Differences in Clinical Features among Different Onset Patterns in Moyamoya Disease
Abstract
:1. Introduction
2. Purpose and Methods
3. Clinical Factors Associated with Ischemic Onset Moyamoya Disease
4. Factors Associated with Recurrence of Ischemic Symptoms in Ischemic Onset Moyamoya Disease
5. Factors Associated with Hemorrhagic Transformation in Ischemic Onset Moyamoya Disease
6. Clinical Factors Associated with Hemorrhagic Onset Moyamoya Disease
7. Factors Associated with the Recurrence of Hemorrhagic Events in Hemorrhagic Onset Moyamoya Disease
8. Asymptomatic Moyamoya Disease
9. Summary of the Literature Review
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Suzuki, J.; Takaku, A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch. Neurol. 1969, 20, 288–299. [Google Scholar] [CrossRef]
- Kuroda, S.; Houkin, K. Moyamoya disease: Current concepts and future perspectives. Lancet Neurol. 2008, 7, 1056–1066. [Google Scholar] [CrossRef]
- Funaki, T.; Takahashi, J.C.; Houkin, K.; Kuroda, S.; Takeuchi, S.; Fujimura, M.; Tomata, Y.; Miyamoto, S. Angiographic features of hemorrhagic moyamoya disease with high recurrence risk: A supplementary analysis of the Japan Adult Moyamoya Trial. J. Neurosurg. 2018, 128, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Hirano, Y.; Miyawaki, S.; Imai, H.; Hongo, H.; Ohara, K.; Dofuku, S.; Teranishi, Y.; Nakatomi, H.; Saito, N. Association between the onset pattern of adult moyamoya disease and risk factors for stroke. Stroke 2020, 51, 3124–3128. [Google Scholar] [CrossRef]
- Fujimura, M.; Tominaga, T. Lessons learned from moyamoya disease: Outcome of direct/indirect revascularization surgery for 150 affected hemispheres. Neurol. Med. Chir. 2012, 52, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, T.; Houkin, K.; Kuroda, S. Novel epidemiological features of moyamoya disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 900–904. [Google Scholar] [CrossRef]
- Miao, W.; Zhao, P.L.; Zhang, Y.S.; Liu, H.Y.; Chang, Y.; Ma, J.; Huang, Q.J.; Lou, Z.X. Epidemiological and clinical features of moyamoya disease in Nanjing, China. Clin. Neurol. Neurosurg. 2010, 112, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Kainth, D.; Chaudhry, S.A.; Kainth, H.; Suri, F.K.; Qureshi, A.I. Epidemiological and clinical features of moyamoya disease in the USA. Neuroepidemiology 2013, 40, 282–287. [Google Scholar] [CrossRef]
- Chen, P.C.; Yang, S.H.; Chien, K.L.; Tsai, I.J.; Kuo, M.F. Epidemiology of moyamoya disease in Taiwan: A nationwide population-based study. Stroke 2014, 45, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, J.; Kodama, N. Moyamoya disease—A review. Stroke 1983, 14, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Lubman, D.I.; Pantelis, C.; Desmond, P.; Proffitt, T.M.; Velakoulis, D. Moyamoya disease in a patient with schizophrenia. J. Int. Neuropsychol. Soc. 2003, 9, 806–810. [Google Scholar] [CrossRef]
- Karasawa, J.; Touho, H.; Ohnishi, H.; Miyamoto, S.; Kikuchi, H. Long-term follow-up study after extracranial-intracranial bypass surgery for anterior circulation ischemia in childhood moyamoya disease. J. Neurosurg. 1992, 77, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Seol, H.J.; Cho, B.K.; Hwang, Y.S.; Lee, D.S.; Wang, K.C. Moyamoya disease among young patients: Its aggressive clinical course and the role of active surgical treatment. Neurosurgery 2004, 54, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, T.; Tomita, S.; Ueda, K.; Narazaki, O.; Hanai, T.; Hasuo, K.; Matsushima, T.; Kitamura, K. Prognosis of occlusive disease of the circle of Willis (moyamoya disease) in children. Pediatr. Neurol. 1985, 1, 274–277. [Google Scholar] [CrossRef]
- Imaizumi, C.; Imaizumi, T.; Osawa, M.; Fukuyama, Y.; Takeshita, M. Serial intelligence test scores in pediatric moyamoya disease. Neuropediatrics 1999, 30, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Ezura, M.; Yoshimoto, T.; Fujiwara, S.; Takahashi, A.; Shirane, R.; Mizoi, K. Clinical and angiographic follow-up of childhood-onset moyamoya disease. Childs Nerv. Syst. 1995, 11, 591–594. [Google Scholar] [CrossRef]
- Nagata, S.; Matsushima, T.; Morioka, T.; Matsukado, K.; Mihara, F.; Sasaki, T.; Fukui, M. Unilaterally symptomatic moyamoya disease in children: Long-term follow-up of 20 patients. Neurosurgery 2006, 59, 830–837. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, D.; Wang, S.; Zhang, Y.; Wang, R.; Zhao, J. Transient ischemic attack in pediatric patients with moyamoya disease: Clinical features, natural history, and predictors of stroke. Pediatr. Neurol. 2017, 75, 48–54. [Google Scholar] [CrossRef]
- Cho, W.S.; Chung, Y.S.; Kim, J.E.; Jeon, J.P.; Son, Y.J.; Bang, J.S.; Kang, H.S.; Sohn, C.H.; Oh, C.W. The natural clinical course of hemodynamically stable adult moyamoya disease. J. Neurosurg. 2015, 122, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Morito, D.; Takashima, S.; Mineharu, Y.; Kobayashi, H.; Hitomi, T.; Hashikata, H.; Matsuura, N.; Yamazaki, S.; Toyoda, A.; et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE 2011, 6, e22542. [Google Scholar] [CrossRef] [Green Version]
- Kamada, F.; Aoki, Y.; Narisawa, A.; Abe, Y.; Komatsuzaki, S.; Kikuchi, A.; Kanno, J.; Niihori, T.; Ono, M.; Ishii, N.; et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J. Hum. Genet. 2011, 56, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, S.; Miyake, N.; Touho, H.; Nishimura-Tadaki, A.; Kondo, Y.; Okada, I.; Tsurusaki, Y.; Doi, H.; Sakai, H.; Saitsu, H.; et al. Homozygous c.14576G>A variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurology 2012, 78, 803–810. [Google Scholar] [CrossRef]
