Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Previous Work
1.4. Rationale
2. Materials and Methods
2.1. Patient Population and Setting
2.2. Unfractionated Heparin Therapy
2.3. Laboratory and Clinical Measures
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Hemorrhagic Complications
3.3. Thrombotic Complications
3.4. Bolus versus Non-Bolus UFH with Adjunctive TEG/CCT Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Jenner, W.J.; Kanji, R.; Mirsadraee, S.; Gue, Y.X.; Price, S.; Prasad, S.; Gorog, D.A. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: A systematic review. J. Thromb. Haemost. 2021, 51, 595–607. [Google Scholar]
- Nadkarni, G.N.; Lala, A.; Bagiella, E.; Chang, H.L.; Moreno, P.R.; Pujadas, E.; Arvind, V.; Bose, S.; Charney, A.W.; Chen, M.D. Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. J. Am. Coll. Cardiol. 2020, 76, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Levy, J.H. Thromboinflammation and the hypercoagulability of COVID-19. J. Thromb. Haemost. 2020, 18, 1559–1561. [Google Scholar] [CrossRef]
- Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020, 33, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, A.; Spiezia, L.; Correale, C.; Sella, N.; Pesenti, E.; Beghetto, L.; Campello, E.; Poletto, F.; Cerruti, L.; Cola, M.; et al. Different Hypercoagulable Profiles in Patients with COVID-19 Admitted to the Internal Medicine Ward and the Intensive Care Unit. Thromb. Haemost. 2020, 120, 1474–1477. [Google Scholar] [PubMed]
- Llitjos, J.F.; Leclerc, M.; Chochois, C.; Monsallier, J.M.; Ramakers, M.; Auvray, M.; Merouani, K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 2020, 18, 1743–1746. [Google Scholar] [CrossRef]
- Fraissé, M.; Logre, E.; Pajot, O.; Mentec, H.; Plantefève, G.; Contou, D. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: A French monocenter retrospective study. Crit. Care 2020, 24, 275. [Google Scholar] [CrossRef]
- Barrett, C.D.; Moore, H.B.; Yaffe, M.B.; Moore, E.E. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: A comment. J. Thromb. Haemost. 2020, 18, 2060–2063. [Google Scholar] [CrossRef]
- De Haan, C.A.M.; Li, Z.; te Lintelo, E.; Bosch, B.J.; Haijema, B.J.; Rottier, P.J.M. Murine Coronavirus with an Extended Host Range Uses Heparan Sulfate as an Entry Receptor. J. Virol. 2005, 79, 14451–14456. [Google Scholar] [CrossRef] [Green Version]
- Desborough, M.J.; Doyle, A.J.; Griffiths, A.; Retter, A.; Breen, K.A.; Hunt, B.J. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb. Res. 2020, 193, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, J.F.; Moores, L.K.; Connors, J.M. Anticoagulation in hospitalized patients with COVID-19. N. Engl. J. Med. 2020, 383, 1675–1678. [Google Scholar] [CrossRef] [PubMed]
- Musoke, N.; Lo, K.B.; Albano, J.; Peterson, E.; Bhargav, R.; Gul, F.; DeJoy, R., 3rd; Salacup, G.; Pelayo, J.; Tipparaju, P.; et al. Anticoagulation and bleeding risk in patients with COVID-19. Thromb. Res. 2020, 196, 227–230. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.C.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.; Bornikova, L.; Gupta, S. COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV2 Infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef]
- Godier, A.; Clausse, D.; Meslin, S.; Bazine, M.; Lang, E.; Huche, F.; Cholley, B.; Hamada, S.R. Major bleeding complications in critically ill patients with COVID-19 pneumonia. J. Thromb. Thrombolysis 2021, 1–4. [Google Scholar] [CrossRef]
- Lee, A.Y.; Connors, J.M.; Baumann Kreuziger, L.; Murphy, M.; Gernsheimer, T.; Lin, Y.; Huisman, M.; DeSancho, M. COVID-19 and Coagulopathy: Frequently Asked Questions. Available online: https://www.hematology.org/covid-19/covid-19-and-coagulopathy (accessed on 26 January 2021).
