Identifying and Avoiding Risk of Bias in Caries Diagnostic Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Domain 1: Selection and Spectrum Bias
- -
- Sample size (n) based on SE:
- -
- Sample size (n) based on SP:
3.2. Domains 2 and 3: Index and Reference Test
3.3. Domain 4: Study Flow & Data Analysis
4. Discussion and Knowledge Gaps
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosa, M.I.; Schambeck, V.S.; Dondossola, E.R.; Alexandre, M.C.; Tuon, L.; Grande, A.J.; Hugo, F. Laser fluorescence of caries detection in permanent teeth in vitro, a systematic review and meta-analysis. J. Evid. Based Med. 2016, 9, 213–224. [Google Scholar] [CrossRef]
- Gimenez, T.; Piovesan, C.; Braga, M.M.; Raggio, D.P.; Deery, C.; Ricketts, D.N.; Ekstrand, K.R.; Mendes, F.M. Visual Inspection for Caries Detection: A Systematic Review and Meta-analysis. J. Dent. Res. 2015, 94, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Tzschoppe, M.; Paris, S. Radiographic caries detection: A systematic review and meta-analysis. J. Dent. 2015, 43, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Stolpe, M.; Meyer-Lueckel, H.; Paris, S. Detecting and treating occlusal caries lesions: A cost-effectiveness analysis. J. Dent. Res. 2015, 94, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.; Rutjes, A.W.; Reitsma, J.B.; Bossuyt, P.M.; Kleijnen, J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med. Res. Methodol. 2003, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Peters, M.; Godfrey, C.; McInerney, P.; Baldini, S.C.; Khalil, H.; Parker, D. The Joanna Briggs Institute Reviewers’ Manual 2015, Methodology for JBI Scoping Reviews; The Joanna Briggs Institute: Adelaide, Australia, 2015. [Google Scholar]
- Poorterman, J.H.; Aartman, I.H.; Kieft, J.A.; Kalsbeek, H. Value of bite-wing radiographs in a clinical epidemiological study and their effect on the DMFS index. Caries Res. 2000, 34, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Poorterman, J.H.; Aartman, I.H.; Kalsbeek, H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Community Dent. Oral Epidemiol. 1999, 27, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Anttonen, V.; Duggal, M.S.; Spyridonos, M.L.; Rajasekharan, S.; Sobczak, M.; Stratigaki, E.; van Acker, J.W.G.; Aps, J.K.M.; Horner, K.; et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents. An EAPD policy document. Eur. Arch. Paediatr. Dent. 2020, 21, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Francescut, P.; Zimmerli, B.; Lussi, A. Influence of different storage methods on laser fluorescence values: A two-year study. Caries Res. 2006, 40, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; de Amorim, R.G.; Faber, J.; Leal, S.C. The Caries Assessment Spectrum and Treatment (CAST) index: Rational and development. Int. Dent. J. 2011, 61, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Frencken, J.E.; de Souza, A.L.; van der Sanden, W.J.; Bronkhorst, E.M.; Leal, S.C. The Caries Assessment and Treatment (CAST) instrument. Community Dent. Oral Epidemiol. 2013, 41, e71–e77. [Google Scholar] [CrossRef]
- de Souza, A.L.; Leal, S.C.; Chaves, S.B.; Bronkhorst, E.M.; Frencken, J.E.; Creugers, N.H. The Caries Assessment Spectrum and Treatment (CAST) instrument: Construct validation. Eur. J. Oral Sci. 2014, 122, 149–153. [Google Scholar] [CrossRef]
- Buderer, N. Statistical Methodology: I. Incorporating the Prevalence of Disease into the Sample Size Calculation for Sensitivity and Specificity. Acad. Emerg. Med. 1996, 3, 895900. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.K.; Indrayan, A. A simple nomogram for sample size for estimating sensitivity and specificity of medical tests. Indian J. Ophthalmol. 2010, 58, 519–522. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform. 2014, 48, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Bujang, M.; Adnan, T. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J. Clin. Diagn. Res. 2016, 10, YE01–YE06. [Google Scholar] [CrossRef]
- Donner, A.; Rotondi, M.A. Sample size requirements for interval estimation of the kappa statistic for interobserver agreement studies with a binary outcome and multiple raters. Int. J. Biostat. 2010, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Marthaler, T.M. Partial recording of dental caries in incidence studies. Adv. Fluoride Res. Dent. Caries Prev. 1966, 4, 41–52. [Google Scholar]
