Five-Year Incidence, Management, and Visual Outcomes of Diffuse Lamellar Keratitis after Femtosecond-Assisted LASIK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Technique
2.3. Postoperative Care
2.4. Measured Variables
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mirshahi, A.; Baatz, H. Posterior segment complications of laser in situ keratomileusis (LASIK). Surv. Ophthalmol. 2009, 54, 433–440. [Google Scholar] [CrossRef]
- Chua, D.; Htoon, H.M.; Lim, L.; Chan, C.M.; Mehta, J.S.; Tan, D.T.; Rosman, M. Eighteen-year prospective audit of LASIK outcomes for myopia in 53 731 eyes. Br. J. Ophthalmol. 2019, 103, 1228–1234. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.; Ryce, A. Laser Refractive Surgery for Vision Correction: A Review of Clinical Effectiveness and Cost-Effectiveness; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018. [Google Scholar]
- Shah, D.N.; Melki, S. Complications of femtosecond-assisted laser in-situ keratomileusis flaps. In Seminars in Ophthalmology; Taylor & Francis: Abingdon, UK, September 2014; Volume 29, pp. 363–375. [Google Scholar]
- Binder, P.S. Flap dimensions created with the IntraLase FS laser. J. Cataract Refract. Surg. 2004, 30, 26–32. [Google Scholar] [CrossRef]
- Javaloy, J.; Vidal, M.T.; Abdelrahman, A.M.; Artola, A.; Alió, J. Confocal microscopy comparison of intralase femtosecond laser and Moria M2 microkeratome in LASIK. J. Refract. Surg. 2007, 23, 178–187. [Google Scholar] [CrossRef]
- Gil-Cazorla, R.; Teus, M.A.; de Benito-Llopis, L.; Fuentes, I. Incidence of diffuse lamellar keratitis after laser in situ keratomileusis associated with the IntraLase 15 kHz femtosecond laser and Moria M2 microkeratome. J. Cataract Refract. Surg. 2008, 34, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Choe, C.H.; Guss, C.; Musch, D.C.; Niziol, L.M.; Shtein, R.M. Incidence of diffuse lamellar keratitis after LASIK with 15 KHz, 30 KHz, and 60 KHz femtosecond laser flap creation. J. Cataract Refract. Surg. 2010, 36, 1912–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshirfar, M.; Gardiner, J.P.; Schliesser, J.A.; Espandar, L.; Feiz, V.; Mifflin, M.D.; Chang, J.C. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: Retrospective comparison. J. Cataract Refract. Surg. 2010, 36, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- De Paula, F.H.; Khairallah, C.G.; Niziol, L.M.; Musch, D.C.; Shtein, R.M. Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J. Cataract Refract. Surg. 2012, 38, 1014–1019. [Google Scholar] [CrossRef] [Green Version]
- Tomita, M.; Sotoyama, Y.; Yukawa, S.; Nakamura, T. Comparison of DLK incidence after laser in situ keratomileusis associated with two femtosecond lasers: Femto LDV and IntraLase FS60. Clin. Ophthalmol. 2013, 7, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohnen, T.; Schwarz, L.; Remy, M.; Shajari, M. Short-term complications of femtosecond laser–assisted laser in situ keratomileusis cuts: Review of 1210 consecutive cases. J. Cataract Refract. Surg. 2016, 42, 1797–1803. [Google Scholar] [CrossRef]
- Torky, M.A.; Al Zafiri, Y.A.; Khattab, A.M.; Farag, R.K.; Awad, E.A. Visumax femtolasik versus Moria M2 microkeratome in mild to moderate myopia: Efficacy, safety, predictability, aberrometric changes and flap thickness predictability. BMC Ophthalmol. 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Leccisotti, A.; Fields, S.V. Diffuse lamellar keratitis after LASIK with low-energy femtosecond laser. J. Cataract Refract. Surg. 2021, 47, 233–237. [Google Scholar] [CrossRef]
- Linebarger, E.J.; Hardten, D.R.; Lindstrom, R.L. Diffuse lamellar keratitis: Diagnosis and management. J. Cataract Refract. Surg. 2000, 26, 1072–1077. [Google Scholar] [CrossRef]
- De Medeiros, F.W.; Kaur, H.; Agrawal, V.; Chaurasia, S.S.; Hammel, J.; Dupps, W.J.; Wilson, S.E. Effect of femtosecond laser energy level on corneal stromal cell death and inflammation. J. Refract. Surg. 2009, 25, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IntraLase, Zeimer and Other Femtosecond Lasers for All-Laser LASIK. IntraLase—Ziemer (Z LASIK) for All Laser LASIK. Available online: http://www.lasiksurgerynews.com/news/IntraLase-LASIK.shtml (accessed on 7 June 2021).