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Levy, J.H.; Ageno, W.; Connors, J.M.; Hunt, B.J.; Iba, T.; Levi, M.; Samama, C.M.; Thachil, J.; Giannis, D. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.; Laffan, M.; Bradbury, C. Debate: Should the dose or duration of anticoagulants for the prevention of venous thrombosis be increased in patients with COVID-19 while we are awaiting the results of clinical trials? Br. J. Haematol. 2020. [Google Scholar] [CrossRef]
- Lemos, A.C.B.; do Espírito Santo, D.A.; Salvetti, M.C.; Gilio, R.N.; Agra, L.B.; Pazin-Filho, A.; Miranda, C.H. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID). Thromb. Res. 2020, 196, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Colman, E.; Yin, E.B.; Laine, G.; Chatterjee, S.; Saatee, S.; Herlihy, J.P.; Reyes, M.A.; Bracey, A.W. Evaluation of a heparin monitoring protocol for extracorporeal membrane oxygenation and review of the literature. J. Thorac. Dis. 2019, 11, 3325–3335. [Google Scholar] [CrossRef]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef] [Green Version]
- Cannegieter, S.C.; Klok, F.A. COVID-19 associated coagulopathy and thromboembolic disease: Commentary on an interim expert guidance. Res. Pract. Thromb. Haemost. 2020, 4, 439–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Donovan, K.; McHugh, A.; Pandey, M.; Aaron, L.; Bradbury, C.A.; Stanworth, S.J.; Alikhan, R.; Von Kier, S.; Maher, K. Thrombotic and haemorrhagic complications in critically ill patients with COVID-19: A multicentre observational study. Crit. Care 2020, 24, 561. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, G.D.; Burnett, A.; Allen, A.; Blumenstein, M.; Clark, N.P.; Cuker, A.; Dager, W.E.; Deitelzweig, S.B.; Ellsworth, S.; Garcia, D.; et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: Interim clinical guidance from the anticoagulation forum. J. Thromb. Thrombolysis 2020, 50, 72–81. [Google Scholar] [CrossRef]
- Hartmann, J.; Ergang, A.; Mason, D.; Dias, J.D. The Role of TEG Analysis in Patients with COVID-19-Associated Coagulopathy: A Systematic Review. Diagnostics 2021, 11, 172. [Google Scholar] [CrossRef]
- Stillson, J.E.; Bunch, C.M.; Gillespie, L.; Khan, R.; Wierman, M.; Pulvirenti, J.; Phyu, H.; Anderson, S.; Al-Fadhl, M.; Thomas, A.V.; et al. Thromboelastography-Guided Management of Anticoagulated COVID-19 Patients to Prevent Hemorrhage. Semin. Thromb. Hemost. 2021, 47, 442–446. [Google Scholar]
- Demelo-Rodriguez, P.; Farfán-Sedano, A.I.; Pedrajas, J.M.; Llamas, P.; Sigüenza, P.; Jaras, M.J.; Quintana-Diaz, M.; Fernández-Capitán, C.; Bikdeli, B.; Jiménez, D. Bleeding risk in hospitalized patients with COVID-19 receiving intermediate-or therapeutic doses of thromboprophylaxis. J. Thromb. Haemost. 2021. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, H.F.; Yin, P.; Li, D.; Wang, D.L.; Peng, P.; Wang, W.H.; Wang, L.; Yuan, X.W.; Xie, J.Y. Clinical characteristics and risk factors for symptomatic venous thromboembolism in hospitalized COVID-19 patients: A multicenter retrospective study. J. Thromb. Haemost. 2021, 19, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Cuker, A.; Tseng, E.K.; Nieuwlaat, R.; Angchaisuksiri, P.; Blair, C.; Dane, K.; Davila, J.; DeSancho, M.T.; Diuguid, D.; Griffin, D.O.; et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv. 2021, 5, 872–888. [Google Scholar] [CrossRef]
- Clinical Management of COVID-19 Patients: Living Guidance, 25 January 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 (accessed on 25 June 2021).
