiple Sclerosis Perspective. Immunology 2016, 147, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, J.M.; Husso, T.; Toropainen, S.; Seuter, S.; Turunen, M.P.; Gynther, P.; Ylä-Herttuala, S.; Carlberg, C.; Väisänen, S. Primary Effect of 1α,25(OH)₂D₃ on IL-10 Expression in Monocytes Is Short-Term down-Regulation. Biochim. Biophys. Acta 2010, 1803, 1276–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Defi-ciency in Poland-Recommendations of the Polish Society of Pediatric Endocrinology and Dia-betes and the Expert Panel With Participation of National Specialist Consultants and Represent-atives of Scientific Societies-2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Laursen, J.H.; Søndergaard, H.B.; Sørensen, P.S.; Sellebjerg, F.; Oturai, A.B. Vitamin D Supplementation Reduces Relapse Rate in Relapsing-Remitting Multiple Sclerosis Patients Treated with Natalizumab. Mult. Scler. Relat. Disord. 2016, 10, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, F.; Toghianifar, N.; Zarkesh-Esfahani, S.H.; Mansourian, M. Short-Term Effect of High-Dose Vitamin D on the Level of Interleukin 10 in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Neuroimmunomodulation 2015, 22, 400–404. [Google Scholar] [CrossRef]
- Mosayebi, G.; Ghazavi, A.; Ghasami, K.; Jand, Y.; Kokhaei, P. Therapeutic Effect of Vita-min D3 in Multiple Sclerosis Patients. Immunol. Investig. 2011, 40, 627–639. [Google Scholar] [CrossRef]
- Toro, J.; Reyes, S.; Díaz-Cruz, C.; Burbano, L.; Cuéllar-Giraldo, D.F.; Duque, A.; Reyes-Mantilla, M.I.; Torres, C.; Ríos, J.; Rivera, J.S.; et al. Vitamin D and Other Environmental Risk Factors in Colombian Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 41, 101983. [Google Scholar] [CrossRef] [PubMed]
- Turabian, J.L. Strategies to Improve Therapeutic Compliance in General Medicine. Com-Munity Med. Health Educ. Res. 2019, 1, 31–39. [Google Scholar] [CrossRef]
- Farsani, Z.S.; Behmanesh, M.; Sahraian, M.A. Interleukin-10 but not transforming growth factor-β1 gene expression is up-regulated by vitamin D treatment in multiple sclerosis patients. J. Neurol. Sci. 2015, 350, 18–23. [Google Scholar] [CrossRef]
- Boonstra, A.; Barrat, F.J.; Crain, C.; Heath, V.L.; Savelkoul, H.F.; O’Garra, A. 1alpha,25-Dihydroxyvitamin D3 Has a Direct Effect on Naive CD4(+) T Cells to Enhance the Development of Th2 Cells. J. Immunol. 2001, 167, 4974–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, M.S.; Ward, G.J.; Butzkueven, H.; Kilpatrick, T.J.; Harrison, L.C. Dysequilibrium of the PTH-FGF23-Vitamin D Axis in Relapsing Remitting Multiple Sclerosis; a Longitudinal Study. Mol. Med. 2018, 24, 27. [Google Scholar] [CrossRef]
25(OH)D Serum Level | Range [nmol/L] | Oral Vitamin D Dose [IU/Daily] |
---|---|---|
Normal level | ≥75–200 | Without supplementation |
Insufficiency | 50–<75 | 500 |
Deficiency | 25–<50 | 1000 |
Severe deficiency | 0–<25 | 1000 |
Characteristics | Results (N = 44) |
---|---|
Men/Women [n, %] | 11 (25%)/33 (75%) |
Age [years, mean ± SD] | 38.4 ± 10.1 |
Age at first symptoms [years, mean ± SD] | 28.0 ± 6.2 |
Age at diagnosis of MS [years, mean ± SD] | 32.0 ± 8.3 |
Disease duration [years, mean ± SD] | 5.6 ± 3.4 |
Polysymptomatic onset [n, %] | 24 (55%) |
Monosymptomatic onset [n, %] | 20 (45%) |
EDSS [median, min–max] | 1.5 (0–4) |
High outdoor physical activity [n, %] | 9 (20%) |
High consumption of food rich in vitamin D [n, %] | 20 (45%) |
Smoking [n, %] | 10 (23%) |
MS Disease Modifying Treatment [n, %]:
| 29 (66%) 6 (14%) 4 (9%) 4 (9%) 1 (2%) |
After 12 Months of Vitamin D Supplementation | ||||