- Kim, E.H.; Yum, M.S.; Ra, Y.S.; Park, J.B.; Ahn, J.S.; Kim, G.H.; Goo, H.W.; Ko, T.S.; Yoo, H.W. Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J. Neurosurg. 2016, 124, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.G.; Shin, J.H.; Lee, S.W.; Park, H.R.; Park, K.P. RNF213 rs112735431 polymorphism in intracranial artery steno-occlusive disease and moyamoya disease in Koreans. J. Neurol. Sci. 2017, 375, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y.; Zhang, D.; Wang, R.; Zhang, Y.; Wang, S.; Yu, L.; Lu, C.; Liu, F.; Zhou, J.; et al. RNF213 as the major susceptibility gene for Chinese patients with moyamoya disease and its clinical relevance. J. Neurosurg. 2017, 126, 1106–1113. [Google Scholar] [CrossRef]
- Ge, P.; Ye, X.; Liu, X.; Deng, X.; Wang, R.; Zhang, Y.; Zhang, D.; Zhang, Q.; Zhao, J. Association between p.R4810K variant and long-term clinical outcome in patients with moyamoya disease. Front. Neurol. 2019, 10, 662. [Google Scholar] [CrossRef]
- Arun, K.; Shafeeque, C.M.; Sudhir, J.B.; Banerjee, M.; Sylaja, P.N. Ethnic variation and the relevance of homozygous RNF 213 p.R4810.K variant in the phenotype of Indian moya moya disease. PLoS ONE 2020, 15, e0243925. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Wang, X.; Zeng, F.; Zhang, K.; Zhang, Q.; Liu, M.; Liu, S.; Shang, M.; Li, Q.; et al. Meta-analysis of genotype and phenotype studies to confirm the predictive role of the RNF213 p.R4810K variant for moyamoya disease. Eur. J. Neurol. 2021, 28, 823–836. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wei, L.; Zhang, Q.; Zou, Z.; Yang, L.; Li, D.; Shang, M.; Han, C.; Mambiya, M.; et al. Predictive role of heterozygous p.R4810K of RNF213 in the phenotype of Chinese moyamoya disease. Neurology 2020, 94, e678–e686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.H.; Jeon, J.P.; Kim, J.E.; Ha, E.J.; Cho, W.S.; Park, Y.J.; Cho, N.H.; Choi, H.S.; Kang, H.S.; Son, Y.J.; et al. Association of Hyperthyroidism and Thyroid Autoantibodies with Moyamoya Disease and Its Stroke Event: A Population-based Case-control Study and Meta-analysis. Neurol. Med. Chir. 2018, 58, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hishikawa, T.; Tokunaga, K.; Sugiu, K.; Date, I. Assessment of the difference in posterior circulation involvement between pediatric and adult patients with moyamoya disease. J. Neurosurg. 2013, 119, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Ohkura, A.; Negoto, T.; Aoki, T.; Noguchi, K.; Okamoto, Y.; Komatani, H.; Kawano, T.; Mukasa, A.; Morioka, M. Stenotic changes of the posterior cerebral artery are a major contributing factor for cerebral infarction in moyamoya disease. Surg. Neurol. Int. 2018, 9, 105. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, D.; Wang, S.; Zhang, Y.; Wang, R.; Deng, X.; Zhao, J. Posterior circulation involvement in pediatric and adult patients with moyamoya disease: A single center experience in 574 patients. Acta Neurol. Belg. 2018, 118, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, S.; Araki, Y.; Taoka, T.; Kawai, H.; Okamoto, S.; Uda, K.; Ota, S.; Naganawa, S.; Wakabayashi, T. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging. World Neurosurg. 2018, 116, e1114–e1121. [Google Scholar] [CrossRef] [PubMed]
- Kathuveetil, A.; Sylaja, P.N.; Senthilvelan, S.; Kesavadas, C.; Banerjee, M.; Sudhir, B.J. Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: A predictor of future ischemic events in moyamoya disease. AJNR Am. J. Neuroradiol. 2020, 41, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Hirai, S.; Inaji, M.; Tanaka, Y.; Hara, S.; Nariai, T.; Maehara, T. Correlation between clinical presentations and hemodynamic parameters measured by dynamic susceptibility contrast magnetic resonance imaging in adult patients with moyamoya disease. J. Stroke Cerebrovasc. Dis. 2017, 26, 2814–2820. [Google Scholar] [CrossRef]
- Dlamini, N.; Slim, M.; Kirkham, F.; Shroff, M.; Dirks, P.; Moharir, M.; MacGregor, D.; Robertson, A.; de Veber, G.; Logan, W. Predicting ischemic risk using blood oxygen level-dependent MRI in children with moyamoya. AJNR Am. J. Neuroradiol. 2020, 41, 160–166. [Google Scholar] [CrossRef]
- Setta, K.; Kojima, D.; Shimada, Y.; Yoshida, J.; Oshida, S.; Fujimoto, K.; Tsutsui, S.; Chiba, T.; Fujiwara, S.; Terasaki, K.; et al. Accuracy of brain perfusion single-photon emission computed tomography for detecting misery perfusion in adult patients with symptomatic ischemic moyamoya disease. Ann. Nucl. Med. 2018, 32, 611–619. [Google Scholar] [CrossRef]
- Arai, N.; Horiguchi, T.; Takahashi, S.; Nakahara, T.; Akiyama, T.; Jinzaki, M.; Yoshida, K. Hemodynamic stress distribution identified by SPECT reflects ischemic symptoms of Moyamoya disease patients. Neurosurg. Rev. 2020, 43, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Duan, L.; Xu, W.H.; Han, Y.Q.; Cui, L.Y.; Gao, S. Microembolic signals predict cerebral ischaemic events in patients with moyamoya disease. Eur. J. Neurol. 2014, 21, 785–790. [Google Scholar] [CrossRef]
- Jeon, C.; Yeon, J.Y.; Jo, K.I.; Hong, S.C.; Kim, J.S. Clinical Role of Microembolic Signals in Adult Moyamoya Disease With Ischemic Stroke. Stroke 2019, 50, 130–1135. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.J.; Kim, S.J.; Kim, J.S.; Hong, S.C.; Kim, K.H.; Jun, P.; Bang, O.Y.; Chung, C.S.; Lee, K.H.; Lee, K.H.; et al. Long term outcome and predictors of ischemic stroke recurrence in adult moyamoya disease. J. Neurol. Sci. 2015, 359, 381–388. [Google Scholar] [CrossRef]