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smythe, M.A.; Priziola, J.; Dobesh, P.P.; Wirth, D.; Cuker, A.; Wittkowsky, A.K. Guidance for the practical management of the heparin anticoagulants in the treatment of venous thromboembolism. J. Thromb. Thrombolysis 2016, 41, 165–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curry, N.S.; Davenport, R.; Pavord, S.; Mallett, S.V.; Kitchen, D.; Klein, A.A.; Maybury, H.; Collins, P.W.; Laffan, M. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology Guideline. Br. J. Haematol. 2018, 182, 789–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, R.M.; Djulbegovic, B.; Gernsheimer, T.; Kleinman, S.; Tinmouth, A.T.; Capocelli, K.E.; Cipolle, M.D.; Cohn, C.S.; Fung, M.K.; Grossman, B.J.; et al. Platelet transfusion: A clinical practice guideline from the AABB. Ann. Intern. Med. 2015, 162, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Baarle, F.; van de Weerdt, E.K.; Suurmond, B.; Müller, M.C.A.; Vlaar, A.P.J.; Biemond, B.J. Bleeding assessment and bleeding severity in thrombocytopenic patients undergoing invasive procedures. Transfusion 2020, 60, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Heddle, N.M.; Wu, C.; Vassallo, R.; Carey, P.; Arnold, D.; Lozano, M.; Pavenski, K.; Sweeney, J.; Stanworth, S.; Liu, Y.; et al. Adjudicating bleeding events in a platelet dose study: Impact on outcome results and challenges. Transfusion 2011, 51, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Lensing, A.W.; Prandoni, P.; Brandjes, D.; Huisman, P.M.; Vigo, M.; Tomasella, G.; Krekt, J.; ten Cate, J.W.; Huisman, M.V.; Büller, H.R. Detection of deep-vein thrombosis by real-time B-mode ultrasonography. N. Engl. J. Med. 1989, 320, 342–345. [Google Scholar] [CrossRef]
- Sadeghipour, P.; Talasaz, A.H.; Rashidi, F.; Sharif-Kashani, B.; Beigmohammadi, M.T.; Farrokhpour, M.; Sezavar, S.H.; Payandemehr, P.; Dabbagh, A.; Moghadam, K.G.; et al. Effect of Intermediate-Dose vs. Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients with COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial. JAMA 2021, 325, 1620–1630. [Google Scholar] [PubMed]
- Lopes, R.D.; de Barros, E.S.P.G.M.; Furtado, R.H.M.; Macedo, A.V.S.; Bronhara, B.; Damiani, L.P.; Barbosa, L.M.; de Aveiro Morata, J.; Ramacciotti, E.; de Aquino Martins, P.; et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): An open-label, multicentre, randomised, controlled trial. Lancet 2021, 397, 2253–2263. [Google Scholar] [CrossRef]
- Hirsh, J. Heparin. N. Engl. J. Med. 1991, 324, 1565–1574. [Google Scholar]
- Dowton, S.B.; Colten, H.R. Acute phase reactants in inflammation and infection. Semin. Hematol. 1988, 25, 84–90. [Google Scholar] [PubMed]
