Association between Inflammatory Conditions and Alzheimer’s Disease Age of Onset in Down Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Assessments
2.2. Statistical Analyses
3. Results
3.1. Demographics
3.2. Inflammatory/Autoimmune Condition by Cognitive Status
3.3. Association between Age of AD Onset and Inflammatory/Autoimmune Conditions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Williams, R.S. A prospective study of Alzheimer disease in Down syndrome. Arch. Neurol. 1989, 46, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Evenhuis, H.M. The natural history of dementia in Down’s syndrome. Arch. Neurol. 1990, 47, 263–267. [Google Scholar] [CrossRef]
- McCarron, M.; McCallion, P.; Reilly, E.; Dunne, P.; Carroll, R.; Mulryan, N. A prospective 20-year longitudinal follow-up of dementia in persons with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 843–852. [Google Scholar] [CrossRef]
- Head, E.; Lott, I.T. Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol. 2004, 17, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, K.E.; Wisniewski, H.M.; Wen, G.Y. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 1985, 17, 278–282. [Google Scholar] [CrossRef]
- Davidson, Y.S.; Robinson, A.; Prasher, V.P.; Mann, D.M.A. The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol. Commun. 2018, 6, 56. [Google Scholar] [CrossRef]
- Shi, Y.; Holtzman, D.M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 2018, 18, 759–772. [Google Scholar] [CrossRef]
- Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflamm. 2018, 15, 276. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer’s Dement. 2016, 2, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Heneka, M.T.; McManus, R.; Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 2018, 19, 610–621. [Google Scholar] [CrossRef]
- Wang, M.-M.; Miao, D.; Cao, X.-P.; Tan, L.; Tan, L. Innate immune activation in Alzheimer’s disease. Ann. Transl. Med. 2018, 6, 177. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 2018, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sundquist, J.; Zöller, B.; Sundquist, K. Dementia and Alzheimer’s disease risks in patients with autoimmune disorders. Geriatr. Gerontol. Int. 2018, 18, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcock, D.M.; Griffin, W.S.T. Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflamm. 2013, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, G.; Badenhoop, K. Autoimmune regulator (AIRE) gene on chromosome 21: Implications for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) any more common manifestations of endocrine autoimmunity. J. Endocrinol. Investig. 2002, 25, 804–811. [Google Scholar] [CrossRef]
- Giménez-Barcons, M.; Casteràs, A.; Armengol, M.D.P.; Porta-Pardo, E.; Correa, P.A.; Marín-Sánchez, A.; Pujol-Borrell, R.; Colobran, R. Autoimmune predisposition in Down syndrome may result from a partial central tolerance failure due to insufficient intrathymic expression of AIRE and peripheral antigens. J. Immunol. 2014, 193, 3872–3879. [Google Scholar] [CrossRef] [Green Version]
- Gulesserian, T.; Seidl, R.; Hardmeier, R.; Cairns, N.; Lubec, G. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J. Investig. Med. 2001, 49, 41–46. [Google Scholar] [CrossRef]
- Carnicer, J.; Farré, C.; Varea, V.; Vilar, P.; Moreno, J.; Artigas, J. Prevalence of coeliac disease in Down’s syndrome. Eur. J. Gastroenterol. Hepatol. 2001, 13, 263–267. [Google Scholar] [CrossRef]
- Anwar, A.J.; Walker, J.D.; Frier, B.M. Type 1 diabetes mellitus and Down’s syndrome: Prevalence, management and diabetic complications. Diabet. Med. 1998, 15, 160–163. [Google Scholar] [CrossRef]
- Madan, V.; Williams, J.; Lear, J.T. Dermatological manifestations of Down’s syndrome. Clin. Exp. Dermatol. 2006, 31, 623–629. [Google Scholar] [CrossRef]