- Miyamoto, S.; Kikuchi, H.; Karasawa, J.; Nagata, I.; Ikota, T.; Takeuchi, S. Study of the posterior circulation in moyamoya disease. Clinical and neuroradiological evaluation. J. Neurosurg. 1984, 61, 1032–1037. [Google Scholar] [CrossRef]
- Nam, K.W.; Cho, W.S.; Kwon, H.M.; Kim, J.E.; Lee, Y.S.; Park, S.W.; Rhim, J.H.; Son, Y.J. Ivy sign predicts ischemic stroke recurrence in adult moyamoya patients without revascularization surgery. Cerebrovasc. Dis. 2019, 47, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, Z.; Zhao, Y.; Chen, X.; Shi, G.; Zhao, J. Hemorrhagic transformation in ischemic moyamoya disease: Clinical characteristics, radiological features, and outcomes. Front. Neurol. 2020, 11, 517. [Google Scholar] [CrossRef]
- Funaki, T.; Takahashi, J.C.; Takagi, Y.; Yoshida, K.; Araki, Y.; Kikuchi, T.; Kataoka, H.; Iihara, K.; Sano, N.; Miyamoto, S. Incidence of late cerebrovascular events after direct bypass among children with moyamoya disease: A descriptive longitudinal study at a single center. Acta Neurochir. 2014, 156, 551–559. [Google Scholar] [CrossRef]
- Funaki, T.; Takahashi, J.C.; Miyamoto, S. Late cerebrovascular events and social outcome after adolescence: Long-term outcome of pediatric moyamoya disease. Neurol. Med. Chir. 2018, 58, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Han, D.H.; Kwon, O.K.; Byun, B.J.; Choi, B.Y.; Choi, C.W.; Choi, J.U.; Choi, S.G.; Doh, J.O.; Han, J.W.; Jung, S.; et al. A co-operative study: Clinical characteristics of 334 Korean patients with moyamoya disease treated at neurosurgical institutes (1976-1994). The Korean Society for Cerebrovascular Disease. Acta Neurochir. 2000, 142, 1263–1274. [Google Scholar] [CrossRef]
- Yilmaz, E.Y.; Pritz, M.B.; Bruno, A.; Lopez-Yunez, A.; Biller, J. Moyamoya: Indiana University Medical Center experience. Arch. Neurol. 2001, 58, 1274–1278. [Google Scholar] [CrossRef]
- Kraemer, M.; Heienbrok, W.; Berlit, P. Moyamoya disease in Europeans. Stroke 2008, 39, 3193–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, L.; Bao, X.Y.; Yang, W.Z.; Shi, W.C.; Li, D.S.; Zhang, Z.S.; Zong, R.; Han, C.; Zhao, F.; Feng, J. Moyamoya disease in China: Its clinical features and outcomes. Stroke 2012, 43, 56–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R.M.; Smith, J.L.; Robertson, R.L.; Madsen, J.R.; Soriano, S.G.; Rockoff, M.A. Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J. Neurosurg. 2004, 100, 142–149. [Google Scholar] [CrossRef]
- Nah, H.W.; Kwon, S.U.; Kang, D.W.; Ahn, J.S.; Kwun, B.D.; Kim, J.S. Moyamoya disease-related versus primary intracerebral hemorrhage: [corrected] location and outcomes are different. Stroke 2012, 43, 1947–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Yoshimoto, T.; Shirane, R.; Sakurai, Y. Clinical course, surgical management, and long-term outcome of moyamoya patients with rebleeding after an episode of intracerebral hemorrhage: An extensive follow-up study. Stroke 1999, 30, 2272–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, E.; Saeki, N.; Oishi, H.; Hirai, S.; Yamaura, A. Long-term natural history of hemorrhagic moyamoya disease in 42 patients. J. Neurosurg. 2000, 93, 976–980. [Google Scholar] [CrossRef]
- Iwama, T.; Kotani, Y.; Yamakawa, H.; Nagata, I.; Hashimoto, N.; Sakai, N. Cerebral ischemic complications following intracranial bleeding in patients with moyamoya disease--three case reports. Neurol. Med. Chir. 2001, 41, 450–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Kashiwazaki, D.; Uchino, H.; Saito, H.; Akioka, N.; Kuwayama, N.; Kuroda, S. Clinical and radiological features of childhood onset adult moyamoya disease: Implication for hemorrhagic stroke. Neurol. Med. Chir. 2020, 60, 360–367. [Google Scholar] [CrossRef]
- Ryu, J.; Hamano, E.; Nishimura, M.; Satow, T.; Takahashi, J.C. Difference in periventricular anastomosis in child and adult moyamoya disease: A vascular morphology study. Acta Neurochir. 2020, 162, 1333–1339. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Ge, P.; Liu, X.; Wang, R.; Zhang, Y.; Zhang, D.; Zhao, J. Hemorrhagic patterns and their risk factors in patients with moyamoya disease. Eur. J. Neurol. 2020, 27, 2499–2507. [Google Scholar] [CrossRef]
- Fujimura, M.; Funaki, T.; Houkin, K.; Takahashi, J.C.; Kuroda, S.; Tomata, Y.; Tominaga, T.; Miyamoto, S. Intrinsic development of choroidal and thalamic collaterals in hemorrhagic-onset moyamoya disease: Case-control study of the Japan Adult Moyamoya Trial. J. Neurosurg. 2019, 130, 1453–1459. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.K.; Lee, K.S.; Rha, H.K.; Huh, P.W.; Yang, J.H.; Park, I.S.; Ahn, J.G.; Sung, J.H.; Han, Y.M. Clinical and angiographic features and stroke types in adult moyamoya disease. AJNR Am. J. Neuroradiol. 2014, 35, 1124–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Funaki, T.; Fujimura, M.; Takahashi, J.C.; Uchino, H.; Houkin, K.; Tominaga, T.; Miyamoto, S.; Kuroda, S. Asymptomatic Moyamoya Registry Investigators and the Japan Adult Moyamoya Trial Investigators. Development of hemorrhage-prone anastomoses in asymptomatic moyamoya disease-a comparative study with Japan Adult Moyamoya Trial. J. Stroke Cerebrovasc. Dis. 2019, 28, 104328. [Google Scholar] [CrossRef]
- Gross, B.A.; Du, R. The natural history of moyamoya in a North American adult cohort. J. Clin. Neurosci. 2013, 20, 44–48. [Google Scholar] [CrossRef]