- Wright, F.L.; Vogler, T.O.; Moore, E.E.; Moore, H.B.; Wohlauer, M.V.; Urban, S.; Nydam, T.L.; Moore, P.K.; McIntyre, R.C., Jr. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J. Am. Coll. Surg. 2020, 231, 193–203.e191. [Google Scholar] [CrossRef] [PubMed]
- Kwaan, H.C.; Lindholm, P.F. The Central Role of Fibrinolytic Response in COVID-19-A Hematologist’s Perspective. Int. J. Mol. Sci. 2021, 22, 1283. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef]
- Han, H.; Yang, L.; Liu, R.; Liu, F.; Wu, K.L.; Li, J.; Liu, X.H.; Zhu, C.L. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin. Chem. Lab. Med. 2020, 58, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Yuriditsky, E.; Horowitz, J.M.; Merchan, C.; Ahuja, T.; Brosnahan, S.B.; McVoy, L.; Berger, J.S. Thromboelastography Profiles of Critically Ill Patients with Coronavirus Disease 2019. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Vlot, E.; Van den Dool, E.; Hackeng, C.; Sohne, M.; Noordzij, P.; Van Dongen, E. Anti Xa activity after high dose LMWH thrombosis prophylaxis in covid 19 patients at the intensive care unit. Thromb. Res. 2020, 196, 1–3. [Google Scholar] [CrossRef]
- Mortus, J.R.; Manek, S.E.; Brubaker, L.S.; Loor, M.; Cruz, M.A.; Trautner, B.W.; Rosengart, T.K. Thromboelastographic results and hypercoagulability syndrome in patients with coronavirus disease 2019 who are critically ill. JAMA Netw. Open 2020, 3, e2011192. [Google Scholar] [CrossRef]
- NIH ACTIV Trial of Blood Thinners Pauses Enrollment of Critically Ill COVID-19 Patients. Available online: https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients (accessed on 20 January 2021).
- Full-Dose Blood Thinners Decreased Need for Life Support and Improved Outcome in Hospitalized COVID-19 Patients. Available online: https://www.nih.gov/news-events/news-releases/full-dose-blood-thinners-decreased-need-life-support-improved-outcome-hospitalized-covid-19-patients (accessed on 20 January 2021).
Bleed (n = 12) | No Bleed (n = 67) | p-Value | |
---|---|---|---|
Age (years), median (IQR) | 63.5 (17.8) | 73.0 (15.5) | 0.065 |
Female, n (%) | 6 (50.0%) | 21 (31.3%) | 0.210 |
BMI (kg/m2), median (IQR) | 33.7 (7.0) | 29.9 (6.6) | 0.135 |
Comorbidities, n (%) | |||
COPD | 3 (25.0%) | 10 (14.9%) | 0.386 |
Tobacco use | 2 (16.7%) | 10 (14.9%) | 0.877 |
Coronary artery disease | 1 (8.3%) | 12 (17.9%) | 0.410 |
Heart failure | 3 (25.0%) | 5 (7.5%) | 0.064 |
Hypertension | 10 (83.3%) | 44 (65.7%) | 0.226 |
Type II diabetes mellitus | 5 (41.7%) | 28 (41.8%) | 0.994 |
Renal failure | 4 (33.3%) | 9 (13.4%) | 0.087 |
Baseline anticoagulant dose, n (%) | |||
Intermediate | 6 (50.0%) | 40 (59.7%) | 0.530 |
Bolus therapeutic | 6 (50.0%) | 10 (14.9%) | 0.005 * |
Non-bolus therapeutic | 0 (0.0%) | 17 (25.4%) | 0.049 * |
Bleeding complications, n (%) | |||
Gastrointestinal | 2 (16.7%) | - | - |
