The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements and Definitions
2.3. Endpoints and Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Abecassis, M.; Bartlett, S.T.; Collins, A.J.; Davis, C.L.; Delmonico, F.L.; Friedewald, J.J.; Hays, R.; Howard, A.; Jones, E.; Leichtman, A.B.; et al. Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) Conference. Clin. J. Am. Soc. Nephrol. 2008, 3, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oterdoom, L.H.; de Vries, A.P.J.; van Ree, R.M.; Gansevoort, R.T.; van Son, W.J.; van der Heide, J.J.H.; Navis, G.; de Jong, P.E.; Gans, R.O.B.; Bakker, S.J.L. N-Terminal pro-B-Type Natriuretic Peptide and Mortality in Renal Transplant Recipients versus the General Population. Transplantation 2009, 87, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Ao, O.; Ja, H.; Ra, W.; Ab, L.; Ly, A.; Fk, P. Long-Term Survival in Renal Transplant Recipients with Graft Function. Available online: https://pubmed.ncbi.nlm.nih.gov/10620213/?dopt=Abstract (accessed on 13 August 2020).
- Tantravahi, J.; Womer, K.L.; Kaplan, B. Why Hasn’t Eliminating Acute Rejection Improved Graft Survival? Annu. Rev. Med. 2007, 58, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Boersema, M.; Rienstra, H.; van den Heuvel, M.; van Goor, H.; van Luyn, M.J.A.; Navis, G.J.; Popa, E.R.; Hillebrands, J.-L. Donor and Recipient Contribution to Transplant Vasculopathy in Chronic Renal Transplant Dysfunction. Transplantation 2009, 88, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.N.; Libby, P. Vascular Remodeling in Transplant Vasculopathy. Circ. Res. 2007, 100, 967–978. [Google Scholar] [CrossRef]
- Lentine, K.L.; Brennan, D.C.; Schnitzler, M.A. Incidence and Predictors of Myocardial Infarction after Kidney Transplantation. J. Am. Soc. Nephrol. 2005, 16, 496–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opelz, G.; Döhler, B. Collaborative Transplant Study Improved Long-Term Outcomes after Renal Transplantation Associated with Blood Pressure Control. Am. J. Transplant. 2005, 5, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, S.; Wilkinson, A.H.; Kobashigawa, J.A.; Wang, X.M.; Chia, D.; Ozawa, M.; Zhong, H.P.; Hirata, M.; Cohen, A.H.; Teraski, P.I. The Effect of Pravastatin on Acute Rejection after Kidney Transplantation—A Pilot Study. Transplantation 1996, 61, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansell, H.; Stewart, S.A.; Shoker, A. Validity of Cardiovascular Risk Prediction Models in Kidney Transplant Recipients. ScientificWorldJournal 2014, 2014, 750579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, D.E.; Tighiouart, H.; Elsayed, E.F.; Griffith, J.L.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. The Framingham Predictive Instrument in Chronic Kidney Disease. J. Am. Coll. Cardiol. 2007, 50, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association, A.D. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2012, 35, S64–S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annema, W.; Dikkers, A.; de Boer, J.F.; Dullaart, R.P.F.; Sanders, J.-S.F.; Bakker, S.J.L.; Tietge, U.J.F. HDL Cholesterol Efflux Predicts Graft Failure in Renal Transplant Recipients. J. Am. Soc. Nephrol. 2016, 27, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linden, A. FRAMINGHAM: Stata Module for Calculating the Framingham 10-Year Cardiovascular Disease Risk Prediction; Statistical Software Components S457997; Department of Economics, Boston College: Chestnut Hill, MA, USA, 2017. [Google Scholar]
- Chen, S.-C.; Su, H.-M.; Tsai, Y.-C.; Huang, J.-C.; Chang, J.-M.; Hwang, S.-J.; Chen, H.-C. Framingham Risk Score with Cardiovascular Events in Chronic Kidney Disease. PLoS ONE 2013, 8, e60008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.Y.; Pengal, S. Cardiovascular Disease Risk in a Semirural Community in Malaysia. Asia Pac. J. Public Health 2009, 21, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Borucka, J. Extensions of Cox Model for Non-Proportional Hazards Purpose. Ekonometria 2014, 3, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Kaboré, R.; Haller, M.C.; Harambat, J.; Heinze, G.; Leffondré, K. Risk Prediction Models for Graft Failure in Kidney Transplantation: A Systematic Review. Nephrol. Dial. Transpl. 2017, 32, ii68–ii76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Framingham Heart Study. Available online: https://www.framinghamheartstudy.org/fhs-risk-functions/cardiovascular-disease-10-year-risk/ (accessed on 12 November 2018).