---|---|---|---|---|
Grouping Based on Serum 25(OH)D Levels | Deficiency (25–<50 nmol/L) | Insufficiency (50–<75 nmol/L) | Normal Level (≥75 nmol/L) | Total n (%) at Baseline |
Baseline values | ||||
Severe deficiency (0–<25 nmol/L) | 1 (2.3%) | 4 (9.1%) | 6 (13.6%) | 11 (25.0%) |
Deficiency (25–<50 nmol/L) | 3 (6.8%) | 17 (38.6%) | 20 (45.5%) | |
Insufficiency (50–<75 nmol/L) | 2 (4.5%) | 11 (25.0%) | 13 (29.5%) | |
Total n (%) after 12 months | 1 (2.3%) | 9 (20.4%) | 34 (77.3%) | 44 (100%) |
Parameter | Baseline N = 44 | After 12 Months N = 44 | Change | P * |
---|---|---|---|---|
25(OH)D [nmol/L] | 39.80 (7.84,73.39) | 91.20 (40.99,217.34) | 55.36 (–6.12,161.28) | <0.001 |
Cytokines [pg/mL] | ||||
IFN-γ hs | 2.14 (1.45,37.30) | 3.24 (2.62,43.71) | 1.17 (–30.69,41.87) | <0.001 |
IL-17 | 5.81 (2.27,10.63) | 5.00 (2.06,12.02) | –0.63 (–7.81,8.94) | 0.268 |
IL-10 | 12.44 (4.88,33.12) | 16.76 (6.97,39.24) | 2.40 (–25.87,31.17) | 0.001 |
TGF-β | 72.30 (40.04,162.58) | 100.47 (66.53,172.83) | 30.02 (–75.56,105.01) | <0.001 |
Calcium-Phosphate Metabolism | ||||
Total calcium [mmol/L] | 2.44 (2.10,2.61) | 2.45 (2.33,2.68) | 0.01 (–0.17,0.28) | 0.118 |
Inorganic phosphorus [mg/dL] | 3.2 (1.9,4.8) | 3.5 (2.2,5.1) | 0.35 (–1.2,1.6) | 0.003 |
PTH [pg/mL] | 46.78 (9.74,97.81) | 36.90 (4.42,96.09) | –10.06 (–53.37,41.03) | 0.001 |
Authors | Group Size, Vitamin D Dosing [IU/day], Study Duration | Immunomodulatory Results |
---|---|---|
Sotirchos et al. [18] | N = 40, patients with MS, 10,400 vs. 800 IU, 6 months | The proportion of IL-17-producing CD41+ T cells was reduced with higher doses (10,400 IU), but not lower doses (800 IU) |
Golan et al. [20] | N = 42, MS patients treated with interferon beta, 800 vs. 4370 IU, 3 months for immunological assessment | IL-17 levels significantly increased in the low dose group, while patients receiving high doses had a heterogeneous IL-17 response |
Ashtari et al. [30] | N = 89, MS patients treated with interferon beta, 44 patients on 50,000 IU every 5 days and 45 on placebo, 3 months | IL-10 levels increased significantly after receiving high-dose vitamin D for 3 months |
Mosayebi et al. [31] | N = 62, MS patients, 31 pts on 300,000 IU/month i.m., 31 pts on placebo, 6 months | Levels of IL-10 and TGF-β in the vitamin D treatment group were significantly higher than the control group. Unchanged levels of IFN-γ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walawska-Hrycek, A.; Galus, W.; Hrycek, E.; Kaczmarczyk, A.; Krzystanek, E. The Impact of Vitamin D Low Doses on Its Serum Level and Cytokine Profile in Multiple Sclerosis Patients. J. Clin. Med. 2021, 10, 2781. https://doi.org/10.3390/jcm10132781
Walawska-Hrycek A, Galus W, Hrycek E, Kaczmarczyk A, Krzystanek E. The Impact of Vitamin D Low Doses on Its Serum Level and Cytokine Profile in Multiple Sclerosis Patients. Journal of Clinical Medicine. 2021; 10(13):2781. https://doi.org/10.3390/jcm10132781
Chicago/Turabian StyleWalawska-Hrycek, Anna, Weronika Galus, Eugeniusz Hrycek, Aleksandra Kaczmarczyk, and Ewa Krzystanek. 2021. "The Impact of Vitamin D Low Doses on Its Serum Level and Cytokine Profile in Multiple Sclerosis Patients" Journal of Clinical Medicine 10, no. 13: 2781. https://doi.org/10.3390/jcm10132781
APA StyleWalawska-Hrycek, A., Galus, W., Hrycek, E., Kaczmarczyk, A., & Krzystanek, E. (2021). The Impact of Vitamin D Low Doses on Its Serum Level and Cytokine Profile in Multiple Sclerosis Patients. Journal of Clinical Medicine, 10(13), 2781. https://doi.org/10.3390/jcm10132781