- Netto, M.V.; Mohan, R.R.; Medeiros, F.W.; Dupps, W.J.; Sinha, S.; Krueger, R.R.; Stapleton, W.M.; Rayborn, M.; Suto, C.; Wilson, S.E. Femtosecond laser and microkeratome corneal flaps: Comparison of stromal wound healing and inflammation. J. Refract. Surg. 2007, 23, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Stulting, R.D.; Randleman, J.B.; Couser, J.M.; Thompson, K.P. The epidemiology of diffuse lamellar keratitis. Cornea 2004, 23, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; Ambrósio, R., Jr. Sporadic diffuse lamellar keratitis (DLK) after LASIK. Cornea 2002, 21, 560–563. [Google Scholar] [CrossRef]
- Shah, M.N.; Misra, M.; Wihelmus, K.R.; Koch, D.D. Diffuse lamellar keratitis associated with epithelial defects after laser in situ keratomileusis. J. Cataract Refract. Surg. 2000, 26, 1312–1318. [Google Scholar] [CrossRef]
- Wilson, S.E.; de Oliveira, R.C. Pathophysiology and treatment of diffuse lamellar keratitis. J. Refract. Surg. 2020, 36, 124–130. [Google Scholar] [CrossRef]
- Boorstein, S.M.; Henk, H.J.; Elner, V.M. Atopy: A patient-specific risk factor for diffuse lamellar keratitis. Ophthalmology 2003, 110, 131–137. [Google Scholar] [CrossRef]
- Yeoh, J.; Moshegov, C.N. Delayed diffuse lamellar keratitis after laser in situ keratomileusis. Clin. Exp. Ophthalmol. 2001, 29, 435–437. [Google Scholar] [CrossRef]
- Fogla, R.; Rao, S.K.; Padmanabhan, P. Diffuse lamellar keratitis: Are meibomian secretions responsible? J. Cataract Refract. Surg. 2001, 27, 493–495. [Google Scholar] [CrossRef]
- Gris, O.; Güell, J.L.; Wolley-Dod, C.; Adán, A. Diffuse lamellar keratitis and corneal edema associated with viral keratoconjunctivitis 2 years after laser in situ keratomileusis. J. Cataract Refract. Surg. 2004, 30, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Hadden, O.B.; McGhee, C.N.; Morris, A.T.; Gray, T.B.; Ring, C.P.; Watson, A.S.J. Outbreak of diffuse lamellar keratitis caused by marking-pen toxicity. J. Cataract Refract. Surg. 2008, 34, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.S.; Fine, I.H.; Packer, M.; Reynolds, T.P.; Van Bebber, C. Surgical glove-associated diffuse lamellar keratitis. Cornea 2005, 24, 699–704. [Google Scholar] [CrossRef]
- Holland, S.P.; Mathias, R.G.; Morck, D.W.; Chiu, J.; Slade, S.G. Diffuse lamellar keratitis related to endotoxins released from sterilizer reservoir biofilms. Ophthalmology 2000, 107, 1227–1233. [Google Scholar] [CrossRef]
- Javaloy, J.; Alió, J.L.; El Kady, B.; Muñoz, G.; Barraquer, R.I.; Maldonado, M.J. Refractive outcomes and quality of vision related to an outbreak of diffuse lamellar keratitis. J. Refract. Surg. 2011, 27, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. A Mysterious Tale: The Search for the Cause of 100+ Cases of Diffuse Lamellar Keratitis; SLACK Incorporated: Thorofare, NJ, USA, 2002. [Google Scholar]
- Moshirfar, M.; Hall, M.N.; West, W.B., Jr.; McCabe, S.E.; Miller, C.M.; West, D.G.; Shmunes, K.M.; Hoopes, P.C. Five-Year Occurrence and Management of Central Toxic Keratopathy After. J. Refract. Surg. 2021, 37, 25–31. [Google Scholar] [CrossRef] [PubMed]
DLK (n = 637) | No DLK (n = 14348) | ||||