- Irikura, K.; Miyasaka, Y.; Kurata, A.; Tanaka, R.; Fujii, K.; Yada, K.; Kan, S. A source of haemorrhage in adult patients with moyamoya disease: The significance of tributaries from the choroidal artery. Acta Neurochir. 1996, 138, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Morioka, M.; Hamada, J.I.; Kawano, T.; Todaka, T.; Yano, S.; Kai, Y.; Ushio, Y. Angiographic dilatation and branch extension of the anterior choroidal and posterior communicating arteries are predictors of hemorrhage in adult moyamoya patients. Stroke 2003, 34, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhu, S.; Wang, X.; Yue, X.; Zhou, Z.; Wang, H.; Xu, G.; Zhou, C.; Liu, X. Evaluation of angiographic changes of the anterior choroidal and posterior communicating arteries for predicting cerebrovascular lesions in adult moyamoya disease. J. Clin. Neurosci. 2011, 18, 374–378. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hori, S.; Kashiwazaki, D.; Akioka, N.; Kuwayama, N.; Kuroda, S. Longitudinal anterior-to-posterior shift of collateral channels in patients with moyamoya disease: An implication for its hemorrhagic onset. J. Neurosurg. 2018, 130, 884–890. [Google Scholar] [CrossRef]
- Funaki, T.; Takahashi, J.C.; Yoshida, K.; Takagi, Y.; Fushimi, Y.; Kikuchi, T.; Mineharu, Y.; Okada, T.; Morimoto, T.; Miyamoto, S. Periventricular anastomosis in moyamoya disease: Detecting fragile collateral vessels with MR angiography. J. Neurosurg. 2016, 124, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Kikuta, K.I.; Takagi, Y.; Nozaki, K.; Sawamoto, N.; Fukuyama, H.; Hashimoto, N. The presence of multiple microbleeds as a predictor of subsequent cerebral hemorrhage in patients with moyamoya disease. Neurosurgery 2008, 62, 104–112. [Google Scholar] [CrossRef]
- Sun, W.; Yuan, C.; Liu, W.; Li, Y.; Huang, Z.; Zhu, W.; Li, M.; Xu, G.; Liu, X. Asymptomatic cerebral microbleeds in adult patients with moyamoya disease: A prospective cohort study with 2 years of follow-up. Cerebrovasc. Dis. 2013, 35, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Wenz, H.; Wenz, R.; Maros, M.; Ehrlich, G.; Al-Zghloul, M.; Groden, C.; Förster, A. Incidence, Locations, and Longitudinal Course of Cerebral Microbleeds in European Moyamoya. Stroke 2017, 48, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, H.; Liu, D.; Liu, X.; Zhang, L.; Peng, P.; Yuan, F.; Liu, S.; Sheng, F.; Liu, Y.; et al. Association of intracranial vessel wall enhancement and cerebral hemorrhage in moyamoya disease: A high-resolution magnetic resonance imaging study. J. Neurol. 2021, 6. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Sakaki, T.; Morimoto, T.; Kakizaki, T.; Kamada, K. Characteristics of intracranial aneurysms associated with moyamoya disease. A review of 111 cases. Acta Neurochir. 1996, 138, 1287–1294. [Google Scholar] [CrossRef]
- Fujii, K.; Ikezaki, K.; Irikura, K.; Miyasaka, Y.; Fukui, M. The efficacy of bypass surgery for the patients with hemorrhagic moyamoya disease. Clin. Neurol. Neurosurg. 1997, 99, S194–S195. [Google Scholar] [CrossRef]
- Morioka, M.; Hamada, J.I.; Todaka, T.; Yano, S.; Kai, Y.; Ushio, Y. High-risk age for rebleeding in patients with hemorrhagic moyamoya disease: Long-term follow-up study. Neurosurgery 2003, 52, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Yoshimoto, T.; Hashimoto, N.; Okada, Y.; Tsuji, I.; Tominaga, T.; Nakagawara, J.; Takahashi, J.C.; JAM Trial Investigators. Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: Results of the Japan Adult Moyamoya Trial. Stroke 2014, 45, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Liu, X.; Zhang, D.; Wang, R.; Zhang, Y.; Zhang, Q.; Yang, W.; Zhao, J.Z. Natural course of moyamoya disease in patients with prior hemorrhagic stroke. Stroke 2019, 50, 1060–1066. [Google Scholar] [CrossRef]
- Takahashi, J.C.; Funaki, T.; Houkin, K.; Inoue, T.; Ogasawara, K.; Nakagawara, J.; Kuroda, S.; Yamada, K.; Miyamoto, S.; JAM Trial Investigators. Significance of the hemorrhagic site for recurrent bleeding: Prespecified analysis in the Japan Adult Moyamoya Trial. Stroke 2016, 47, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Funaki, T.; Takahashi, J.C.; Houkin, K.; Kuroda, S.; Takeuchi, S.; Fujimura, M.; Tomata, Y.; Miyamoto, S. High rebleeding risk associated with choroidal collateral vessels in hemorrhagic moyamoya disease: Analysis of a nonsurgical cohort in the Japan Adult Moyamoya Trial. J. Neurosurg. 2019, 130, 337–673. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, Y.; Li, X.; Zhou, F.; Wu, Z.; Liang, Q.; Liu, Y.; Wang, Y.; Na, S.; Chen, X.; et al. Lateral posterior choroidal collateral anastomosis predicts recurrent ipsilateral hemorrhage in adult patients with moyamoya disease. AJNR Am. J. Neuroradiol. 2019, 40, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Kim, J.E.; Cho, W.S.; Kang, H.S.; Son, Y.J.; Han, M.H.; Oh, C.W. Natural History and Risk Factor of Recurrent Hemorrhage in Hemorrhagic Adult Moyamoya Disease. Neurosurgery 2017, 81, 289–296. [Google Scholar] [CrossRef]
- Takahashi, J.C.; Funaki, T.; Houkin, K.; Kuroda, S.; Fujimura, M.; Tomata, Y.; Miyamoto, S. Impact of cortical hemodynamic failure on both subsequent hemorrhagic stroke and effect of bypass surgery in hemorrhagic moyamoya disease: A supplementary analysis of the Japan Adult Moyamoya Trial. J. Neurosurg. 2020, 1–6. [Google Scholar] [CrossRef]
- Kuroda, S.; AMORE Study Group. Asymptomatic moyamoya disease: Literature review and ongoing AMORE study. Neurol. Med. Chir. 2015, 55, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Fujii, K.; Fukui, M. Clinical features and outcomes in patients with asymptomatic moyamoya disease--from the results of nation-wide questionnaire survey. No Shinkei Geka 2005, 33, 337–342. [Google Scholar] [PubMed]
