Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Aeonose™
2.4. Self-Reported Outcome Measurements
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Exhaled Breath
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grider, J.S.; Manchikanti, L.; Carayannopoulos, A.; Sharma, M.L.; Balog, C.C.; Harned, M.E.; Grami, V.; Justiz, R.; Nouri, K.H.; Hayek, S.M.; et al. Effectiveness of Spinal Cord Stimulation in Chronic Spinal Pain: A Systematic Review. Pain Physician 2016, 19, E33–E54. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Grider, J.S.; Lamer, T.J.; Pope, J.E.; Falowski, S.; Hunter, C.W.; Provenzano, D.A.; Slavin, K.V.; Russo, M.; Carayannopoulos, A.; et al. A Systematic Literature Review of Spine Neurostimulation Therapies for the Treatment of Pain. Pain Med. 2020, 21, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, M.; Memedovich, A.; Brown, S.; Saini, M.; Dowsett, L.E.; Lorenzetti, D.L.; McCarron, T.L.; MacKean, G.; Clement, F. Effectiveness of Neurostimulation Technologies for the Management of Chronic Pain: A Systematic Review. Neuromodulation 2020. [Google Scholar] [CrossRef] [PubMed]
- Lamer, T.J.; Moeschler, S.M.; Gazelka, H.M.; Hooten, W.M.; Bendel, M.A.; Murad, M.H. Spinal Stimulation for the Treatment of Intractable Spine and Limb Pain: A Systematic Review of RCTs and Meta-Analysis. Mayo Clin. Proc. 2019, 94, 1475–1487. [Google Scholar] [CrossRef]
- Campos, W.K.; Linhares, M.N.; Sarda, J.; Santos, A.R.S.; Licinio, J.; Quevedo, J.; Lin, K.; Walz, R. Determinants for Meaningful Clinical Improvement of Pain and Health-Related Quality of Life After Spinal Cord Stimulation for Chronic Intractable Pain. Neuromodulation 2019, 22, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.E.; Manchikanti, L.; Benyamin, R.M.; Schultz, D.M.; Smith, H.S.; Cohen, S.P. Spinal cord stimulation for patients with failed back surgery syndrome: A systematic review. Pain Physician 2009, 12, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, R.; Gupta, A.; Cedeno, D.L.; Vallejo, A.; Smith, W.J.; Thomas, S.M.; Benyamin, R.; Kaye, A.D.; Manchikanti, L. Clinical Effectiveness and Mechanism of Action of Spinal Cord Stimulation for Treating Chronic Low Back and Lower Extremity Pain: A Systematic Review. Curr. Pain Headache Rep. 2020, 24. [Google Scholar] [CrossRef] [PubMed]
- Goudman, L.; Brouns, R.; Linderoth, B.; Moens, M. Effects of spinal cord stimulation on heart rate variability in patients with Failed Back Surgery Syndrome. PLoS ONE 2019, 14, e0219076. [Google Scholar] [CrossRef] [PubMed]
- Goudman, L.; De Smedt, A.; Louis, F.; Stalmans, V.; Linderoth, B.; Rigoard, P.; Moens, M. The Link Between Spinal Cord Stimulation and the Parasympathetic Nervous System in Patients with Failed Back Surgery Syndrome. Neuromodulation 2021. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.V.; Amtmann, D.; Jensen, M.P.; Smith, S.M.; Veasley, C.; Turk, D.C. Clinical outcome assessment in clinical trials of chronic pain treatments. Pain Rep. 2021, 6, e784. [Google Scholar] [CrossRef]
- Pace, A.K.; Bruceta, M.; Donovan, J.; Vaida, S.J.; Eckert, J.M. An Objective Pain Score for Chronic Pain Clinic Patients. Pain Res. Manag. 2021, 2021, 6695741. [Google Scholar] [CrossRef]
- Coghill, R.C.; McHaffie, J.G.; Yen, Y.F. Neural correlates of interindividual differences in the subjective experience of pain. Proc. Natl. Acad. Sci. USA 2003, 100, 8538–8542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younger, J.; McCue, R.; Mackey, S. Pain outcomes: A brief review of instruments and techniques. Curr. Pain Headache Rep. 2009, 13, 39–43. [Google Scholar] [CrossRef]
- Christensen, J.H.; Mortensen, J.; Hansen, A.B.; Andersen, O. Chromatographic preprocessing of GC-MS data for analysis of complex chemical mixtures. J. Chromatogr. A 2005, 1062, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef]