Hemothorax | 1 (8.3%) | - | - |
Retroperitoneal | 3 (25.0%) | - | - |
Intramuscular | 5 (41.7%) | - | - |
Vascular access | 1 (8.3%) | - | - |
WHO bleeding scale score, n (%) | |||
Grade 2 | 3 (25.0%) | - | - |
Grade 3 | 8 (66.7%) | - | - |
Grade 4 | 1 (8.3%) | - | - |
Time to bleed (days), median (IQR) | 10.0 (6.3) | - | - |
Blood Products, n (%) | |||
Packed red cells | 6 (50.0%) | 14 (20.9%) | 0.033 * |
Cryoprecipitate | 7 (58.3%) | 23 (34.3%) | 0.115 |
Platelets | 4 (33.3%) | 2 (3.0%) | <0.001 * |
Fresh frozen plasma | 10 (83.3%) | 19 (28.4%) | <0.001 * |
Interventions, n (%) | |||
Surgical | 5 (41.7%) | 9 (13.4%) | 0.018 * |
Invasive ventilation | 5 (41.7%) | 14 (20.9%) | 0.121 |
Length of ICU stay (days), median (IQR) | 25.5 (10.5) | 13.0 (12.0) | 0.005 * |
Mortality, n (%) | 3 (25.0%) | 12 (17.9%) | 0.564 |
Dependent Variable | Parameter | Coefficient | p-Value | R2 | Adj. R2 |
---|---|---|---|---|---|
Bleeding | Intercept | −2.509 | 0.374 | 0.798 | 0.787 |
R | 0.507 | 0.016 | |||
Fibrinogen | −0.039 | 0.006 | |||
D-dimer | −0.441 | 0.063 | |||
aPTT | 0.126 | 0.084 | |||
Thrombosis | Intercept | −2.436 | 0.467 | 0.381 | 0.348 |
D-dimer | 0.195 | <0.001 | |||
R | −0.545 | 0.002 | |||
MA | 0.220 | <0.001 | |||
α-angle | −0.152 | 0.014 |
Thrombosis (n = 20) | No Thrombosis (n = 59) | p-Value | |
---|---|---|---|
Age (years), median (IQR) | 67.0 (21.0) | 73.0 (15.0) | 0.362 |
Female, n (%) | 9 (45.0%) | 18 (30.5%) | 0.238 |
BMI (kg/m2), median (IQR) | 31.8 (5.8) | 31.2 (7.3) | 0.628 |
Comorbidities, n (%) | |||
COPD | 2 (10.0%) | 11 (18.6%) | 0.368 |
Tobacco use | 2 (10.0%) | 10 (16.9%) | 0.454 |
Coronary artery disease | 2 (10.0%) | 11 (18.6%) | 0.368 |
Heart failure | 2 (10.0%) | 6 (10.2%) | 0.983 |
Hypertension | 11 (55.0%) | 43 (72.9%) | 0.137 |
Type II diabetes mellitus | 11 (55.0%) | 22 (37.3%) | 0.165 |
Renal failure | 4 (20.0%) | 9 (15.3%) | 0.621 |
Baseline anticoagulant dose, n (%) | |||
Intermediate | 9 (45.0%) | 37 (62.7%) | 0.165 |
Bolus therapeutic | 5 (25.0%) | 11 (18.6%) | 0.541 |
Non-bolus therapeutic | 6 (30.0%) | 11 (18.6%) | 0.286 |
Localization of clots (n = 32), n (%) | |||
Pulmonary embolus | 14 (43.8%) | - | - |
Iliac DVT | 5 (15.6%) | - | - |
LE DVT | 4 (12.5%) | - | - |
Internal jugular | 3 (9.8%) | - | - |
UE DVT | 2 (6.3%) | - | - |
Renal vein | 2 (6.3%) | - | - |
IVC | 1 (3.1%) | - | - |
Renal artery | 1 (3.1%) | - | - |
Blood Products, n (%) | |||
Packed red cells | 4 (20.0%) | 16 (27.1%) | 0.527 |
Cryoprecipitate | 5 (25.0%) | 25 (42.4%) | 0.167 |
Platelets | 1 (5.0%) | 5 (8.5%) | 0.612 |
Fresh frozen plasma | 6 (30.0%) | 23 (39.0%) | 0.471 |
Interventions, n (%) | |||
Surgical | 7 (35.0%) | 7 (11.9%) | 0.019 * |
Invasive ventilation | 4 (20.0%) | 15 (25.4%) | 0.624 |