- Ikeda, K.; Iwasaki, Y.; Kashihara, H.; Hosozawa, K.I.; Anan, K.; Tamura, M.; Satoyoshi, E.; Ikeda, H. Adult moyamoya disease in the asymptomatic Japanese population. J. Clin. Neurosci. 2006, 13, 334–338. [Google Scholar] [CrossRef]
- Kuroda, S.; Hashimoto, N.; Yoshimoto, T.; Iwasaki, Y.; Research Committee on Moyamoya Disease in Japan. Radiological findings, clinical course, and outcome in asymptomatic moyamoya disease: Results of multicenter survey in Japan. Stroke 2007, 38, 1430–1435. [Google Scholar] [CrossRef] [Green Version]
- Nanba, R.; Kuroda, S.; Takeda, M.; Shichinohe, H.; Nakayama, N.; Ishikawa, T.; Houkin, K.; Iwasaki, Y. Clinical features and outcomes of 10 asymptomatic adult patients with moyamoya disease. No Shinkei Geka 2003, 31, 1291–1295. [Google Scholar]
- Kuroda, S. Current Knowledge and Future Perspectives; Springer: Gateaway, Singapore, 2021; pp. 143–152. [Google Scholar]
- Jo, K.I.; Yeon, J.Y.; Hong, S.C.; Kim, J.S. Clinical course of asymptomatic adult moyamoya disease. Cerebrovasc. Dis. 2014, 37, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hong, J.C.; Oh, C.W.; Kwon, O.K.; Hwang, G.; Kim, J.E.; Kang, H.S.; Cho, W.S.; Kim, T.; Moon, J.U.; et al. Clinicoepidemiological features of asymptomatic moyamoya disease in adult patients. J. Cerebrovasc. Endovasc. Neurosurg. 2014, 16, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, S.; Kashiwazaki, D.; Ishikawa, T.; Nakayama, N.; Houkin, K. Incidence, locations, and longitudinal course of silent microbleeds in moyamoya disease: A prospective T2*-weighted MRI study. Stroke 2013, 44, 516–518. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, S.; Ishikawa, T.; Houkin, K.; Nanba, R.; Hokari, M.; Iwasaki, Y. Incidence and clinical features of disease progression in adult moyamoya disease. Stroke 2005, 36, 2148–2153. [Google Scholar] [CrossRef]
- Funaki, T.; Takahashi, J.C.; Houkin, K.; Kuroda, S.; Fujimura, M.; Tomata, Y.; Miyamoto, S. Effect of choroidal collateral vessels on de novo hemorrhage in moyamoya disease: Analysis of nonhemorrhagic hemispheres in the Japan Adult Moyamoya Trial. J. Neurosurg. 2019, 132, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Fukui, M.; Hashimoto, N.; Yonekawa, Y. Follow-up study of patients with “unilateral” moyamoya disease. Neurol. Med. Chir. 1994, 34, 744–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.E.; Bell-Stephens, T.E.; Marks, M.P.; Do, H.M.; Steinberg, G.K. Progression of unilateral moyamoya disease: A clinical series. Cerebrovasc. Dis. 2006, 22, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, R.; Liu, Y.; Zhang, Y.; Wang, S.; Cao, Y.; Zhao, Y.; Liu, X.; Wang, J.; Deng, X.; et al. Clinical Features and Long-Term Outcomes of Unilateral Moyamoya Disease. World Neurosurg. 2016, 96, 474–482. [Google Scholar] [CrossRef] [PubMed]
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background Features | |||
Age < 6 years | Kim et al., 2004 [13] | 204 cases (Korea) | At initial presentation, infarctions were significantly more frequent in children <3 years (87%) of age and those 3–6 years of age (58%) than in those 6 years or older (46%). |
Female sex (pediatric) | Zhao et al., 2017 [18] | 60 pediatric cases (China) | Female gender was an independent predictor of future ischemic stroke (HR, 5.08 (1.40–18.47); p = 0.01). |
Idiopathic moyamoya (pediatric) | Dlamini et al., 2020 [37] | 37 pediatric cases (Canada) | Children with idiopathic moyamoya were at significantly greater risk of ischemic events (HR, 3.71 (1.1–12.8); p = 0.037). |
Familial moyamoya | Cho et al., 2015 [19] | 241 adult cases (Korea) | Familial moyamoya disease was a significant risk factor for an ischemic event (HR, 3.108 (1.260–7.665); p = 0.014). |
RNF213 c.14429G>A (p.Arg4810Lys, rs112735431) variant | Miyatake et al., 2012 [22] | 204 cases (Japan) | Homozygous RNF213 c.14429G>A (AA) was associated with • Earlier onset (vs. heterozygote (GA): p = 0.002, vs. wild type (GG): p = 0.007). • An increased risk of cerebral ischemia at initial presentation (vs. heterozygote (GA): p = 0.01, vs. wild type (GG): p = 0.01). |
Kim et al., 2016 [23] | 165 cases (Korea) | Compared to those with GG, patients with RNF213 GA or AA were more likely to experience: • Early onset MMD (p = 0.001). • Cerebral infarction at presentation (p = 0.002). | |
Wang et al., 2021 [28] | 2798 cases (China, Korea, Japan) | • More patients were aged <15 years in the GA and AA groups (AA vs. GA: p = 0.009; AA vs. GG: p = 0.003; GA vs. GG: p = 0.001). • More patients were aged <4 years in the AA group (AA vs. GA: p < 0.00001; AA vs. GG: p < 0.00001). • More infarctions in AA group (AA vs. GA: p < 0.004; AA vs. GG: p < 0.004). | |
Hyperthyroidism and elevated TPOAb | Ahn et al., 2018 [30] | 169 cases (Korea) | Hyperthyroidism had an increased risk of MMD with ischemic stroke with reference value of MMD without stroke (OR, 2.53; p = 0.055). Anti-thyroperoxidase antibody (TPOAb) increased the risk of MMD presenting with ischemic stroke significantly (OR, 2.99; p = 0.020). |
Radiological Features | |||
Advanced Suzuki’s angiographical stage (pediatric) | Zhao et al., 2017 [18] | 60 pediatric cases (China) | Suzuki’s angiographical stage greater than 3 was an independent predictor of future ischemic stroke (HR, 4.01 (1.16–13.82); p = 0.03). |
PCA involvement | Ohkura et al., 2018 [32] | 93 cases (Japan) | PCA steno-occlusive lesions were significantly more frequent in the infarcted (77.8%) than in non-infarcted hemispheres. |