- Sahil, K.; Prashant, B.; Akanksha, M.; Premjeet, S.; Devashish, R. Gas chromatography-mass spectrometry: Applications. Int. J. Pharm. Biol. Arch. 2011, 2, 1544–1560. [Google Scholar]
- Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010, 121, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F. Diagnostic potential of breath analysis--focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Phillips, M.; Bauer, T.L.; Pass, H.I. A volatile biomarker in breath predicts lung cancer and pulmonary nodules. J. Breath Res. 2019, 13, 036013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arasaradnam, R.P.; McFarlane, M.; Daulton, E.; Skinner, J.; O’Connell, N.; Wurie, S.; Chambers, S.; Nwokolo, C.; Bardhan, K.; Savage, R.; et al. Non-invasive exhaled volatile organic biomarker analysis to detect inflammatory bowel disease (IBD). Dig. Liver Dis. 2016, 48, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Mommers, E.H.H.; van Kooten, L.; Nienhuijs, S.W.; de Vries Reilingh, T.S.; Lubbers, T.; Mees, B.M.E.; Schurink, G.W.H.; Bouvy, N.D. Can Electric Nose Breath Analysis Identify Abdominal Wall Hernia Recurrence and Aortic Aneurysms? A Proof-of-Concept Study. Surg. Innov. 2020, 27, 366–372. [Google Scholar] [CrossRef]
- Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Bikov, A.; Lazar, Z.; Horvath, I. Established methodological issues in electronic nose research: How far are we from using these instruments in clinical settings of breath analysis? J. Breath Res. 2015, 9, 034001. [Google Scholar] [CrossRef]
- Kort, S.; Brusse-Keizer, M.; Gerritsen, J.W.; van der Palen, J. Data analysis of electronic nose technology in lung cancer: Generating prediction models by means of Aethena. J. Breath Res. 2017, 11, 026006. [Google Scholar] [CrossRef]
- Bijl, E.J.; Groeneweg, J.G.; Wesselius, D.W.; Stronks, D.L.; Huygen, F. Diagnosing complex regional pain syndrome using an electronic nose, a pilot study. J. Breath Res. 2019, 13, 036004. [Google Scholar] [CrossRef] [PubMed]
- Waltman, C.G.; Marcelissen, T.A.T.; van Roermund, J.G.H. Exhaled-breath Testing for Prostate Cancer Based on Volatile Organic Compound Profiling Using an Electronic Nose Device (Aeonose): A Preliminary Report. Eur. Urol. Focus 2020, 6, 1220–1225. [Google Scholar] [CrossRef]
- Berendsen, R.R.; van Vessem, M.E.; Bruins, M.; Teppema, L.; Aarts, L.; Kayser, B. Electronic Nose Technology Fails to Sniff Out Acute Mountain Sickness. High. Alt. Med. Biol. 2018, 19, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Harms-Ringdahl, K.; Carlsson, A.M.; Ekholm, J.; Raustorp, A.; Svensson, T.; Toresson, H.G. Pain assessment with different intensity scales in response to loading of joint structures. Pain 1986, 27, 401–411. [Google Scholar] [CrossRef]
- Ogon, M.; Krismer, M.; Sollner, W.; Kantner-Rumplmair, W.; Lampe, A. Chronic low back pain measurement with visual analogue scales in different settings. Pain 1996, 64, 425–428. [Google Scholar] [CrossRef]
- Jensen, M.P.; Karoly, P.; Braver, S. The measurement of clinical pain intensity: A comparison of six methods. Pain 1986, 27, 117–126. [Google Scholar] [CrossRef]
- Shafshak, T.S.; Elnemr, R. The Visual Analogue Scale Versus Numerical Rating Scale in Measuring Pain Severity and Predicting Disability in Low Back Pain. J. Clin. Rheumatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Harden, R.N.; Weinland, S.R.; Remble, T.A.; Houle, T.T.; Colio, S.; Steedman, S.; Kee, W.G.; American Pain Society Physicians. Medication Quantification Scale Version III: Update in medication classes and revised detriment weights by survey of American Pain Society Physicians. J. Pain 2005, 6, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Gallizzi, M.; Gagnon, C.; Harden, R.N.; Stanos, S.; Khan, A. Medication Quantification Scale Version III: Internal validation of detriment weights using a chronic pain population. Pain Pract. 2008, 8, 1–4. [Google Scholar] [CrossRef]