- Ekstrand, K.R.; Ricketts, D.N.J.; Kidd, E.A.M. Reproducibility and accuracy of three methods for assessment of demineralization depth on the occlusal surface: An in vitro examination. Caries Res. 1997, 31, 224–231. [Google Scholar] [CrossRef]
- Kühnisch, J.; Bücher, K.; Henschel, V.; Albrecht, A.; Garcia-Godoy, F.; Mansmann, U.; Hickel, R.; HeinrichWeltzien, R. Diagnostic performance of the Universal Visual Scoring System (UniViSS) on occlusal surfaces. Clin. Oral Investig. 2011, 15, 215–223. [Google Scholar] [CrossRef]
- Seitz, M. Validierung des International Caries Detection and Assessment Systems (ICDAS) mit Hilfe Verschiedener Histologischer Methoden. Ph.D. Thesis, Medical Faculty of the Ludwig-Maximilians University, Munich, Germany, 2011. [Google Scholar]
- Rodrigues, J.A.; Neuhaus, K.W.; Diniz, M.B.; Hug, I.; Stich, H.; Karlsson, L.; Lussi, A. Comparison among gold standard techniques used for the validation of methods for occlusal caries detection. Microsc. Res. Tech. 2012, 5, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Söchtig, F.; Pitchika, V.; Laubender, R.; Neuhaus, K.W.; Lussi, A.; Hickel, R. In vivo validation of near-infrared light transillumination for interproximal dentin caries. Clin. Oral Investig. 2016, 20, 821–829. [Google Scholar] [CrossRef]
- Huth, K.C.; Neuhaus, K.W.; Gygax, M.; Bücher, K.; Crispin, A.; Paschos, E.; Hickel, R.; Lussi, A. Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J. Dent. 2008, 36, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Mathews, D.E.; Farewell, V.T. Using and Understanding Medical Statistics, 5th revised and extended ed.; Karger: Basel, Switzerland, 2015. [Google Scholar]
- Altarakemah, Y.; Al-Sane, M.; Lim, S.; Kingman, A.; Ismail, A.I. A new approach to reliability assessment of dental caries examinations. Community Dent. Oral Epidemiol. 2013, 41, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L.; Nee, J.C.; Landis, J.R. The large variance of kappa in the case of different sets of raters Psychological bulletin. Psychol. Bull. 1979, 86, 974–977. [Google Scholar] [CrossRef]
- Fleiss, I.L. Statistical Methods for Rates and Proportions, 2nd ed.; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.I.K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 1038–1042. [Google Scholar] [CrossRef]
- Bland, J.M.; Altmann, D.G. Applying the right statistics: Analyses of measurement studies. Ultrasound Obs. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comp. Biol. Med. 1990, 20, 337–340. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000. [Google Scholar]
- Souza-Zaroni, W.C.; Ciccone, J.C.; Souza-Gabriel, A.E.; Ramos, R.P.; Corona, S.A.; Palma-Dibb, R.G. Validity and reproducibility of different combinations of methods for occlusal caries detection: An in vitro comparison. Caries Res. 2006, 40, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar]
- Schwendicke, F.; Splieth, C.; Breschi, L.; Banerjee, A.; Fontana, M.; Paris, S.; Burrow, M.F.; Crombie, F.; Page, L.F.; Gatón-Hernández, P.; et al. When to intervene in the caries process? An expert Delphi consensus statement. Clin. Oral Investig. 2019, 23, 3691–3703. [Google Scholar] [CrossRef] [PubMed]
Type of Study | Study Design | Study Material | Limitations |
---|---|---|---|
In vitro diagnostic study with in vitro histological validation | Favoured study design to determine the accuracy of a diagnostic test method/procedure in comparison to a rigorous in vitro reference standard when the in vitro diagnostic test procedure leads to similar diagnostic findings in comparison to the clinical usage; otherwise an in vivo study design has to be chosen. | Inclusion of appropriate human tooth material—non-damaged, non-restored, extracted teeth with different stages of caries lesions on the surface of interest. | Simplified in vitro test procedures in comparison to the clinical situation. Potentially biased spectrum of target teeth and caries lesions due to the unavailability of appropriate human tooth material. |