Advancement of PCA stages (adult) | Zhao et al., 2018 [33] | 574 cases (China) | The frequency of ipsilateral cerebral infarction was significantly positively correlated with the advancement of PCA stages in adult patients (p < 0.001), but not in pediatric patients (p = 0.106). |
Steno-occlusive lesions at the proximal ICA | Ohkura et al., 2018 [32] | 93 cases (Japan) | Steno-occlusive lesions at the ICA proximal to the PCoA were significantly more frequent in infarcted (27.8%) than in non-infarcted hemispheres. |
Contrast enhancement and thickening of the vessel wall | Kathuveetil et al., 2020 [35] | 29 cases (India) | The presence of contrast enhancement (p = 0.01) and wall thickening (p ≤ 0.001) showed a statistically significant association with ischemic events. |
Relative value of CBV and prolongation of the MTT | Hirai et al., 2017 [36] | 122 cases (Japan) | The relative value of CBV (p < 0.01) and prolongation of the MTT in comparison with the cerebellum (p < 0.05) was significantly higher in the TIA and ischemic onset group than in the asymptomatic group. |
Presence of steal on blood oxygen level-dependent MRI (pediatric) | Dlamini et al., 2020 [37] | 37 pediatric cases (Canada) | The presence of steal was independently associated with ischemic events (OR, 19.8 (2.5–160); p = 0.005). |
CBF ratio of the lenticular nucleus to the MCA territory on SPECT | Arai et al., 2020 [39] | 85 cases (Japan) | The ratio of CBF in one lenticular nucleus to that in the peripheral MCA obtained by SPECT at rest was significantly higher in hemispheres with ischemic symptoms than in those without symptoms (p < 0.001). |
Microembolic signals detected by transcranial Doppler | Chen et al., 2014 [40] | 54 cases (China) | The presence of microembolic signals detected by transcranial Doppler ultrasonography was associated with new ischemic stroke (HR, 10.61 (1.66–67.70); p = 0.012). |
Jeon et al., 2019 [41] | 48 adult cases (Korea) | Presence of MESs was associated with recent ischemic events (p = 0.024). |
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background features | |||
Initial ischemic presentation | Cho et al., 2015 [19] | 241 adult cases (Korea) | Initial ischemic presentation was a significant risk factor for an ischemic event (HR, 2.686 (1.150–6.272); p = 0.022). |
Age < 3 years | Kim et al., 2004 [13] | 204 cases (Korea) | Subsequent infarctions occurred significantly more frequently in children <3 years of age (39%) than in those 3–6 years of age (6%) and 6 years or older (0.8%). |
DM (adult) | Noh et al., 2015 [42] | 104 adult cases (Korea) | DM was an independent predictor of recurrence of ischemic stroke (HR, 35.16 (2.61–474.16); p = 0.007). |
Radiological features | |||
PCA involvement (adult) | Noh et al., 2015 [42] | 104 adult cases (Korea) | Presence of steno-occlusive lesions in the PCA was an independent predictor of recurrence of ischemic stroke (HR, 17.53, (2.02–152.43); p = 0.009). |
Decreased CVR (adult) | Noh et al., 2015 [42] | 104 adult cases (Korea) | Decreased CVR was an independent predictor of recurrence of ischemic stroke (HR, 13.62 (1.55–119.84); p = 0.019). |
Ivy sign (adult) | Nam et al., 2019 [44] | 84 adult cases (Korea) | An ipsilateral ivy sign was an independent predictor of 3-year ischemic recurrence (adjusted HR, 10.15 (2.10–49.14); p = 0.004). |
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background features | |||
Age > 20 years, more than 10 years after bypass surgery | Funaki et al., 2014 [46] | 56 pediatric-onset cases (Japan) | Three of the 56 patients developed late hemorrhage, all in the mid to late 20s, more than 10 years after the previous bypass surgery. |
Radiological features | |||
Normal cerebral perfusion | Lu et al., 2020 [45] | 683 cases (China) | Normal cerebral perfusion according to CT was associated with hemorrhagic transformation (OR, 13.46 (3.53–51.36); p < 0.001). |
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background features | |||
Onset age | Yamamoto et al., 2020 [57] | 69 adult cases (Japan) | Childhood onset adult moyamoya disease was significantly associated with the occurrence of hemorrhagic stroke compared to adulthood onset adult moyamoya disease (OR = 4.31 (1.21–15.4); p = 0.025). |
Zhang et al., 2020 [59] | 335 cases (China) | Age at onset was negatively associated with a significantly increased risk of posterior hemorrhage (OR = 0.98 (0.96–1.00); p = 0.048). | |
HT | Zhang et al., 2020 [59] | 335 cases (China) | HT was a risk factor for anterior hemorrhage in patients without dilation of choroidal anastomosis (OR 0.37; (0.14–0.97); p = 0.043). |
Familial moyamoya | Cho et al., 2015 [19] | 241 adult cases (Korea) | Familial moyamoya disease was a significant risk factor for a hemorrhagic event (HR, 3.094 (1.238–7.730); p = 0.016). |
Radiological features | |||
Advanced Suzuki’s angiographical stage | Fujimura et al., 2019 [60] | 155 cases (Japan) | Suzuki’s angiographical stage was significantly higher in the hemorrhagic onset group than in the ischemic onset group (p = 0.038). |
Jang et al., 2014 [61] | 175 cases (Korea) | Suzuki’s angiographical stage had a strong tendency to be more advanced in hemorrhagic than in ischemic patients (p = 0.061). | |
Yamamoto et al., 2019 [62] | 110 cases (Japan) | Suzuki’s angiographical stage was more advanced in the hemorrhagic group than in the asymptomatic group (p = 0.0033). | |
Gross et al., 2013 [63] | 42 cases (United States) | The mean Suzuki’s angiographical stage was higher in patients presenting with hemorrhage (3.7 compared to 2.9, p = 0.03) | |