---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | p Value | |
Age, year | 33.7 ± 8.25 | (18, 57) | 34.4 ± 8.81 | (18, 85) | 0.114 |
n | Percent | n | Percent | ||
Gender [M/F] | 243/193 | (55.7%, 44.3%) | 3838/3593 | (51.6%, 48.4%) | 0.107 |
Affected Eye [OD/OS] | 329/308 | (51.6%, 48.4%) | 7219/7129 | (50.3%, 49.7%) | 0.536 |
Mean ± SD | Range | Mean ± SD | Range | ||
Spherical Equivalent | −3.33 ± 2.27 | (−9.50, 4.25) | −3.48 ± 2.14 | (−11.25, 4.38) | 0.081 |
Myopia a | −3.53 ± 2.06 | (−9.50, −0.50) | −3.64 ± 1.99 | (−11.25, −0.50) | 0.182 |
Hyperopia b | 1.97 ± 1.15 | (0.50, 4.25) | 1.63 ± 0.92 | (0.50, 4.38) | 0.115 |
Total Eyes | No DLK | Stage I | Stage II | Stage III | Stage IV | |
---|---|---|---|---|---|---|
n | n (%) | n (%) | n (%) | n (%) | n (%) | |
AMO iFs | 12,512 | 11,984 (95.8) | 435 (3.5) | 66 (0.5) | 24 (0.2) | 3 (0.02) |
WL FS200 | 906 | 841 (92.8) | 59 (6.5) | 6 (0.7) | 0 (0.0) | 0 (0.0) |
Zeiss Visumax | 1567 | 1523 (97.2) | 39 (2.5) | 4 (0.3) | 1 (0.1) | 0 (0.0) |
Total | 14,985 | 14,348 (95.7) | 533 (3.6) | 76 (0.5) | 25 (0.2) | 3 (0.02) |
Stage I (n = 533) | Stage II (n = 76) | Stage III (n = 25) | Stage IV (n = 3) | ||
---|---|---|---|---|---|
Variable | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p Value |
Age, y | 33.31 ± 8.09 | 33.79 ± 7.37 | 32.72 ± 8.85 | 28.33 ± 2.89 | 0.710 |
Time to onset d | 1.34 ± 1.86 | 1.22 ± 0.81 | 1.48 ± 1.12 | 3 ± 1.73 | 0.579 |
Time to resolution, d | 7.7 ± 7.59 | 9.62 ± 5.62 | 8.72 ± 5.21 | 10.67 ± 2.31 | 0.063 |
n | n | n | n | ||
Gender [M/F] | 298/235 | 43/33 | 12/13 | 2/1 | 0.854 |
Affected Eye [OD/OS] | 277/256 | 39/37 | 11/14 | 1/2 | 0.830 |
n | n | n | n | ||
AMO iFs | 435 | 66 | 24 | 3 | 0.637 |
WL FS200 | 59 | 6 | 0 | 0 | 1 |
Zeiss VisuMax | 39 | 4 | 1 | 0 | 1 |
Stage I | Stage II | Stage III | Stage IV | |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Steroids | ||||
Prednisolone, topical * | 530 (99.4) | 75 (98.7) | 22 (88.0) | 3 (100) |
Difluprednate (Durezol *), topical *** | 80 (15.0) | 50 (65.8) | 17 (33.3) | 1 (33.3) |
Dexamethasone, topical * | 0 (0) | 2 (2.6) | 2 (8.0) | 0 (0) |
Methylprednisolone, oral *** | 8 (1.5) | 11 (14.5) | 13 (52.0) | 2 (66.7) |
Antibiotic-Steroid Combinations | ||||
Tobramycin/Dexamethasone, topical | 4 (0.8) | 0 (0) | 1 (4.0) | 0 (0) |
Tobramycin/Loteprednol etabonate (Zylet *), topical | 1 (0.2) | 0 (0) | 0 (0) | 0 (0) |
Antibiotics | ||||
Ofloxacin, topical * | 419 (78.6) | 64 (84.2) | 17 (68) | 0 (0) |
Moxifloxacin, topical | 137 (25.7) | 17 (22.4) | 10 (40.0) | 1 (33.3) |
Polytrim, topical * | 0 (0) | 2 (2.6) | 0 (0) | 0 (0) |
Azithromycin, topical | 2 (0.4) | 0 (0) | 0 (0) | 0 (0) |
Doxycylcine, oral *** | 23 (4.3) | 9 (11.8) | 2 (8.0) | 2 (66.7) |
Supplements | ||||
Vitamin C *** | 0 (0) | 4 (5.3) | 4 (16.0) | 2 (66.7) |
Coenzyme Q10 *** | 0 (0) | 1 (1.3) | 4 (16.0) | 0 (0) |
Multivitamin* | 0 (0) | 0 (0) | 1 (4.0) | 0 (0) |
Ocular Surface Treatments and Protection | ||||
Bandage Contact Lens *** | 5 (0.9) | 7 (9.2) | 4 (16.0) | 0 (0) |
Shield * | 0 (0) | 2 (2.6) | 0 (0) | 0 (0) |
Gel tears *** | 15 (2.8) | 10 (13.2) | 4 (16.0) | 0 (0) |
Muro-128 ointment | 0 (0) | 1 (1.3) | 0 (0) | 0 (0) |