- Pierce, M.J.; LaFranchi, S.H.; Pinter, J.D. Characterization of Thyroid Abnormalities in a Large Cohort of Children with Down Syndrome. Horm. Res. Paediatr. 2017, 87, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Whooten, R.; Schmitt, J.; Schwartz, A. Endocrine manifestations of Down syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Antonaros, F.; Lanfranchi, S.; Locatelli, C.; Martelli, A.; Olivucci, G.; Cicchini, E.; Diatricch, L.C.; Mannini, E.; Vione, B.; Feliciello, A.; et al. One-carbon pathway and cognitive skills in children with Down syndrome. Sci. Rep. 2021, 11, 4225. [Google Scholar] [CrossRef] [PubMed]
- Burt, D.B.; Aylward, E.H. Test battery for the diagnosis of dementia in individuals with intellectual disability. Working Group for the Establishment of Criteria for the Diagnosis of Dementia in Individuals with Intellectual Disability. J. Intellect. Disabil. Res. 2000, 44 Pt 2, 175–180. [Google Scholar]
- Schisterman, E.F.; Cole, S.R.; Platt, R. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009, 20, 488–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheepers, L.; Jacobsson, L.T.; Kern, S.; Johansson, L.; Dehlin, M.; Skoog, I. Urate and risk of Alzheimer’s disease and vascular dementia: A population-based study. Alzheimer’s Dement. 2019, 15, 754–763. [Google Scholar] [CrossRef]
- Engel, B.; Gomm, W.; Broich, K.; Maierm, W.; Weckbecker, K.; Haenisch, B. Hyperuricemia and dementia—A case-control study. BMC Neurol. 2018, 18, 131. [Google Scholar] [CrossRef] [Green Version]
- Heneka, M.T. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef]
- Patterson, D.; Graw, S.; Jones, C. Demonstration, by somatic cell genetics, of coordinate regulation of genes for two enzymes of purine synthesis assigned to human chromosome 21. Proc. Natl. Acad. Sci. USA 1981, 78, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tana, C.; Ticinesi, A.; Prati, B.; Nouvenne, A.; Meschi, T. Uric Acid and Cognitive Function in Older Individuals. Nutrients 2018, 10, 975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlet, T.R.; Parisotto, E.B.; Medeiros, G.D.S.D.; Pereira, L.C.R.; Moreira, E.A.D.M.; Dalmarco, E.M.; Dalmarco, J.B.; Filho, D.W. Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci. 2013, 93, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annerén, G.; Edman, B. Down syndrome—A gene dosage disease caused by trisomy of genes within a small segment of the long arm of chromosome 21, exemplified by the study of effects from the superoxide-dismutase type 1 (SOD-1) gene. APMIS Suppl. 1993, 40, 71–79. [Google Scholar] [PubMed]
- Vernerová, A.; Krčmová, L.K.; Melichar, B.; Švec, F. Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clin. Chem. Lab. Med. 2021, 59, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Vasan, R.S. Thyroid function and Alzheimer’s disease. J. Alzheimer’s Dis. 2009, 16, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Mathew, C.J.; Jose, M.T.; O Elshaikh, A.; Shah, L.; Lee, R.; Cancarevic, I. Is Hyperthyroidism a Possible Etiology of Early Onset Dementia? Cureus 2020, 12, e10603. [Google Scholar]
- Belandia, B.; Latasa, M.; Villa, A.; Pascual, A. Thyroid hormone negatively regulates the transcriptional activity of the beta-amyloid precursor protein gene. J. Biol. Chem. 1998, 273, 30366–30371. [Google Scholar] [CrossRef] [Green Version]
- Latasa, M.J.; Belandia, B.; Pascual, A. Thyroid hormones regulate beta-amyloid gene splicing and protein secretion in neuroblastoma cells. Endocrinology 1998, 139, 2692–2698. [Google Scholar] [CrossRef]
- Ewins, D.L.; Rossor, M.N.; Butler, J.; Rogues, P.K.; Mullen, M.J.; McGregor, A.M. Association between autoimmune thyroid disease and familial Alzheimer’s disease. Clin. Endocrinol. 1991, 35, 93–96. [Google Scholar] [CrossRef]