Occlusions of the ACA | Jang et al., 2014 [61] | 175 cases (Korea) | Occlusions of the ACA were more frequently observed in the hemorrhagic than the ischemic (p = 0.001) or control hemispheres (p = 0.011). |
Fetal-type PCA | Jang et al., 2014 [61] | 175 cases (Korea) | Development of fetal-type PCA was more frequently observed in the hemorrhagic than the ischemic (p = 0.01) or control hemispheres (p = 0.013). |
Intracranial aneurysms | Jang et al., 2014 [61] | 175 cases (Korea) | Intracranial aneurysms were more frequently found in the hemorrhagic than the ischemic or control hemispheres (p = 0.002). |
Dilatation and branch extension of AChA, PChA, PCoA, and medullary arteries on angiography or MRA (especially adult) | Irikura et al., 1996 [64] | 19 adult cases (Japan) | Marked enlargement of the choroidal arteries and the medullary arteries was seen more frequently in the hemorrhagic group. |
Morioka et al., 2003 [65] | 107 cases (Japan) | In adult patients, the proportion of dilation and abnormal branching of the anterior choroidal artery and posterior communicating artery was significantly higher in hemorrhagic hemispheres than in the ischemic and asymptomatic hemispheres (p < 0.01). | |
Liu et al., 2011 [66] | 132 adult cases (China) | Extension with abnormal branches and excessive dilation of the AChA-PCoA accounted for 28 of the hemorrhagic lesions (43.8%), especially intraventricular hemorrhage (57.1%; p < 0.001). | |
Yamamoto et al., 2018 [67] | 41 cases (Japan) | The PCoA, AChA, and PChA more distinctly developed in hemispheres with intracerebral or intraventricular hemorrhage than in hemispheres with ischemic stroke or a transient ischemic attack (p < 0.001, p = 0.03, and p = 0.03, respectively). | |
Hirano et al., 2020 [4] | 178 cases (Japan) | The proportion of patients who developed AChA was significantly higher in the hemorrhagic group than in the asymptomatic group (p = 0.0042) or the ischemic group (p < 0.0001). | |
Periventricular anastomosis detected with MRA | Funaki et al., 2016 [68] | 122 cases (Japan) | Periventricular anastomosis score was a factor tentatively associated with hemorrhagic presentation (p < 0.01). |
Thalamic anastomosis | Fujimura et al., 2019 [60] | 155 cases (Japan) | Hemorrhagic-onset patients showed a significantly higher proportion of thalamic anastomosis (p = 0.043) compared with ischemic-onset patients. |
Yamamoto et al., 2019 [62] | 110 cases (Japan) | The development of thalamic anastomosis was more pronounced in the hemorrhagic group than that in the asymptomatic group (p = 0.011). | |
Choroidal anastomosis | Funaki et al., 2018 [3] | 75 cases (Japan) | Choroidal anastomosis was a factor associated with posterior hemorrhage (OR, 2.66 (1.00–7.07); p = 0.049). |
Fujimura et al., 2019 [60] | 155 cases (Japan) | Hemorrhagic-onset patients showed a significantly higher proportion of choroidal anastomosis (p < 0.001) compared with ischemic-onset patients. | |
Yamamoto et al., 2020 [57] | 69 adult cases (Japan) | Development of choroidal channels were significantly associated with the occurrence of hemorrhagic stroke (OR, 6.78 (1.78–25.8); p = 0.005). | |
Zhang et al., 2020 [59] | 335 cases (China) | Choroidal anastomosis was associated with a significantly increased risk of posterior hemorrhage in children and young adults (OR, 2.62 (1.02–6.72); p = 0.045). | |
PCA involvement | Funaki et al. 2018 [3] | 75 cases (Japan) | PCA involvement was a factor associated with posterior hemorrhage (OR, 2.92 (1.01–8.46); p = 0.049). |
Zhang et al., 2020 [59] | 335 cases (China) | PCA involvement was associated with a significantly increased risk of posterior hemorrhage in children and young adults (OR, 3.39 (1.20–9.63); p = 0.022). | |
Yamamoto et al., 2019 [62] | 110 cases (Japan) | The prevalence of PCA involvement was significantly higher in the hemorrhagic group than in the asymptomatic group (p = 0.016). | |
Microbleeds | Kikuta et al., 2008 [69] | 50 cases (Japan) | The presence of multiple microbleeds might be a predictor of subsequent hemorrhage (HR, 2.89 (1.001–13.24); p = 0.0497). |
Sun et al., 2013 [70] | 85 cases (China) | Microbleeds in the deep and periventricular white matter were independent predictors of subsequent intraventricular hemorrhage (HR, 5.53 (1.20–25.41); p = 0.028). | |
Hirano et al., 2020 [4] | 178 cases (Japan) | The proportion of patients who developed microbleeds was significantly higher in the hemorrhagic group than in the asymptomatic group (p = 0.0008) or the ischemic group (p = 0.0002). | |
Wall enhancement of intracranial vessels | Lu et al., 2021 [72] | 507 cases (China) | Vessel wall enhancements were independently associated with ipsilateral initial hemorrhage (OR, 1.99 (1.20–3.28); p = 0.007). |
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background features | |||
Initial hemorrhagic presentation | Cho et al., 2015 [19] | 241 adult cases (Korea) | Initial hemorrhagic presentation was a significant risk factor for a hemorrhagic event (HR, 2.527 (1.236–5.166), p = 0.011). |
Age 46–55 years | Morioka et al., 2003 [75] | 36 cases (Japan) | Rebleeding occurs at an increased rate when patients reach the age range of 46 to 55 years. |
Smoking | Kang et al., 2019 [77] | 128 cases (China) | Smoking was an independent risk factor for rebleeding (OR, 4.85; p = 0.04). |
Radiological features | |||
Posterior hemorrhage | Takahashi JC et al., 2016 [78] | 80 cases (Japan) | Analysis within the nonsurgical group revealed that the incidence of rebleeding was significantly higher in the posterior group than in the anterior group. |