- van Geffen, W.H.; Bruins, M.; Kerstjens, H.A. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: A pilot study. J. Breath Res. 2016, 10, 036001. [Google Scholar] [CrossRef] [PubMed]
- Coronel Teixeira, R.; Rodriguez, M.; Jimenez de Romero, N.; Bruins, M.; Gomez, R.; Yntema, J.B.; Chaparro Abente, G.; Gerritsen, J.W.; Wiegerinck, W.; Perez Bejerano, D.; et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J. Infect. 2017, 75, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Wang, Y.C.; Peng, H.Y.; Huang, C.H. Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci. Rep. 2021, 11, 103. [Google Scholar] [CrossRef]
- Fens, N.; Roldaan, A.C.; van der Schee, M.P.; Boksem, R.J.; Zwinderman, A.H.; Bel, E.H.; Sterk, P.J. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin. Exp. Allergy 2011, 41, 1371–1378. [Google Scholar] [CrossRef]
- Buonocore, M.; Bodini, A.; Demartini, L.; Bonezzi, C. Inhibition of somatosensory evoked potentials during spinal cord stimulation and its possible role in the comprehension of antalgic mechanisms of neurostimulation for neuropathic pain. Minerva Anestesiol. 2012, 78, 297–302. [Google Scholar]
- Loser, B.; Grabenschroer, A.; Pugliese, G.; Sukul, P.; Trefz, P.; Schubert, J.K.; Miekisch, W. Changes of Exhaled Volatile Organic Compounds in Postoperative Patients Undergoing Analgesic Treatment: A Prospective Observational Study. Metabolites 2020, 10, 321. [Google Scholar] [CrossRef]
- Sankarasubramanian, V.; Harte, S.E.; Chiravuri, S.; Harris, R.E.; Brummett, C.M.; Patil, P.G.; Clauw, D.J.; Lempka, S.F. Objective Measures to Characterize the Physiological Effects of Spinal Cord Stimulation in Neuropathic Pain: A Literature Review. Neuromodulation 2019, 22, 127–148. [Google Scholar] [CrossRef]
- Barkley, J.E.; Vucetic, H.; Leone, D.; Mehta, B.; Rebold, M.; Kobak, M.; Carnes, A.; Farnell, G. Increased Physical Activity and Reduced Pain with Spinal Cord Stimulation: A 12-Month Study. Int. J. Exerc. Sci. 2020, 13, 1583–1594. [Google Scholar]
- Kalmar, Z.; Kovacs, N.; Balas, I.; Perlaki, G.; Plozer, E.; Orsi, G.; Altbacker, A.; Schwarcz, A.; Hejjel, L.; Komoly, S.; et al. Effects of spinal cord stimulation on heart rate variability in patients with chronic pain. Ideggyogyaszati Szemle 2013, 66, 102–106. [Google Scholar]
- Goudman, L.; Moens, M. Moving Beyond a Pain Intensity Reporting: The Value of Goal Identification in Neuromodulation. Neuromodulation 2020, 23, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Meka, V.V.; Lutz, B.J.; Melker, R.J.; Euliano, N.R. Prototype of a breath-based analysis system for medication compliance monitoring. J. Breath Res. 2007, 1, 026006. [Google Scholar] [CrossRef] [PubMed]
Actual Observation | ||||
---|---|---|---|---|
SCS on | SCS off | |||
Model prediction | SCS on | 16 | 13 | PPV = 0.55 |
SCS off | 10 | 13 | NPV = 0.57 | |
Sens = 0.62 | Spec = 0.50 | Total = 52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudman, L.; Jansen, J.; Vets, N.; De Smedt, A.; Moens, M. Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study. J. Clin. Med. 2021, 10, 2921. https://doi.org/10.3390/jcm10132921
Goudman L, Jansen J, Vets N, De Smedt A, Moens M. Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study. Journal of Clinical Medicine. 2021; 10(13):2921. https://doi.org/10.3390/jcm10132921
Chicago/Turabian StyleGoudman, Lisa, Julie Jansen, Nieke Vets, Ann De Smedt, and Maarten Moens. 2021. "Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study" Journal of Clinical Medicine 10, no. 13: 2921. https://doi.org/10.3390/jcm10132921
APA StyleGoudman, L., Jansen, J., Vets, N., De Smedt, A., & Moens, M. (2021). Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study. Journal of Clinical Medicine, 10(13), 2921. https://doi.org/10.3390/jcm10132921