In vivo diagnostic study with in vitro histological validation | After performing diagnostic test(s) of in vivo and tooth extraction, caries lesions will be rigorously examined under in vitro conditions. | Inclusion of only those teeth that will need tooth extraction, e.g., 3rd molars. | Potentially biased spectrum of target teeth and caries lesions, ambitious patient recruitment. |
In vivo diagnostic study with in vivo validation | Study design that might be taken into consideration when an in vitro validation is not feasible. Only those proportion of teeth that need operative dental care will be validated, with no validation of healthy surfaces and non-cavitated caries lesions (incomplete in vivo reference standard). | Inclusion of only those patients with teeth that need operative dental care. | Typically, no validation of healthy surfaces and non-cavitated caries lesions. |
In vivo diagnostic study with in vivo validation and quasi-validation | Study design that might be taken into consideration when an in vitro validation is not feasible. Validation of only those cases that need well-justified, operative dental care and/or quasi-validation by longitudinal monitoring of healthy surfaces and non-cavitated caries lesions using convincing diagnostic test method(s). | Inclusion of all target patients and teeth. | Less rigorous and mixed in vivo reference standard, longitudinal and ambitious study design. |
In vivo diagnostic study without validation by biopsy (with or without usage of a pseudo-reference standard) | Study design to examine/test/analyse the outcome of at least one diagnostic test method. It might also be possible to use a diagnostic test method, e.g., radiography, as replacement for a rigorous in vivo or in vitro validation (pseudo-reference standard). | No validation; the pseudo-reference standards are less powerful than rigorous reference standards. | |
Caries monitoring studies | Longitudinal study design to investigate changes in caries characteristics or activity with at least one diagnostic test method. No validation is performed. | Longitudinal and ambitious study design. | |
In vivo or in vitro diagnostic study on reliability | Reliability can be investigated under in vivo or in vitro conditions. The diagnostic test protocol needs to be repeated at minimum once, aiming to determine intra- and inter-examiner reproducibility. | - |
α-Error (2-Sided) | 5% | 1% | 0.1% |
---|---|---|---|
Zα/2 | 1.96 | 2.5758 | 3.2905 |
Power | 80% | 90% | 95% |
Z1–β | 0.8416 | 1.0364 | 1.6449 |
Diagnosis | Caries Diagnostic Method(s) | Reference Standard |
---|---|---|
| Visual and/or visual-tactile | In vitro: Visual inspection/direct microscopy |
In vivo: Visual inspection/direct microscopy (after tooth separation) | ||
| Visual, radiography, photo-optical methods, others and its combinations | In vitro: Rigorous histological validationIn vivo: Validation by biopsy, pre- and/or post-operative radiography, etc. |
| Multifactorial, clinical diagnosis which includes different lesion characteristics, biofilm presences, “age” of the lesion, etc. | In vitro: No standard protocol available so far |
In vivo: No standard protocol available so far |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kühnisch, J.; Janjic Rankovic, M.; Kapor, S.; Schüler, I.; Krause, F.; Michou, S.; Ekstrand, K.; Eggmann, F.; Neuhaus, K.W.; Lussi, A.; et al. Identifying and Avoiding Risk of Bias in Caries Diagnostic Studies. J. Clin. Med. 2021, 10, 3223. https://doi.org/10.3390/jcm10153223
Kühnisch J, Janjic Rankovic M, Kapor S, Schüler I, Krause F, Michou S, Ekstrand K, Eggmann F, Neuhaus KW, Lussi A, et al. Identifying and Avoiding Risk of Bias in Caries Diagnostic Studies. Journal of Clinical Medicine. 2021; 10(15):3223. https://doi.org/10.3390/jcm10153223
Chicago/Turabian StyleKühnisch, Jan, Mila Janjic Rankovic, Svetlana Kapor, Ina Schüler, Felix Krause, Stavroula Michou, Kim Ekstrand, Florin Eggmann, Klaus W. Neuhaus, Adrian Lussi, and et al. 2021. "Identifying and Avoiding Risk of Bias in Caries Diagnostic Studies" Journal of Clinical Medicine 10, no. 15: 3223. https://doi.org/10.3390/jcm10153223
APA StyleKühnisch, J., Janjic Rankovic, M., Kapor, S., Schüler, I., Krause, F., Michou, S., Ekstrand, K., Eggmann, F., Neuhaus, K. W., Lussi, A., & Huysmans, M. -C. (2021). Identifying and Avoiding Risk of Bias in Caries Diagnostic Studies. Journal of Clinical Medicine, 10(15), 3223. https://doi.org/10.3390/jcm10153223