- Porrini, E.; Ruggenenti, P.; Luis-Lima, S.; Carrara, F.; Jiménez, A.; de Vries, A.P.J.; Torres, A.; Gaspari, F.; Remuzzi, G. Estimated GFR: Time for a Critical Appraisal. Nat. Rev. Nephrol. 2018, 1. [Google Scholar] [CrossRef] [PubMed]
- A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology—PubMed. Available online: https://pubmed-ncbi-nlm-nih-gov.proxy-ub.rug.nl/30028786/ (accessed on 20 July 2021).
Characteristics | Framingham Risk Score Groups Low (<10%), Medium (10–20%), High (≥20%) | |||
---|---|---|---|---|
Low (n = 148) | Medium (n = 151) | High (n = 301) | p Value | |
Framingham risk score | ||||
FRS | 5.2 (3.3–7.5) | 14.5 (12.3–16.9) | 37.5 (26.8–49.5) | <0.001 |
Age, years | 37.4 (31.5–44.1) | 49.8 (42.8–55.5) | 59.7 (53.0–64.8) | <0.001 |
Male gender, n (%) | 58 (39.2) | 80 (53.0) | 194 (64.4) | <0.001 |
Smoking, n (%) | 58 (39.2) | 80 (53.0) | 194 (64.5) | <0.001 |
Diabetes, n (%) | 5 (3.4) | 13 (8.6) | 84 (27.9) | <0.001 |
Total cholesterol, mg/dL | 204.2 (181.9–225.8) | 209.2 (187.6–232.1) | 225.1(199.5–249.4) | <0.001 |
HDL cholesterol, mg/dL | 44.3 (35.6–52.8) | 40.2 (34.4–50.3) | 39.1 (31.7–48.3) | <0.001 |
Mean systolic blood pressure, mmHg | 134 (125–146) | 145 (133–156) | 162(149–176) | <0.001 |
Use of antihypertensive medication, n (%) | 110 (74.3%) | 129 (85.4%) | 284 (94.4%) | <0.001 |
Recipient characteristics | ||||
Weight, kg | 70.0 (61.5–79.5) | 76.5 (67.5–87.0) | 79.0 (71.0–88.0) | <0.001 |
BMI, kg/m2 | 23.7 (21.6–27.0) | 25.4 (23.0–29.1) | 26.4 (24.0–28.7) | <0.001 |
Use of statins, n (%) | 52 (35.1) | 82 (54.3) | 160 (53.2) | <0.001 |
Cardiovascular disease history | ||||
History of MI, n (%) | 9 (6.2) | 12 (8.0) | 27 (9.0) | 0.60 |
History of TIA/CVA, n (%) | 7 (4.8) | 7 (4.6) | 19 (6.3) | 0.69 |
Glucose homeostasis | ||||
Glucose, mmol/L | 4.3 (4.0–4.8) | 4.5 (4.1–4.8) | 4.7 (4.2–5.5) | <0.001 |
Insulin, μmol/L | 10.6 (8.2–14.3) | 11.9 (8.1–16.9) | 11.2 (7.8–16.1) | 0.33 |
HbA1c, % | 5.8 (5.4–6.4) | 6.3 (5.9–6.7) | 6.7 (6.1–7.5) | <0.001 |
Use of anti-diabetic drugs, n (%) | 3 (2.0) | 9 (6.0) | 63 (20.9) | <0.001 |
Inflammation | ||||
hsCRP, mg/L | 1.3 (0.6–3.8) | 2.1 (0.7–4.6) | 2.2 (1.1–5.9) | <0.001 |
Donor demographics | ||||
Age, years | 35.0 (21.0–47.5) | 37.0 (23.0–49.0) | 40.0 (24.0–51.0) | 0.14 |
Male sex, n (%) | 81 (55.1) | 85 (57.0) | 158 (52.5) | 0.64 |
Living kidney donor, n (%) | 37 (25.0) | 21 (13.9) | 25 (8.3) | <0.001 |
(Pre)transplant history | ||||
No haemodialysis | 15 (10.1) | 13 (8.6) | 20 (6.6) | 0.42 |
Dialysis time, months | 26.5 (12.5–47.0) | 26.0 (14.0–51.0) | 28.0 (14.0–50.0) | 0.65 |
Number of transplantations | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 0.61 |
HLA mismatch | 1.00 (0.00, 2.00) | 1.00 (0.00, 2.00) | 1.00 (0.00, 2.00) | 0.58 |
Class I HLA antibodies | 3 (1–6) | 3 (1–7) | 3 (1–6) | 0.20 |
Class II HLA antibodies | 2 (0–5) | 2 (1–5) | 2 (0–5) | 0.07 |
Acute rejection, n (%) | 72 (48.65%) | 70 (46.36%) | 127 (42.19%) | 0.39 |
Time between Tx and inclusion, years | 5.6 (2.0–9.2) | 6.1 (3.1–12.0) | 6.4 (2.7–11.7) | 0.11 |
Primary renal disease, n (%) | ||||
Primary glomerular disease | 42 (28.4) | 50 (33.1) | 77 (25.6) | 0.24 |