Length of ICU stay (days), median (IQR) | 11.0 (19.0) | 14.0 (12.0) | 0.964 |
Mortality, n (%) | 2 (10.0%) | 13 (22.0%) | 0.236 |
1st Group (n = 35) | 2nd Group (n = 44) | p-Value | |
---|---|---|---|
Age (years), median (IQR) | 70.0 (19.5) | 74.5 (16.0) | 0.123 |
Female, n (%) | 11 (31.4%) | 16 (36.4%) | 0.646 |
BMI (kg/m2), median (IQR) | 31.6 (6.7) | 30.8 (7.7) | 0.340 |
Comorbidities, n (%) | |||
COPD | 7 (20.0%) | 6 (13.6%) | 0.449 |
Tobacco use | 6 (17.1%) | 6 (13.6%) | 0.666 |
Coronary artery disease | 6 (17.1%) | 7 (15.9%) | 0.883 |
Heart failure | 5 (14.3%) | 3 (6.8%) | 0.274 |
Hypertension | 26 (74.3%) | 28 (63.6%) | 0.312 |
Type II diabetes mellitus | 15 (42.9%) | 18 (40.9%) | 0.862 |
Renal failure | 4 (11.4%) | 9 (20.5%) | 0.283 |
Hematologic Events, n (%) | |||
Bleed during hospitalization | 11 (31.4%) | 1 (2.3%) | <0.001 * |
VTE during hospitalization | 8 (22.9%) | 12 (27.3%) | 0.654 |
Blood Products, n (%) | |||
Packed red cells | 13 (37.1%) | 7 (15.9%) | 0.031 * |
Cryoprecipitate | 13 (37.1%) | 17 (38.6%) | 0.892 |
Platelets | 4 (11.4%) | 2 (4.5%) | 0.251 |
Fresh frozen plasma | 24 (68.6%) | 5 (11.4%) | <0.001 * |
Interventions, n (%) | |||
Surgical | 8 (22.9%) | 6 (13.6%) | 0.286 |
Invasive ventilation | 9 (25.7%) | 10 (22.7%) | 0.758 |
Length of stay (days), median (IQR) | 18.0 (13.5) | 11.0 (13.3) | 0.133 |
Mortality, n (%) | 5 (14.3%) | 10 (22.7%) | 0.342 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunch, C.M.; Thomas, A.V.; Stillson, J.E.; Gillespie, L.; Khan, R.Z.; Zackariya, N.; Shariff, F.; Al-Fadhl, M.; Mjaess, N.; Miller, P.D.; et al. Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study. J. Clin. Med. 2021, 10, 3097. https://doi.org/10.3390/jcm10143097
Bunch CM, Thomas AV, Stillson JE, Gillespie L, Khan RZ, Zackariya N, Shariff F, Al-Fadhl M, Mjaess N, Miller PD, et al. Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study. Journal of Clinical Medicine. 2021; 10(14):3097. https://doi.org/10.3390/jcm10143097
Chicago/Turabian StyleBunch, Connor M., Anthony V. Thomas, John E. Stillson, Laura Gillespie, Rashid Z. Khan, Nuha Zackariya, Faadil Shariff, Mahmoud Al-Fadhl, Nicolas Mjaess, Peter D. Miller, and et al. 2021. "Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study" Journal of Clinical Medicine 10, no. 14: 3097. https://doi.org/10.3390/jcm10143097
APA StyleBunch, C. M., Thomas, A. V., Stillson, J. E., Gillespie, L., Khan, R. Z., Zackariya, N., Shariff, F., Al-Fadhl, M., Mjaess, N., Miller, P. D., McCurdy, M. T., Fulkerson, D. H., Miller, J. B., Kwaan, H. C., Moore, E. E., Moore, H. B., Neal, M. D., Martin, P. L., Kricheff, M. L., & Walsh, M. M. (2021). Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study. Journal of Clinical Medicine, 10(14), 3097. https://doi.org/10.3390/jcm10143097