Choroidal collaterals (adult) | Funaki et al., 2019 [79] | 37 adult cases (Japan) | The presence of choroidal collaterals was a significant predictor of rebleeding in hemorrhagic moyamoya disease (adjusted HR, 11.10 (1.37–89.91)). |
Lateral posterior choroidal anastomosis (adult) | Wang et al., 2019 [80] | 37 adult cases (China) | Lateral posterior choroidal artery anastomosis was associated with recurrent hemorrhage (HR, 5.78 (1.58–21.13); p < 0.01). |
Intraventricular hemorrhage (adult) | Kim et al., 2017 [81] | 176 cases (Korea) | The presence of intraventricular hemorrhage had a marginal significance for recurrent hemorrhage (HR, 3.32, p = 0.05). |
Decreased CVR (adult) | Takahashi JC et al., 2020 [82] | 79 adult cases (Japan) | Hemodynamic failure with decreased CVR was an independent risk factor for subsequent hemorrhage in hemorrhagic moyamoya disease (HR, 5.37 (1.07–27.02); p < 0.05). |
Factors | Author, Year | Sample Size (Population) | Details |
---|---|---|---|
Background features | |||
HT | Hirano et al., 2020 [4] | 84 cases (Japan) | HT may increase the risk of cerebrovascular events in asymptomatic patients (HR 6.69 (1.23–36.4); p = 0.028). |
DL | Hirano et al., 2020 [4] | 84 cases (Japan) | DL may increase the risk of cerebrovascular events in asymptomatic patients (HR 8.14 (1.46–45.2); p = 0.017). |
Smoking (adult) | Jo et al., 2014 [89] | 40 adult cases (Korea) | Transient ischemic attack was associated with smoking in the non-surgical group (p = 0.017). |
Radiological features | |||
Decreased CVR (adult) | Jo et al., 2014 [89] | 40 adult cases (Korea) | Transient ischemic attack was associated with decreased vascular reserve (p < 0.001) in the non-surgical group in asymptomatic moyamoya disease. |
Yang et al., 2014 [90] | 42 adult cases (Korea) | Disease progression in asymptomatic moyamoya disease was associated with initial cerebrovascular reserve capacity (p = 0.05). | |
Microbleeds (adult) | Kuroda et al., 2013 [91] | 78 adult cases (Japan) | The presence of silent microbleeds was a significant predictor for subsequent hemorrhagic stroke in adult moyamoya disease (p < 0.001). |
Choroidal anastomosis (adult) | Funaki et al., 2019 [93] | 36 cases (Japan) | The annual risk of de novo hemorrhage in non-hemorrhagic hemispheres was significantly higher in the collateral-positive group than in the collateral-negative group (5.8% per year vs. 0% per year; p = 0.017). |
Background Features | Radiological Features | |
---|---|---|
Clinical factors associated with ischemic onset | Age < 6 years Female sex (pediatric) Idiopathic moyamoya (pediatric) Familial moyamoya RNF213 c.14429G>A (p.Arg4810Lys, rs112735431) variant Hyperthyroidism and elevated TPOAb | Advanced Suzuki’s angiographical stage (pediatric) PCA involvement Advancement of PCA stages (adult) Steno-occlusive lesions at the proximal ICA Contrast enhancement and thickening of the vessel wall Relative value of CBV and prolongation of the MTT Presence of steal on blood oxygen level-dependent MRI (pediatric) CBF ratio of the lenticular nucleus to the MCA territory on SPECT Microembolic signals detected by transcranial Doppler |
Clinical factors associated with ischemic recurrence | Initial ischemic presentation Age < 3 years DM (adult) | PCA involvement (adult) Decreased CVR (adult) Ivy sign (adult) |
Clinical factors associated with hemorrhagic transformation | Age > 20 years, more than 10 years after bypass surgery | Normal cerebral perfusion |
Clinical factors associated with hemorrhagic onset | Onset age HT Familial moyamoya | Advanced Suzuki’s angiographical stage Occlusions of the ACA Fetal-type PCA Intracranial aneurysms Dilatation and branch extension of AChA, PChA, PCoA, and medullary arteries on angiography or MRA (especially adult) Thalamic anastomosis Choroidal anastomosis PCA involvement Microbleeds Wall enhancement of intracranial vessels |
Clinical factors associated with hemorrhagic recurrence | Initial hemorrhagic presentation Age 46–55 years Smoking | Posterior hemorrhage Choroidal collaterals (adult) Lateral posterior choroidal anastomosis (adult) Intraventricular hemorrhage (adult) Decreased CVR (adult) |
Clinical factors associated with cerebrovascular events in asymptomatic moyamoya disease | HT DL Smoking (adult) | Decreased CVR (adult) Microbleeds (adult) Choroidal anastomosis (adult) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirano, Y.; Miyawaki, S.; Imai, H.; Hongo, H.; Teranishi, Y.; Dofuku, S.; Ishigami, D.; Ohara, K.; Koizumi, S.; Ono, H.; et al. Differences in Clinical Features among Different Onset Patterns in Moyamoya Disease. J. Clin. Med. 2021, 10, 2815. https://doi.org/10.3390/jcm10132815
Hirano Y, Miyawaki S, Imai H, Hongo H, Teranishi Y, Dofuku S, Ishigami D, Ohara K, Koizumi S, Ono H, et al. Differences in Clinical Features among Different Onset Patterns in Moyamoya Disease. Journal of Clinical Medicine. 2021; 10(13):2815. https://doi.org/10.3390/jcm10132815
Chicago/Turabian StyleHirano, Yudai, Satoru Miyawaki, Hideaki Imai, Hiroki Hongo, Yu Teranishi, Shogo Dofuku, Daiichiro Ishigami, Kenta Ohara, Satoshi Koizumi, Hideaki Ono, and et al. 2021. "Differences in Clinical Features among Different Onset Patterns in Moyamoya Disease" Journal of Clinical Medicine 10, no. 13: 2815. https://doi.org/10.3390/jcm10132815
APA StyleHirano, Y., Miyawaki, S., Imai, H., Hongo, H., Teranishi, Y., Dofuku, S., Ishigami, D., Ohara, K., Koizumi, S., Ono, H., Nakatomi, H., & Saito, N. (2021). Differences in Clinical Features among Different Onset Patterns in Moyamoya Disease. Journal of Clinical Medicine, 10(13), 2815. https://doi.org/10.3390/jcm10132815