Glomerulonephritis | 18 (12.2) | 7 (4.6) | 14 (4.7) | 0.006 |
Tubulo-interstitial disease | 33 (22.3) | 26 (17.2) | 33 (11.0) | 0.006 |
Polycystic renal disease | 12 (8.1) | 30 (19.8) | 63 (20.9) | 0.002 |
Dysplasia and hypoplasia | 11 (7.4) | 4 (2.7) | 6 (2.0) | 0.01 |
Renovascular disease | 5 (3.4) | 8 (5.3) | 20 (6.6) | 0.36 |
Diabetic nephropathy | 3 (2.0) | 4 (2.7) | 16 (5.3) | 0.16 |
Other or unknown cause | 24 (16.2) | 22 (14.6) | 72 (23.9) | 0.03 |
Immunosuppressive medication | ||||
Daily prednisolone dose, mg/dL | 10.0 (7.5–10.0) | 10.0 (7.5–10.0) | 10.0 (7.5–10.0) | 0.84 |
Calcineurin inhibitors, n (%) | 115 (77.7) | 112 (74.2) | 244 (81.1) | 0.23 |
Proliferation inhibitors, n (%) | 118 (80.8) | 116 (76.8) | 207 (69.2) | 0.021 |
Renal allograft function | ||||
Post-transplantation oliguria, days | 1.1 (3.4) | 1.9 (4.7) | 2.9 (8.9) | <0.001 |
Creatinine clearance mL/min/1.73 m2 | 65.0 (22.3) | 64.3 (23.7) | 59.6 (21.8) | 0.02 |
eGFR, mL/min | 51.8 (40.2–61.9) | 47.7 (36.8–58.6) | 44.9 (34.0–55.8) | <0.001 |
Proteinuria ≥ 0.5 g/24 h, n (%) | 39 (26.4) | 39 (26.0) | 90 (30.0) | 0.58 |
Graft failure, n (%) | 24 (16.2) | 23 (15.2) | 34 (11.3) | 0.28 |
Hazard Ratio Main Effect | 95%CI | p Value | p Value after Bonferroni-Holm Correction | Hazard Ratio TVC | 95%CI | p Value | p Value after Bonferroni-Holm Correction | |
---|---|---|---|---|---|---|---|---|
Model 1 | 1.04 | 1.02–1.06 | <0.001 | 0.008 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 2 | 1.03 | 1.01–1.05 | 0.001 | 0.008 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 3 | 1.04 | 1.02–1.06 | <0.001 | 0.008 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 4 | 1.04 | 1.02–1.06 | <0.001 | 0.008 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 5 | 1.04 | 1.02–1.06 | <0.001 | 0.008 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 6 | 1.03 | 1.01–1.05 | <0.001 | 0.001 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 7 | 1.03 | 1.01–1.05 | 0.006 | 0.012 | 0.99 | 0.99–1.00 | 0.002 | 0.016 |
Model 8 | 1.02 | 1.00–1.05 | 0.040 | 0.012 | 0.99 | 0.99–1.00 | 0.008 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, J.L.C.; Poot, M.L.; Steffen, H.L.M.; Kremer, D.; Bakker, S.J.L.; Tietge, U.J.F. The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients. J. Clin. Med. 2021, 10, 3287. https://doi.org/10.3390/jcm10153287
Anderson JLC, Poot ML, Steffen HLM, Kremer D, Bakker SJL, Tietge UJF. The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients. Journal of Clinical Medicine. 2021; 10(15):3287. https://doi.org/10.3390/jcm10153287
Chicago/Turabian StyleAnderson, Josephine L. C., Margot L. Poot, Hannah L. M. Steffen, Daan Kremer, Stephan J. L. Bakker, and Uwe J. F. Tietge. 2021. "The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients" Journal of Clinical Medicine 10, no. 15: 3287. https://doi.org/10.3390/jcm10153287
APA StyleAnderson, J. L. C., Poot, M. L., Steffen, H. L. M., Kremer, D., Bakker, S. J. L., & Tietge, U. J. F. (2021). The Framingham Risk Score Is Associated with Chronic Graft Failure in Renal Transplant Recipients. Journal of Clinical Medicine, 10(15), 3287. https://doi.org/10.3390/jcm10153287