Punctal Plugs | 2 (0.4) | 0 (0) | 0 (0) | 0 (0) |
Irrigation*** | 8 (1.5) | 11 (14.5) | 20 (80.0) | 1 (33.3) |
Year | FS Laser Model | FS Laser Frequency (kHz) | Total Eyes | Raster Energy (µJ) | Side Cut Energy (µJ) | Flap Thickness (µm) | Spot Separation (µm) | Postop Steroids | DLK Incidence n (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Binder [5] | 2004 | IntraLase FS15 | 15 | 103 | 1.9–2.8 | 6.0–8.0 | 110–140 | 10.0–14.0 | - | 20 (19.5%) |
Javaloy [6] | 2007 | IntraLase FS15 | 15 | 100 | 1.6 | 2.3 | 120 | - | QID | 17 (17%) |
Gil-Cazorla [7] | 2008 | IntraLase FS15 | 15 | 1000 | 1.7 | 1.9 | 120 | - | 8x/day | 5 (0.5%) |
Choe [8] | 2010 | IntraLase FS15 IntraLase FS30 Intralase FS60 | 15 30 60 | 176 180 164 | 1.9–3.3 1.9–2.3 1.6–1.9 | 2.9–4.2 2.1–3.2 2.0–2.3 | 100–130 100–130 100–130 | 9.0–11.0 9.0 8.0–9.0 | QID | 17 (9.7%) 24 (13.3%) 23 (14.0%) |
Moshirfar [9] | 2010 | IntraLase FS60 | 60 | 902 | 1.15 | 0.8 | 110 | - | QID | 96 (10.6%) |
De Paula [10] | 2012 | IntraLase FS60 | 60 | 801 | 1.4–1.8 | 1.6–2.4 | 102–131 | - | - | 99 (12.4%) |
Tomita [11] | 2013 | IntraLase FS60 Ziemer Femto LDV | 60 1000 | 304 514 | 1.0 0.1 | 0.8 0.8 | - - | >1 <1 | - | 114 (37.5%) 42 (8.2%) |
Kohnen [12] | 2016 | IntraLase FS60 | 60 | 1210 | 0.8 | 0.75 | 100-120 | 8 | 5x/day | 89 (7.4%) |
Torky [13] | 2017 | VisuMax | 500 | 30 | - | - | 100 | - | - | 2 (6.6%) |
Leccisotti [14] | 2021 | Ziemer LDV Z2/Z4 | >5000 | 37,315 | “nJ level” | - | 95-110 | - | QID | 236 (0.6%) |
Moshirfar | 2021 | AMO iFs WaveLight FS200 VisuMax | 150 200 500 | 13,019 1031 1683 | 0.85–0.95 0.8 0.6 | 0.6 0.8 0.6 | 100–110 110–115 100–110 | 6.0 8.0 4.0 | 6x/day | 528 (4.2%) 65 (7.2%) 44 (2.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshirfar, M.; Durnford, K.M.; Lewis, A.L.; Miller, C.M.; West, D.G.; Sperry, R.A.; West, W.B., Jr.; Shmunes, K.M.; McCabe, S.E.; Hall, M.N.; et al. Five-Year Incidence, Management, and Visual Outcomes of Diffuse Lamellar Keratitis after Femtosecond-Assisted LASIK. J. Clin. Med. 2021, 10, 3067. https://doi.org/10.3390/jcm10143067
Moshirfar M, Durnford KM, Lewis AL, Miller CM, West DG, Sperry RA, West WB Jr., Shmunes KM, McCabe SE, Hall MN, et al. Five-Year Incidence, Management, and Visual Outcomes of Diffuse Lamellar Keratitis after Femtosecond-Assisted LASIK. Journal of Clinical Medicine. 2021; 10(14):3067. https://doi.org/10.3390/jcm10143067
Chicago/Turabian StyleMoshirfar, Majid, Kathryn M Durnford, Adam L Lewis, Chase M Miller, David G West, R Alek Sperry, William B West, Jr., Kathryn M Shmunes, Shannon E McCabe, MacGregor N Hall, and et al. 2021. "Five-Year Incidence, Management, and Visual Outcomes of Diffuse Lamellar Keratitis after Femtosecond-Assisted LASIK" Journal of Clinical Medicine 10, no. 14: 3067. https://doi.org/10.3390/jcm10143067
APA StyleMoshirfar, M., Durnford, K. M., Lewis, A. L., Miller, C. M., West, D. G., Sperry, R. A., West, W. B., Jr., Shmunes, K. M., McCabe, S. E., Hall, M. N., Ronquillo, Y. C., & Hoopes, P. C. (2021). Five-Year Incidence, Management, and Visual Outcomes of Diffuse Lamellar Keratitis after Femtosecond-Assisted LASIK. Journal of Clinical Medicine, 10(14), 3067. https://doi.org/10.3390/jcm10143067