- Bavarsad, K.; Hosseini, M.; Hadjzadeh, M.; Sahebkar, A. The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J. Cell Physiol. 2019, 234, 14633–14640. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Luchsinger, J.A.; Freedberg, D.E.; Green, P.H.; Ludvigsson, J.F. Risk of dementia in patients with celiac disease: A population-based cohort study. J. Alzheimer’s Dis. 2016, 49, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, E.; Mander, A.; Ames, D.; Carne, R.; Sanders, K.; Watters, D. Cognitive impairment and vitamin B12: A review. Int. Psychogeriatr. 2012, 24, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Werder, S.F. Cobalamin deficiency, hyperhomocysteinemia, and dementia. Neuropsychiatr. Dis. Treat. 2010, 6, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.-T.; Li, H.-J.; Qiang, Y.; Sun, X.-Y.; Zhou, Y.-Q.; Xing, M.; Luo, Y.; Ru, Y.; Ding, X.-J.; et al. Association between Psoriasis and Dementia: Current Evidence. Front. Aging Neurosci. 2020, 12, 570992. [Google Scholar] [CrossRef]
- Carroll, B.J. Ageing, stress and the brain. Novartis Found. Symp. 2002, 242, 26–36; discussion 36–45. [Google Scholar]
- Wang, J.; Song, Y.; Chen, Z.; Leng, S.X. Connection between Systemic Inflammation and Neuroinflammation Underlies Neuroprotective Mechanism of Several Phytochemicals in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 1972714. [Google Scholar] [CrossRef] [Green Version]
All N = 339 | Cognitively Stable (CS) N = 125 | Alzheimer Disease (AD) N = 214 | p | |
---|---|---|---|---|
Sex (Male) | 197 (58.1) | 78 (62.4) | 119 (55.6) | 0.267 |
Age | 55 (50,60) | 51 (46,56) | 57 (53,62) | <0.001 |
ApoE ε4 | 66 (24.3) | 21 (23.9) | 45 (24.5) | 1.000 |
Inflammatory/Auto-Immune Condition | All N = 339 | CS N = 125 | AD N = 214 | p-Value |
---|---|---|---|---|
Alopecia areata or universalis | 30 (8.8) * | 12 (9.6) | 18 (8.4) | 0.862 |
Celiac disease | 20 (5.9) | 10 (8.0) | 10 (4.7) | 0.310 |
Hypothyroidism | 212 (62.5) | 75 (60.0) | 137 (64.0) | 0.534 |
Psoriasis | 34 (10.0) | 18 (14.4) | 16 (7.5) | 0.063 |
Diabetes | 20 (5.9) | 12 (9.6) | 8 (3.7) | 0.049 * |
Vitamin B12 deficiency | 59 (17.4) | 16 (12.8) | 43 (20.1) | 0.119 |
Gout | 45 (13.3) | 21 (16.8) | 24 (11.2) | 0.195 |
Number of Inflammatory/ Autoimmune Conditions | All | CS | AD | p-Value |
---|---|---|---|---|
0 | 76 (22.4) | 31 (24.8) | 45 (21.0) | 0.076 |
1 | 175 (51.6) | 60 (48.0) | 115 (53.7) | |
2 | 68 (20.1) | 23 (18.4) | 45 (21.0) | |
3 | 16 (4.7) | 7 (5.6) | 9 (4.2) | |
4 | 4 (1.2) | 4 (3.2) | 0 (0.0) |
Inflammatory/Autoimmune Condition | Estimate (95% CI) | p |
---|---|---|
Alopecia | 2.36 (−0.48, 5.21) | 0.103 |
Celiac disease | −1.12 (−4.88, 2.64) | 0.559 |
Hypothyroidism | 0.52 (−1.14, 2.17) | 0.541 |
Psoriasis | −1.53 (−4.55, 1.48) | 0.319 |
Diabetes | −1.08 (−5.27, 3.10) | 0.612 |
Vitamin B12 deficiency | 0.76 (−1.22, 2.74) | 0.449 |
Gout | 2.58 (0.09, 5.07) | 0.043 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.; Mercaldo, N.; Wang, C.M.; Hersch, G.G.; Rosas, H.D. Association between Inflammatory Conditions and Alzheimer’s Disease Age of Onset in Down Syndrome. J. Clin. Med. 2021, 10, 3116. https://doi.org/10.3390/jcm10143116
Lai F, Mercaldo N, Wang CM, Hersch GG, Rosas HD. Association between Inflammatory Conditions and Alzheimer’s Disease Age of Onset in Down Syndrome. Journal of Clinical Medicine. 2021; 10(14):3116. https://doi.org/10.3390/jcm10143116
Chicago/Turabian StyleLai, Florence, Nathaniel Mercaldo, Cassandra M. Wang, Giovi G. Hersch, and Herminia Diana Rosas. 2021. "Association between Inflammatory Conditions and Alzheimer’s Disease Age of Onset in Down Syndrome" Journal of Clinical Medicine 10, no. 14: 3116. https://doi.org/10.3390/jcm10143116
APA StyleLai, F., Mercaldo, N., Wang, C. M., Hersch, G. G., & Rosas, H. D. (2021). Association between Inflammatory Conditions and Alzheimer’s Disease Age of Onset in Down Syndrome. Journal of Clinical Medicine, 10(14), 3116. https://doi.org/10.3390/jcm10143116